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ABSTRACT 
 

In this paper we consider the problem of existence and evaluation of common solutions to Lyapunov equations for switched 
systems consisting of two real or complex matrices. Conditions for existence and solution algorithm based on the gradient of a 
matrix function are given. Number of examples are provided. 
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1. INTRODUCTION 
 

Let ℝ𝑛×𝑛 (ℂ𝑛×𝑛) be the set of 𝑛 × 𝑛 real (complex) matrices. A matrix 𝐴 is called Hurwitz stable if its 
all eigenvalues lie in the open left-half plane. A necessary and sufficient condition for the matrix 𝐴 ∈
ℝ𝑛×𝑛 (𝐴 ∈ ℂ𝑛×𝑛) to be Hurwitz stable is that for any given positive definite matrix 𝑄 there exists a 
(unique) positive definite matrix 𝑃 that satisfies the Lyapunov equation.  
 
 Consider the following linear switched system 

�̇� = 𝐴𝑥,  𝐴 ∈ {𝐴1, 𝐴2, … , 𝐴𝑁} (1) 
 

where 𝐴𝑖 ∈ ℝ𝑛×𝑛 (𝐴𝑖 ∈ ℂ𝑛×𝑛) (𝑖 = 1,2, … ,𝑁) are Hurwitz stable. 

If there exists a P > 0 such that  

 

 𝐴𝑖
𝑇𝑃 + 𝑃𝐴𝑖 < 0, (𝐴𝑖

∗𝑃 + 𝑃𝐴𝑖 < 0) (𝑖 = 1,2,… , 𝑁) (2) 
 

the matrix P is called a common solution to Lyapunov inequalities (2) and the function 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 
(𝑉(𝑥) = 𝑥∗𝑃𝑥) is called common quadratic Lyapunov function of the switched system (1). A sufficient 
condition for the switched system (1) to be global uniformly asimptotically stable is that the inequalities 
(2) have a common solution P (see [1,2]). 

The problem of existence and evaluation of common solution to system (2) have been studied in a lot of 
works (see [1-6] and references therein). Theoretical condition on the existence of a solution to this 
problem for two real 2 × 2 dimensional matrices is given in [3]. In the general 𝑛-dimensional case, there 
is no theoretical solution in the literature except for the theoretical results that can be given without 
resorting to numerical methods for the existence of the solution (see [3]). In [4] for a pair of 2 × 2 
complex matrices a necessary and sufficient condition for the existence of common solution 𝑃 is given. 
This result relates to a special class of 4 × 4 real matrices. 

https://orcid.org/0000-0002-7561-3288
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In this paper we give a necessary and sufficient condition for the existence of a common solution for 
two 𝑛 × 𝑛 dimensional real matrix. In the second part, we propose a gradient algorithm for common 
solution of Lyapunov inequalities for two 𝑛 × 𝑛 dimensional complex matrix. Here we establish a 
formula for the derivative of a matrix functional (Theorem 2). 

 
2. CONDITION FOR COMMON SOLUTION FOR TWO REAL MATRICES 

 

Let 𝐴 be Hurwitz stable real matrix. For a given positive definite matrix 𝑄, we denote the unique 𝑃 > 0 
solution of the equation 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 by 𝑃𝐴(𝑄). 

 Let two 𝑛 ×  𝑛 dimensional Hurwitz stable real matrices 𝐴1 and 𝐴2 be given. For 𝑄1 > 0 and 
𝑄2 > 0 we define 

𝑃1 = 𝑃𝐴1(𝑄1) > 0, 𝑃2 = 𝑃𝐴2(𝑄2) 

and 

𝑙𝑖𝑗 = 𝜆max(𝐴𝑖
𝑇𝑃𝑗 + 𝑃𝑗𝐴𝑖), (𝑖, 𝑗 = 1,2) 

where 𝜆max(𝐶) stands for the maximum eigenvalue of 𝐶. From stability of 𝐴1 and 𝐴2 it follows that 

 

𝑙11 < 0 and 𝑙22 < 0. (3) 
 

Define 2 × 2 dimensional matrix 

𝐿 = (
𝑙11 𝑙12

𝑙21 𝑙22
). 

