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In this paper, we get some characterizations of conformable curve in ℝ2. We investigate the conformable curve 
in ℝ2. We define the tangent vector of the curve using the conformable derivative and the arc parameter s. 
Then, we get the Frenet formulas with conformable frames. Moreover, we define the location vector of 
conformable curve according to Frenet frame in the plane ℝ2. 

Finally, we obtain the differential equation characterizing location vector and curvature of conformable curve in 
the plane ℝ2.    
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Introduction 

The fractional analysis phrase has been first appearing 
in a letter written by L’ Hospital to Leibniz. In this letter,                          
L’ Hospital has asked Leibniz about a special structure that 

he used in his work for 
𝑑𝑛𝑦

𝑑𝑥𝑛
. L’ Hospital has asked how to 

take the derivative and what would be the result if the 
order of the derivative was a rational number, for 

instance, 𝑛 =
1

2
  [1]. This question has created the first 

glint of fractional analysis. Most of the mathematical 
theories used in fractional analysis have been developed 
before the 20th century. However, to keep up with 
scientific developments, mathematicians have made a 
few changes to the structure of fractional calculus. Caputo 
has renewed the Riemann-Liouville fractional derivative 
and has introduced the Caputo derivative as a new 
derivative concept [2]. Many scientists, Khalil and his 
colleagues first came up with the definition of 
conformable derivative in 2014. Because of its similarity 
to the classical derivative definition, this derivative was 
the simplest of the fractional derivative definitions. 
Although the concepts of Riemann-Liouville and Caputo 
fractional derivatives are being widely used today, they 
are not as common as the conformable derivative because 
they have some deficiencies [3].The product and quotient 
rule, which could not be provided for the other fractional 
derivatives mentioned above, could be provided for this 
new definition of fractional derivative. In addition, a 
constant function has no Caputo fractional derivative 
among these fractional derivatives [4,5]. In a short time, 
many studies have been done on conformable derivatives. 
T. Abdejavad, J. Alzabut, F. Jarad, R.P. Agarval, A. Zbekler 
have studied Lyapunov type inequalities in the 
conformable derivative frame [6,7]. Moreover, further 

works have been done on the conformable derivative 
[8,9,10]. 

Finally, in this paper, the characterizations of a 

conformable curve in the plane ℝ2 are expressed using 
the conformable derivative. 

 

Geometric Preliminaries 

Given a function 𝑓: [0, ∞) ⟶ ℝ. The conformable 
derivative of the function 𝑓 of order 𝛼 is defined by  

𝑇𝛼𝑓(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ𝑥1−𝛼) − 𝑓(𝑥)

ℎ
                               (1) 

             = 𝑥1−𝛼𝑓′(𝑥) 

for all 𝑥 > 0, 𝛼 ∈ (0,1) [11]. The function 𝛾: (0, ∞) ⟶ ℝ2 

is called a conformable curve in ℝ2 if 𝛾 is 
𝛼 −differentiable, 

 Let 𝛾: (0, ∞) ⟶ ℝ2 be a conformable curve. The 
velocity vector of 𝛾 is determined by  

 
𝑇𝛼𝛾(𝑡)

𝑡1−𝛼
,                                                                                   (2) 

for all 𝑡 ∈ (0, ∞). 
Let 𝛾: (0, ∞) ⟶ ℝ2 be a conformable curve. Then the 

velocity function 𝑣 of 𝛾 is defined by  

𝑣(𝑡) =
‖𝑇𝛼𝛾(𝑡)‖

𝑡1−𝛼
                                                               (3) 

for all 𝑡 ∈ (0, ∞). 
Let 𝛾: (0, ∞) ⟶ ℝ2 be a conformable curve. The arc 

length function 𝑠 of 𝛾 is defined by  
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𝑠 = ∫ ‖𝑇𝛼𝛾(𝑡)‖
0

𝑡

𝑑𝑡                                                              (4) 

for all 𝑡 ∈ (0, ∞), it’s said that 𝛾 is a unit speed. 
  Now, let us define the tangent vector of the curve 

using the conformable derivative and the arc parameter 

 𝑠, 𝑒1
𝛼(𝑠) = 𝑇𝛼𝛾(𝑠) = (𝑇𝛼(𝑥(𝑠)), 𝑇𝛼(𝑦(𝑠))) 

              = (
𝑑𝛼𝑥(𝑠)

𝑑𝑠𝛼 ,
𝑑𝛼𝑦(𝑠)

𝑑𝑠𝛼
).                                                   (5)  

The norm of the tanget vector is ‖𝑒1
𝛼(𝑠)‖ = 1. 

