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A B S T R A C T 

We have worked on (2+1)-dimensional dissipative long wave system (DLWS) and (2+1)-dimensional 

Date-Jimbo-Kashiwara-Miwa (DJKM) equation. We have applied GKM, which has been obtained by 
generalizing the Kudryashov method, to the (2+1)- dimensional DLWS and (2+1)-dimensional DJKM 

equation. Thus, we have got some new soliton solutions of handled system and equation. We have plotted 

2D and 3D surfaces of these acquired results by using Wolfram Mathematica 12. Then, we have shown 

the validity of the acquired solutions.  
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1. Introduction  

Nonlinear evolution equations (NLEEs) have very significant 
applications in areas such as mathematical physics, biology, 
economy, mathematical chemistry, hydrodynamics, fluid 
dynamics, geochemistry, control theory, meteorology, optics, 
mechanics, chemical kinematics, biophysics, biogenetics, and 
so on. Particularly nonlinear partial differential equations, 
researching chemical reactions occurring in various scientific 
environments, changes in living populations, heat dissipation 
on metals, determination of charge and current in electrical 
circuits, plate and wire vibrations; It is widely used in the study 
and interpretation of important physical phenomena such as 
sea, lake, stream and tidal waves, decay of a radioactive object. 
Various studies are carried out by many scientists to find the 
solutions of equations, which have such extremely important 
and widespread areas of use (Ali et al., 2021; Yokus et al., 2020; 

Gao et al., 2020; Cinar et al., 2021; Rani et al., 2021; Manafian 
et al., 2020; Yaslan and Girgin, 2019; Ghanbari and Inc, 2018; 
Dusunceli et al., 2021; Kumar and Kaplan, 2018; Mirzazadeh et 
al., 2021).  (2+1)-dimensional DLWS is a famous system of 
equations used in physical applications, nonlinear science and 
nonlinear wave theory (Chang et al., 2020).  (2+1)-dimensional 
DLWS is given as (Yang and Feng, 2021):  

2 2 0,

2 2 2 0.

t xx x x

t y xxy xx x y xy

u u u v uv

v v u v v vv

− − − =

+ − − − =
                                         (1) 

Chang et al. used Lie symmetry analysis and dynamical system 

method for system (Chang et al., 2020). Yang and Feng 

obtained the solutions of this system by applying the variable 

separation method and exp ( ( ))− -expansion method 

(Yang and Feng, 2021).  

(2+1)-dimensional DJKM equation is given as (Yuan et al., 
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2017; Pu and Hu, 2019; Ismael et al., 2020): 

4 2 6 2 0,xxxxy xxy x xxx y xy xx yyy xxtu u u u u u u u u+ + + + − =  

                                                                                                                                 (2) 

Pu and Hu examined solitary wave solutions of the equation 

with the sine-Gordon expansion method (Pu and Hu, 2019). 

Ismael et al. applied Hirota bilinear method to the equation 

(Ismael et al., 2020). Yuan et al. obtained solutions of the 

equation with Hirota method and auxiliary variable (Yuan et 

al., 2017). Adem et al. performed extended transformed 

rational function algorithm to the equation (Adem et al., 2019). 

Singh and Gupta applied the Pickering’s algorithm to the 

equation (Singh and Gupta, 2018). Guo and Lin used the direct 

ansatz method for the equation (Guo and Lin, 2019). 

In this study, GKM, which is one of the solution methods of 

NLEEs, is discussed (Tuluce Demiray, 2020; Tuluce Demiray 

and Bayrakci, 2021; Pandır and Eren, 2021; Kaplan and 

Akbulut, 2021; Gurefe, 2020; Islam et al. 2019). Firstly, the 

structure of the method is introduced. Afterwards, some 

soliton solutions of (2+1)-dimensional DJKM and (2+1)-

dimensional DLWS were obtained by applying GKM. 