If 𝑙21 < 0 then 𝐴2
𝑇𝑃1 + 𝑃1𝐴2 < 0 therefore 𝑃1 is a common solution for {𝐴1, 𝐴2}. If 𝑙12 < 0 then 𝐴1

𝑇𝑃2 +

𝑃2𝐴1 < 0 and 𝑃2 is a common solution. Therefore we assume that 

𝑙12 ≥ 0 and 𝑙21 ≥ 0. (4) 
We investigate a weighted sum 𝑃1 and 𝑃2 for a common solution. 

Lemma 1. Let the pair (𝑤1, 𝑤2) is given where 

𝑙11𝑤1 + 𝑙12𝑤2 < 0, 𝑙21𝑤1 + 𝑙22𝑤2 < 0, 𝑤1 > 0, 𝑤2 > 0. (5) 
Then 𝑃∗ = 𝑤1𝑃1 + 𝑤2𝑃2 is a common solution for {𝐴1, 𝐴2}. 

Proof. Using convexity of the function 𝑃 ↦ 𝜆max(𝐴𝑖
𝑇𝑃 + 𝑃𝐴𝑖) (see [5, p.34], [6]), we obtain 

𝜆 max(𝐴𝑖
𝑇𝑃∗ + 𝑃∗𝐴𝑖) = 𝜆max (𝑤1(𝐴𝑖

𝑇𝑃1 + 𝑃1𝐴𝑖) + 𝑤2(𝐴𝑖
𝑇𝑃2 + 𝑃2𝐴𝑖))

≤ 𝑤1𝜆max(𝐴𝑖
𝑇𝑃1 + 𝑃1𝐴𝑖) + 𝑤2(𝐴𝑖

𝑇𝑃2 + 𝑃2𝐴𝑖)

= 𝑤1𝑙𝑖1 + 𝑤2𝑙𝑖2 < 0    (𝑖 = 1,2).

 

Therefore the matrix 𝑃∗ = 𝑤1𝑃1 + 𝑤2𝑃2 is a common solution. 

☐ 

 By (5) we consider for a positive solution of the system 
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{
𝑙11𝑥 + 𝑙12𝑦 < 0

𝑙21𝑥 + 𝑙22𝑦 < 0
. (6) 

If 𝑙12 = 0 then any pair (𝑥, 𝑦), where 𝑥 > 0 is arbitrary and 𝑦 > −
𝑙21

𝑙22
𝑥 is a feasible pair. If 𝑙21 = 0 

then any pair (𝑥, 𝑦), where 𝑦 > 0 is arbitrary and 𝑥 > −
𝑙12

𝑙11
𝑦 is a feasible pair. Therefore we assume 

that 

𝑙12 > 0 and 𝑙21 > 0. (7) 
 

Theorem 1. Assume that (7) is satisfied. Then (6) has positive solution (𝑥, 𝑦) if and only if 

𝑙11𝑙22 > 𝑙12𝑙21. (8) 
Proof. From (6) it follows that 

𝑦 < −
𝑙11

𝑙12
𝑥, 𝑦 > −

𝑙21

𝑙22
𝑥, or 𝑦 < 𝑘1𝑥, 𝑦 > 𝑘2𝑥, 

where 𝑘1 = −
𝑙11

𝑙12
> 0, 𝑘2 = −

𝑙21

𝑙22
> 0. Then (6) has a positive solution pair (𝑥, 𝑦) if and only if 𝑘1 >

𝑘2 (see Fig. 1). The inequality 𝑘1 > 𝑘2 is equivalent to (8). 

 

Figure 1. 

☐ 

 If (8) is satisfied the weighted coefficients 

𝑤1
0 =

𝑙12 − 𝑙22

𝑙11𝑙22 − 𝑙21𝑙12
, 𝑤2

0 =
𝑙21 − 𝑙11

𝑙11𝑙22 − 𝑙21𝑙12
 

satisfy the inequalities 

𝑤1
0 > 0, 𝑤2

0 > 0, 𝑙11𝑤1
0 + 𝑙12𝑤2

0 = −1 < 0, 𝑙21𝑤1
0 + 𝑙22𝑤2

0 = −1 < 0 

and the matrix 𝑃∗ = 𝑤1
0𝑃1 + 𝑤2

0𝑃2 is a common solution. 

Example 1. Consider the following Hurwitz stable matrices 

 

𝐴1 = [

−5 2 −1 2
2 −4 1 2
3 −2 −2 −3
5 −2 1 7

] , 𝐴2 = [

−1 −2 −3 2
−2 −7 −3 4
4 −2 −5 1

−3 0 −1 −1

]  
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and positive definite matrices 

𝑄1 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] , 𝑄2 = [

12 −1 2 −3
−1 11 1 0
2 0 11 0

−3 0 2 11

]. 