Furthermore,  

𝑒2
𝛼(𝑠) = (−𝑇𝛼(𝑦(𝑠)), 𝑇𝛼(𝑥(𝑠))).                             (6)  

Here, for  𝛾 curve with the parameter 𝑠 , 𝑒1

(𝛼)
(𝑠) and 

𝑒2

(𝛼)
(𝑠) are the conformable unit tangent vector and unit 

normal vector of the curve 𝛾, respectively, and the 
parameter 𝑠 is the arc length. The Frenet-Serret formulas 

with conformable frames 𝑒1
𝛼(𝑠), 𝑒2

𝛼(𝑠) are given as  

 
𝑑𝑒1

(𝛼)
(𝑠)

𝑑𝑠
= Κ(𝛼)(𝑠)𝑒2

(𝛼)
(𝑠)                                                (7) 

 
𝑑𝑒2

(𝛼)
(𝑠)

𝑑𝑠
= −Κ(𝛼)(𝑠)𝑒1

(𝛼)
(𝑠),                                            (8) 

where 𝛫(𝛼)(𝑠)  is curvature of the unit speed curve 𝛼 =
𝛼(𝑠). 

 

Location Vector of a Conformable Curve in ℝ𝟐      

In this chapter, we have used the proof method and terminology of see [12]. 
Let us take the conformable curve  𝛾 = 𝛾(𝑠) into consideration in the plane ℝ2. In this case, we can write the location 
vector of 𝛾(𝑠) according to Frenet frame as  

𝑥 = 𝑥(𝑠) = 𝜇1𝑒1
𝛼(𝑠) + 𝜇2𝑒2

𝛼(𝑠),                                                                                                                                                       (9) 

here 𝜇1 and 𝜇2 are arbitrary functions connected to 𝑠. 
If we differentiate the equality (9) and use Frenet equations, we get 

 

𝑑𝜇1

𝑑𝑠
− 𝜇2Κ(𝛼) = 𝑠𝛼−1                                                                                                                                                                          (10) 

and 

𝑑𝜇2

𝑑𝑠
+ 𝜇1Κ𝛼 = 0.                                                                                                                                                                                 (11)  

Then, by using (10) in (11), we get  

𝑑

𝑑𝑠
[

1

Κ𝛼
(

𝑑𝜇1

𝑑𝑠
− 𝑠𝛼−1)] + 𝜇1𝐾(𝛼)= 0.                                                                                                                                             (12) 

According to 𝜇1, this second order differential equation is a characterization obtained from the conformable curve 𝛾 =
𝛾(𝑠). 

In equation (12), by using change of variable 

𝜑 =
1

Κ(𝛼)
,     𝜃 = ∫ Κ(𝛼). 𝑑𝑠

𝑠

0

,                                                                                                                                                            (13) 

we obtain  

𝑑𝜑

𝑑𝑠
(

𝑑𝜇1

𝑑𝑠
− 𝑠𝛼−1) + 𝜑 (

𝑑𝜇1

𝑑𝑠
−

𝑑𝑠𝛼−1

𝑑𝑠
) +

𝜇1

𝜑
= 0.                                                                                                                      (14) 

Now, if this differential equation is tried to be solved, we obtain  

𝑑𝜑

𝑑𝑠
=

𝑑𝜑

𝑑𝜎

𝑑𝜃

𝑑𝑠
=

𝑑𝜑

𝑑𝜃

1

𝜑
                                                                                                                                                                         (15) 
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𝑑𝜇1