2. Structure of GKM  

We take into account a general nonlinear partial differential 
equation (NLPDE) for a function v  of three different variables 

in the following form: 

( ), , , , ,... 0.t y x xxR v v v v v =                                                         (3) 

Step1: Firstly, we regard the travelling wave transform as 
following form;  

( ) ( ), , , .v x y t v x y mt = = + −                                            (4) 

Eq.  (3) is turned into ordinary differential equation by Eq. (4):  

( ), , , , ', '',... 0,L t y x v v v =                                                          (5) 

where superscripts demonstrate ordinary derivatives 
according  .  

Step2: Suppose that we consider the solutions of Eq. (5) as: 

( )
( )

( )

( )

( )
0

0

,

k
i

i
i

l
j

j
j

a Q P Q
v

S Qb Q

 




=

=

 
  

 
  


= =



                                                (6) 

where Q  is 
1

1 e
. We should point out that Q  is the solution to the 

following equation. 

2 .Q Q Q = −                                                                                     (7) 

Step3: The solution of the nonlinear ordinary differential 
equation given by Eq. (5) is sought according to the GKM as 
follows:  

( )
2

0 1 2

2

0 1 2

.
k

k

l

l

a a Q a Q a Q
v

b bQ b Q bQ


+ + + +
=

+ + + +
                                 (8) 

If we can ascertain values of k and l  in Eq. (6) through the 

homogeneous balance principle. Therefore we balance 
between the highest order derivative and highest order 
nonlinear term in Eq. (5).  

Step4: We embed Eq. (6) into Eq. (5). Thus we get a polynomial

( )R Q  of Q . Thereafter equalizing all coefficients of ( )R Q to 

zero, we find an algebraic equation system. By solving obtained 
system, we determine c  and coefficients of 

0 1 2 0 1 2, , , , , , , , ,k la a a a b b b b . Finally, we can obtain the 

soliton solutions of Eq. (5). 

3. Application of GKM to the equations 

Example 1: 

For the find the soliton solutions of system (1) we consider the 

following transformation: 

( , , ) ( ), ( , , ) ( ), .u x y t u v x y t v x y mt  = = = + −  (9) 

Putting the Eq. (9) into the system (1), we get the equation 
2

( , , ) .
2 2 2

v mv v
u x y t


= − −  By performing the necessary 

mathematical operations, system (1) is converted to the 
following ordinary differential equation. Replace Eq. (9) into 
system (1) and we get the following equation, 

2 2 33 2 0.m v v mv v− − + + =                                                       (10) 

By using balance principle in Eq. (9), we obtain, 

1,k l= +                                                                                             (11) 

If we give 1l =  then 2k =  we find, 

( )
2

0 1 2

0 1

,
a a Q a Q

u
b bQ


+ +

=
+

                                                       (12) 

( ) ( )

( )( ) ( )
( )

2

2

1 2 0 1 1 0 1 2

2

0 1

2
,

u Q Q

a a Q b b Q b a a Q a Q

b b Q

 = − 

 + + − + +
 

+  

   (13) 



Bitlis Eren University Journal of Science and Technology 12 (1) (2022) 51–59 

 

53 

 

( )
( )

( )

( )( ) ( )

( )
( )

( ) ( )( )

( )

2

2

0 1

2

1 2 0 1 1 0 1 2

2
2

3

0 1

2

2 0 1 1 1 2 0 1

2 2

1 0 1 2

2 1

2

2 2 2
.

2

Q Q
u Q

b b Q

a a Q b b Q b a a Q a Q

Q Q

b b Q

a b b Q b a a Q b b Q

b a a Q a Q


−

 = − 
+

 + + − + +
 

−
+ 

+

 + − + +
 
 + + +
 

  (14) 

We obtain the soliton solutions of system (1) in the following 
different cases;  

Case1: 

0 1 0 2 10, , , 1.a a b a b m= = − = − =                                                  (15) 

Substituting the above values in Eq. (12), we acquire the dark 
soliton solutions of system (1).  

1

1
( , , ) 1 tanh

4 2

tanh ,
2

x y t
u x y t

x y t
m

 + −  
= − − +  

  

 + −  
 +  

  

                    (16) 

1

1
( , , ) 1 tanh .