Then 

𝑃1 = [

0.251 0.081 0.03 0.09
0.081 0.14 −0.01 0.04
0.03 −0.01 0.19 −0.05
0.09 0.04 −0.05 0.13

] , 𝑃2 = [

10.68 −2.72 −2.07 −2.51
−2.72 1.46 0.33 0.66
−2.07 0.33 2.09 0.24
−2.51 0.66 0.24 3.36

]. 

The matrix 𝐿 is calculated as 

𝐿 = [
−1 2.126

0.541 −7.507
]. 

Here 𝑙11 < 0, 𝑙22 < 0, 𝑙12 > 0, 𝑙21 > 0 and 

𝑙11. 𝑙22 − 𝑙12. 𝑙21 = 6.356834 > 0 

and the conditions of Theorem 1 are satisfied. 

𝑘1 = −
𝑙11

𝑙12
= 0.470366, 𝑘2 = −

𝑙21

𝑙22
=0.072066 

and the graphs of 𝑦 = 0.470366𝑥 and 𝑦 = 0.072066𝑥 are shown in Fig. 2. 

 

Figure 2. 

𝑤1
0 = 1.515376, 𝑤2

0 = 0.242416 and by the above the matrix 

𝑃∗ = 1.515376 𝑃1 + 0.242416 𝑃2 

is a common solution. 
 
3. AN ALGORITHM FOR TWO COMPLEX MATRICES 

 

In this section we give an algorithm for a common 𝑃 for given two Hurwitz stable complex matrices. 
For this purpose we establish the derivative formula for real functionals defined on the set of Hermitian 
matrices. 

Let ℋ be the set of  𝑛 × 𝑛-dimensional Hermitian matrices. Assume that 𝑓:ℋ → ℝ is a real matrix 
functional. 
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Definition 1. The functional 𝑓(𝑃) defined on ℋ is called differentiable at the point 𝑃 if there exists a 
Hermitian matrix ∂ 𝑓|P such that 

𝑓(𝑃 + Δ 𝑃) = 𝑓(𝑃)+< 𝜕 𝑓|𝑃 , Δ 𝑃 >  +𝑜(Δ 𝑃), 

where  𝑜(Δ 𝑃)

∥Δ 𝑃 ∥
 →  0 as ∥ Δ 𝑃 ∥→  0, where ∥⋅∥ is the Frobenius norm. Here the inner product be defined 

by < ∂ 𝑓|P, Δ𝑃 > = 𝑡𝑟(𝜕 𝑓|𝑃 . Δ 𝑃). A Hermitian 𝑛 × 𝑛 matrix 𝑃 has totally 𝑟 = 𝑛(𝑛 + 1)/2 entries: 

𝑃 = [

𝑥1 𝑥2 + 𝑗𝑦2 ⋯ 𝑥𝑛 + 𝑗𝑦𝑛

𝑥2 − 𝑗𝑦2 𝑥𝑛+1 ⋯ 𝑥2𝑛−1 + 𝑗𝑦2𝑛−1

⋮ ⋮ ⋱ ⋮
𝑥𝑛 − 𝑗𝑦𝑛 𝑥2𝑛−1 − 𝑗𝑦2𝑛−1 ⋯ 𝑥𝑟

]. 

Define real function 𝑔 by  

 𝑔(𝑥1, 𝑥2, … , 𝑥𝑟, 𝑦2, 𝑦3, 𝑦5, … , 𝑦𝑞):= 𝑓(𝑃). 

If the functional is differentiable at 𝑃 then the function 𝑔 is differentiable at (𝑥1, … , 𝑥𝑟, 𝑦2, … , 𝑦𝑞). We 
wish calculate the entries of the derivative matrix 𝜕 𝑓|𝑃 in terms of the partial derivative of 𝑔. 