𝑑𝑠
=

𝑑𝜇1

𝑑𝜃

𝑑𝜃

𝑑𝑠
=

𝑑𝜇1

𝑑𝑠

1

𝜑
                                                                                                                                                                  (16) 

and  

𝑑2𝜇1

𝑑𝑠2
=

𝑑

𝑑𝑠
(

𝑑𝜃

𝑑𝑠
) =

𝑑

𝑑𝑠
(

𝑑𝜇1

𝑑𝑠

1

𝜑
) =

𝑑

𝑑𝜃
(

𝑑𝜇1

𝑑𝜃

1

𝜑
)

1

𝜑
=

1

𝜑2
[
𝑑2𝜇1

𝑑𝜃2
−

1

𝜑

𝑑𝜇1

𝑑𝜃

𝑑𝜑

𝑑𝜃
].                                                                     (17) 

Later, by using of (15), (16), (17) in equation (14), we get 

𝑑2𝜇1

𝑑𝜃2
+ 𝜇1 = 𝜑2(𝛼 − 1)𝑠𝛼−2 + 𝑠𝛼−1.                                                                                                                                             (18) 

Let us try to solve the differential equation (18). This equation’s solution of homogeneous  is  

𝑦𝑝 = 𝑐1 cos 𝜃 + 𝑐2 sin 𝜃.                                                                                                                                                                  (18)1 

Due to variation of the parameters, we get this formula as following 

𝑦𝑝 = 𝑣1 cos 𝜃 + 𝑣2 sin 𝜃. 

Here, functions 𝑣1, 𝑣2 are differentiable functions. 

In that case, we acquire simply  

𝑦𝑝
′ = 𝑣1

′ cos 𝜃 + 𝑣2
′ sin 𝜃 − 𝑣1. sin 𝜃 + 𝑣2 cos 𝜃. 

Additionally, because of 

𝑣1
′ cos 𝜃 + 𝑣2

′ sin 𝜃 = 0,                                                                                                                                                                     (19) 

we obtain  

𝑦𝑝
′′ = −𝑣1 cos 𝜃 − 𝑣2 sin 𝜃 − 𝑣1

′ sin 𝜃 + 𝑣2
′ cos 𝜃, 

and so we get 

−𝑣1
′ sin 𝜃 + 𝑣2

′ cos 𝜃 = 𝜑2(𝛼 − 1)𝑠𝛼−2 − 𝑠𝛼−1.                                                                                                                          (20) 

From the expressions (10) and (11), we acquire 

𝑣1
′ = sin 𝜃𝜑2(𝛼 − 1)𝑠𝛼−2 − 𝑠𝛼−1                                                                                                                                                 (21) 

𝑣2
′ = cos 𝜃𝜑2(𝛼 − 1)𝑠𝛼−2 − 𝑠𝛼−1.                                                                                                                                                (22) 

Afterward, if we integrate the expressions (21) and (22), respectively, we can acquire 

𝑣1 = [∫ 𝜑2 sin 𝜃(𝛼 − 1)𝑠𝛼−2𝑑𝜃 − ∫ 𝑠𝛼−1𝑑𝜃]                                                                                                                       (23) 

𝑣2 = [∫ 𝜑2 cos 𝜃(𝛼 − 1)𝑠𝛼−2𝑑𝜃 − ∫ 𝑠𝛼−1𝑑𝜃].                                                                                                                     (24) 

On the other side, if it is taken into account the equations (18)1, (23), and (24), we can also get  

𝜇1 = 𝑐1 cos 𝜃 + 𝑐2 sin 𝜃 + 𝑣1𝑒1
𝜃 + 𝑣2𝑒2

𝜃 

or 

𝜇1 = 𝑐1 cos 𝜃 + 𝑐2 sin 𝜃 + [(𝛼 − 1) ∫ 𝜑2 sin 𝜃(𝛼 − 1)𝑠𝛼−2𝑑𝜃 − ∫ 𝑠𝛼−1𝑑𝜃
𝑠

0

𝑠

0

] + + [(𝛼 − 1) ∫ 𝜑2 cos 𝜃(𝑠𝛼−2𝑑𝜃 − ∫ 𝑠𝛼−1𝑑𝜃
𝑠

0

𝑠

0

]. 
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On the other and, if  
𝑑𝜇1