2 2

x y t
v x y t

 + −  
= − −  

  
                    (17)  

Figure 1. 3D of solution (16) for 2, 25 25y x= −    values with 

2 2t−    range and 2D plot of solution for 1t = with these values.  
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Figure 2. 3D of solution (17) for 2, 20 20y x= −    values with 

2 2t−    range and 2D plot of solution for 1t = with these values. 

Case2: 

1
0 1 1 1 2 1 0, 2 , , , 2.

2

b
a b a b a b b m= = − = = − =                  (18) 

Substituting the above values in Eq. (12), we acquire the dark-
bright and dark soliton solutions of system (1).  

( )

( )

2

1
( , , ) 1 coth[ 2 ]

4

4 4coth[ 2 ] csch[ 2 ] ,

u x y t x y t

x y t x y t

= + + − 

+ + − + + −

               (19) 

2

2

1 2
( , , ) 1 coth

2 2

2
tanh .

2

x y t
v x y t

x y t

 + −  
= − +   

  

+ − 
 
 

                (20) 

 

Figure 3. 3D of solution (19) for 2, 30 30y x= −    values with 

5 5t−    range and 2D plot of solution for 4t = with these values.  



Bitlis Eren University Journal of Science and Technology 12 (1) (2022) 51–59 

 

55 

 

 

Figure 4. 3D of solution (20) for 0.5, 35 35y x= −    values 

with 3 3t−    range and 2D plot of solution for 2t = with these 

values.  

Case3: 

1
0 1 1

1
2 1 0

, 1 ,
2 2 2

, , 2.
2

ib i
a a b

b
a b b m i

 
= = − 

 

= − = − =

                                                  (21) 

Substituting the above values in Eq. (12), we acquire the bright 
soliton solutions of system (1).  

3

1
( , , ) csc[ 2 ]

4 2

2
tanh ,

2

i
u x y t ix iy t

x y i t

−
= + + + 

 + −
 
 

                        (22) 

3( , , ) csc[ 2 ].
2

i
v x y t i ix iy t= − − + +                             (23) 

 

Figure 5. 3D of solution (22) for 5, 15 15y x= −    values with 

2 2t−    range and 2D plot of solution for 1t = with these values.   

 

Figure 6. 3D of solution (23) for 0.2, 20 20y x= −    values 

with 5 5t−    range and 2D plot of solution for 3t = with these 

values. 
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Example 2: 

For the find the soliton solutions of Eq. (2) we consider 

following equalities: 

( )( , , ) ( ), .u x y t u n x ay ht = = + −                                (24) 

Replace Eq. (24) into Eq. (2) and we get the following equation, 

( ) ( )
22 33 2 0.an u an u a h u  + + + =                                   (25) 

By making the ,u g =  transformation in Eq. (25), we find the 

following equation, 

( )2 2 33 2 0.an g ang a h g + + + =                                              (26) 

By using balance principle in Eq. (26), we obtain 

2.k l= +                                                                                              (27)  

If we give 1l =  then 3k =  we find the following equations, 

 

( )
2 3

0 1 2 3

0 1

,
a a Q a Q a Q

u
b bQ


+ + +

=
+

                                               (28) 

( ) ( )

( )( )

( )
( )

2

2

1 2 3 0 1

2 3

1 0 1 2 3

2

0 1

2 3

,

u Q Q

a a Q a Q b b Q

b a a Q a Q a Q

b b Q

 = − 

 + + +
 
 − + + +
 

+ 
 
  

                                (29) 

( )
( )

( )

( )( )

( )

( )
( )

( ) ( )

( )( )

( )

2

2

0 1

2

1 2 3 0 1

2 3

1 0 1 2 3

2

2 0 1 2 32

2

1 0 1 1 2 33

0 1
2 2 3

1 0 1 2 3

2 1

2 3

2 6

2 2 3 .

2

Q Q
u Q

b b Q

a a Q a Q b b Q

b a a Q a Q a Q

b b Q a a Q
Q Q

b b b Q a a Q a Q
b b Q

b a a Q a Q a Q


−

 = − 
+

 + + +
  +
 − + + +
 

 + + −
 −
 + + +
 +
 + + + +
 

 

                                                                                                                (30) 

We get soliton solutions of Eq. (2) in the following different 
cases;   

 

 

Case1: 

( )
( )

0 1
0 1 0

2 0 1 3 1

2/3
1/3 2 2 6

1/3
2/3 2 6

, ,
6 6

( ), ,

3 9 81 3
.