Theorem 2. If the functional 𝑓(𝑃) is differentiable at 𝑃, then 

𝜕 𝑓|𝑃 =

[
 
 
 
 
 
 
 

𝜕𝑔

𝜕𝑥1

1

2
(
𝜕𝑔

𝜕𝑥2
+ 𝑗

𝜕𝑔

𝜕𝑦2
) ⋯ 

1

2
(

𝜕𝑔

𝜕𝑥𝑛
+ 𝑗

𝜕𝑔

𝜕𝑦𝑛
)

1

2
(
𝜕𝑔

𝜕𝑥2
− 𝑗

𝜕𝑔

𝜕𝑦2
)

𝜕𝑔

𝜕𝑥𝑛+1
⋯

1

2
(

𝜕𝑔

𝜕𝑥2𝑛−1
+ 𝑗

𝜕𝑔

𝜕𝑦2𝑛−1
)

⋮ ⋮ ⋱ ⋮
1

2
(

𝜕𝑔

𝜕𝑥𝑛
− 𝑗

𝜕𝑔

𝜕𝑦𝑛
)

1

2
(

𝜕𝑔

𝜕𝑥2𝑛−1
− 𝑗

𝜕𝑔

𝜕𝑦2𝑛−1
) ⋯

𝜕𝑔

𝜕𝑥𝑟 ]
 
 
 
 
 
 
 

. 

Proof. To avoid cumbersome expressions we give the proof for the case n=3. For an arbitrary 𝑛 the 
proof is identical.  

 Define 3 × 3 Hermitian matrices 

𝑃 = [

𝑥1 𝑥2 + 𝑗𝑦2 𝑥3 + 𝑗𝑦3

𝑥2 − 𝑗𝑦2 𝑥4 𝑥5 + 𝑗𝑦5

𝑥3 − 𝑗𝑦3 𝑥5 − 𝑗𝑦5 𝑥6

] 

and 

𝑃 + Δ 𝑃 =  [

𝑥1 + Δ𝑥1 𝑥2 + Δ𝑥2 + 𝑗(𝑦2 + Δ𝑦2) 𝑥3 + Δ𝑥3 + 𝑗(𝑦3 + Δ𝑦3)
𝑥2 + Δ𝑥2 − 𝑗(𝑦2 + Δ𝑦2) 𝑥4 + Δ𝑥4 𝑥5 + Δ𝑥5 + 𝑗(𝑦5 + Δ𝑦5)
𝑥3 + Δ𝑥3 − 𝑗(𝑦3 + Δ𝑦3) 𝑥5 + Δ𝑥5 − 𝑗(𝑦5 + Δ𝑦5) 𝑥6 + Δ𝑥6

]. 

If 𝑓(𝑃) is differentiable at 𝑃 then the scalar function 

 𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑦2, 𝑦3, 𝑦5) = 𝑓(𝑃) 

is differentiable at the point 𝑢 = (𝑥1, 𝑥2, … , 𝑥6, 𝑦2, 𝑦3, 𝑦5). The following can be written: 
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𝑔(𝑢 + 𝛥𝑢) = 𝑔(𝑢)+< 𝜕𝑔(𝑢), 𝛥𝑢 > +𝑜(𝛥𝑢)

= 𝑔(𝑢) +
𝜕𝑔

𝜕𝑥1
Δ𝑥1 +

𝜕𝑔

𝜕𝑥2
Δ𝑥2 + ⋯+

𝜕𝑔

𝜕𝑥6
Δ𝑥6 +

𝜕𝑔

𝜕𝑦2
Δ𝑦2

+
𝜕𝑔

𝜕𝑦3
Δ𝑦3 +

𝜕𝑔

𝜕𝑦5
Δ𝑦5 +  𝑜(Δ𝑢)

 

where 𝛥𝑢 = (𝛥𝑥1, 𝛥𝑥2, … , 𝛥𝑥6, 𝛥𝑦2, 𝛥𝑦3, 𝛥𝑦5), and 𝑜(Δ 𝑢)

∥Δ 𝑢 ∥
 →  0 as ∥ Δ 𝑢 ∥→  0. 

Let the derivative matrix of 𝑓 at 𝑃 be 

𝜕𝑓|𝑃 = [

𝑎1 𝑎2 + 𝑗𝑏2 𝑎3 + 𝑗𝑏3

𝑎2 − 𝑗𝑏2 𝑎4 𝑎5 + 𝑗𝑏5

𝑎3 − 𝑗𝑏3 𝑎5 − 𝑗𝑏5 𝑎6

]. 