𝑑𝑠
= 𝑙(𝑠) is being taken, from expression (10), we can express as follows: 

𝜇𝟐 =
1

Κ𝛼
[𝑙(𝑠) − 𝑠𝛼−1].                                                                                                                                                                (25)  

As a result, we give the following theorem: 

Theorem 1: Let us assume that the curve 𝛾(𝑠) is a unit speed conformable curve with 𝛼 −Frenet frame in the plane ℝ2. 
So, the location vector of the conformable curve 𝛾(𝑠) is 

𝑥 = 𝑥(𝑠) = {𝑐1 cos 𝜃 + 𝑐2 sin 𝜃 + [(𝛼 − 1) ∫ 𝜑2 sin 𝜃𝑠𝛼−2𝑑𝜃 − ∫ 𝑠𝛼−1𝑑𝜃
𝑠

0

]

+ [(𝛼 − 1) ∫ 𝜑2 cos 𝜃𝑠𝛼−2𝑑𝜃 − ∫ 𝑠𝛼−1𝑑𝜃
𝑠

0

𝑠

0

]} 𝑒1
𝛼(𝑠)

+ {𝜑[𝑙(𝑠) − 𝑠𝛼−1]}𝑒2
𝛼(𝑠),                                                                                                                             (26) 

where 𝜑 =
1

Κ𝛼 , 𝜃 = ∫ 𝑑𝜃.
𝑠

0
 

Theorem 2: Let us assume that the curve 𝛾(𝑠) is a unit-speed conformable curve with 𝛼 −Frenet frame in the plane ℝ2. 
Then the connection between the curvature of the 𝛼 −Frenet frame conformable curve 𝛾(𝑠) and the location vector 
can be written as follows 

𝑑

𝑑𝑠
(

1

Κ𝛼
((𝛼 − 1)𝑠𝛼−2

𝑑𝛾

𝑑𝑠
+ 𝑠𝛼−1

𝑑2𝛾

𝑑𝑠
) + Κ𝛼𝑠𝛼−1

𝑑𝛾

𝑑𝑠
= 0).                                                                                                 (27) 

Proof: Let us think 𝛾(𝑠) be a unit speed conformable curve with 𝛼 −Frenet frame in the plane ℝ2. Then 𝛼 −Frenet 
frame is provided by the following equations: 

𝑑𝑒1
𝛼(𝑠)

𝑑𝑠𝛼
= Κ𝛼𝑒2

𝛼(𝑠)                                                                                                                                                                         (28) 

and  

𝑑𝑒2
𝛼(𝑠)

𝑑𝑠𝛼
= −Κ𝛼𝑒1

𝛼(𝑠).                                                                                                                                                                      (29)  

By writting equation (28) in equation (29), we simply get 

𝑑

𝑑𝑠
(

1

Κ𝛼

𝑑𝑒1
𝛼(𝑠)

𝑑𝑠𝛼
) + Κ𝛼𝑒1

𝛼(𝑠) = 0.                                                                                                                                                (30) 

Besides,  𝑒1
𝛼(𝑠) = 𝑇𝛼𝛾(𝑠) = 𝑠𝛼−1 𝑑𝛾

𝑑𝑠
, by writting this expression in equation (30), we can obtain equations as follows: 

𝑑

𝑑𝑠
(

1

Κ𝛼

𝑑

𝑑𝑠
(𝑠𝛼−1

𝑑𝛾

𝑑𝑠
)) + Κ𝛼𝑠𝛼−1

𝑑𝛾

𝑑𝑠
= 0                                                                                                                          

or  

𝑑

𝑑𝑠
(

1

Κ𝛼
((𝛼 − 1)𝑠𝛼−2

𝑑𝛾

𝑑𝑠
+ 𝑠𝛼−1

𝑑2𝛾

𝑑𝑠2
) + Κ𝛼𝑠𝛼−1

𝑑𝛾

𝑑𝑠
= 0).                                                                                          

As a result, the proof is being completed.
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