3 9 81 3

nb nb
a a nb

a n b b a nb

n h h n
a

h h n

= − = −

= − + = −

+ − + −
=

− + −

                                  (31) 

Substituting the above values in Eq. (28), we acquire dark 
soliton solution of Eq. (2). 

( )

( )

2

1( , , )
6

tanh ,
2 2

n
u x y t x ay ht

n x ay htn

−
= + −

+ − 
+  

 

                                                 (32) 

where 
( )

( )

2/3
1/3 2 2 6

1/3
2/3 2 6

3 9 81 3
.

3 9 81 3

n h h n
a

h h n

+ − + −
=

− + −
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Figure 7. 3D of solution (32) for 0.2755, 4, 0.5,n a y= = =  

1, 25 25k x= − −   values with 5 5t−    range and 2D plot 

of solution for 0.5t = with these values. 

Case2: 

( )

( )

33
0 10

0 1

3

0 1

2

3 3

1
3

2 62
, ,

6 6

2
,

2 2
, .

a h b ba hb
a a

a a

a h b b
a

a

a hb a h
a n

a a

+ − ++
= =

+ −
=

+ +
= = −

        (33) 

Substituting the above values in Eq. (28), we acquire dark 
soliton solution of Eq. (2). 

( )

( )

3

2

3

2
( , , )

6

2
tanh ,

22

a h
u x y t nx nay nht

a

nx nay nhta h

a

+
= + −

+ − +
−  

 

                        (34) 

where 

3 2
.

a h
n

a

+
= −  

 

Figure 8. 3D of solution (34) for 3, 1, 5,n a y= − = =  

1, 20 20k x= −   values with 4 4t−    range and 2D plot of 

solution for 2t = with these values. 

Case3: 

3

1
0 1 2

3 3

1
3 0

2
0, 0, ,

2 2
, 0, .

i a hb
a a a

a

i a hb i a h
a b n

a a

+
= = = −

+ +
= = = −

                (35) 
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Substituting the above values in Eq. (28), we acquire 
trigonometric function solution of Eq. (2). 

( )

3

3

3

2
( , , )

2

2
tan ,

2

a h
u x y t

a

a h x ay ht

a

+
= − 

 + + −
 
  

                                              (36) 

where 

3 2
.

i a h
n

a

+
= −  

 

Figure 9. 3D of solution (36) for 4, 2, 0.5,a k y= = =  

25 25x−   values with 3 3t−    range and 2D plot of solution 

for 1t = with these values. 

 

 

 

 

Case4: 

3 3

0 0
0 3 2

3

0
1 2

3

2
1 0

3

2 2
, ,

6

5 21
,

6

2
, .

2

a hb a hb
a a a

a a

a hb
a a

a

aa a h
b b n

aa h

+ +
= − = − −

 +
= − + 

 
 

+
= + =

+

            (37) 

Substituting the above values in Eq. (28), we acquire dark 
soliton solution of Eq. (2). 

3

4

3

17 2 ( )
( , , )

6

17 2 ( )
tanh ,

2 2

i a h x ay ht
u x y t

a

i a h x ay ht

a

+ + −
=

 + + −
−  

  

                        (38) 

 

Figure 10. 3D of solution (38) for 2, 1, 1,a k y= = =  

20 20x−   values with 5 5t−    range and 2D plot of solution 

for 2t = with these values. 
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4. Conclusion 

In this made study, we discussed GKM, which is one of the 
NLEEs solution methods. We applied this discussed method to 
the (2+1)-dimensional DJKM equation and the (2+1)-
dimensional DLWS and so we got some soliton solutions of 
equation and system being studied. At the same time, we drew 
the drawings of the 2D and 3D graphics of the found soliton 
solutions by giving certain values. Thus, it has been seen that 
GKM is a reliable and exact solution method in obtaining NLEEs 
solutions. In future studies, GKM can be used in research of 
other NLEEs. 
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