We aim to express 𝑎𝑖 (𝑖 = 1,… ,6) and 𝑏𝑖 (𝑖 = 2,3,5) in terms of the partial derivative of 𝑔. We have 

𝑡𝑟(𝜕𝑓|𝑃 . Δ𝑃) = 𝑎1𝛥𝑥1 + (𝑎2 + 𝑗𝑏2)(𝛥𝑥2 − 𝑗𝛥𝑦2) + (𝑎3 + 𝑗𝑏3)(𝛥𝑥3 − 𝑗𝛥𝑦3)

+(𝑎2 − 𝑗𝑏2)(𝛥𝑥2 + 𝑗𝛥𝑦2) + 𝑎4𝛥𝑥4 + (𝑎5 + 𝑗𝑏5)(𝛥𝑥5 − 𝑗𝛥𝑦5)

+(𝑎3 − 𝑗𝑏3)(𝛥𝑥3 + 𝑗𝛥𝑦3) + (𝑎5 − 𝑗𝑏5)(𝛥𝑥5 + 𝑗𝛥𝑦5) + 𝑎6𝛥𝑥6

= 𝑎1Δ𝑥1 + 2𝑎2Δ𝑥2 + 2𝑎3Δ𝑥3 + 𝑎4Δ𝑥4 + 2𝑎5Δ𝑥5 + 𝑎6Δ𝑥6 + 2𝑏2Δ𝑦2

+2𝑏3Δ𝑦3 + 2𝑏5Δ𝑦5

 

on the other hand 

< 𝜕𝑔(𝑢), 𝛥𝑢 > = < (
𝜕𝑔

𝜕𝑥1
,
𝜕𝑔

𝜕𝑥2
, … ,

𝜕𝑔

𝜕𝑦5
) , (𝛥𝑥1, 𝛥𝑥2, … , 𝛥𝑦5) >

=
𝜕𝑔

𝜕𝑥1
Δ𝑥1 +

𝜕𝑔

𝜕𝑥2
Δ𝑥2 +

𝜕𝑔

𝜕𝑥3
Δ𝑥3 +

𝜕𝑔

𝜕𝑥4
Δ𝑥4 +

𝜕𝑔

𝜕𝑥5
Δ𝑥5 +

𝜕𝑔

𝜕𝑥6
Δ𝑥6

+
𝜕𝑔

𝜕𝑦2
Δ𝑦2 +

𝜕𝑔

𝜕𝑦3
Δ𝑦3 +

𝜕𝑔

𝜕𝑦5
Δ𝑦5

. 

If the functional 𝑓 is differentiable at 𝑃 

tr(𝜕𝑓|𝑃 . Δ𝑃) =< 𝜕𝑔(𝑢), 𝛥𝑢 > 

for all Δ𝑢 = (Δ𝑥1, Δ𝑥2, … , Δ𝑥6, Δ𝑦2, Δ𝑦3, Δ𝑦5). Since Δ𝑥𝑖 (𝑖 = 1,… ,6), Δ𝑦𝑖 (𝑖 = 2,3,5) are arbitrary 
then 

𝑎1 =
𝜕𝑔

𝜕𝑥1
, 2𝑎2 =

𝜕𝑔

𝜕𝑥2
, 2𝑎3 =

𝜕𝑔

𝜕𝑥3
, 𝑎4 =

𝜕𝑔

𝜕𝑥4
, 2𝑎5 =

𝜕𝑔

𝜕𝑥5
, 𝑎6 =

𝜕𝑔

𝜕𝑥6
,

2𝑏2 =
𝜕𝑔

𝜕𝑦2
, 2𝑏3 =

𝜕𝑔

𝜕𝑦3
, 2𝑏5 =

𝜕𝑔

𝜕𝑦5
.

 

Therefore gradient of the functional 𝑓 at 𝑃 is 

𝜕𝑓|𝑃 =

[
 
 
 
 
 
 

𝜕𝑔

𝜕𝑥1

1

2
(
𝜕𝑔

𝜕𝑥2
+ 𝑗

𝜕𝑔

𝜕𝑦2
)

1

2
(
𝜕𝑔

𝜕𝑥3
+ 𝑗

𝜕𝑔

𝜕𝑦3
)

1

2
(
𝜕𝑔

𝜕𝑥2
− 𝑗

𝜕𝑔

𝜕𝑦2
)

𝜕𝑔

𝜕𝑥4

1

2
(
𝜕𝑔

𝜕𝑥5
+ 𝑗

𝜕𝑔

𝜕𝑦5
)

1

2
(
𝜕𝑔

𝜕𝑥3
− 𝑗

𝜕𝑔

𝜕𝑦3
)

1

2
(
𝜕𝑔

𝜕𝑥5
− 𝑗

𝜕𝑔

𝜕𝑦5
)

𝜕𝑔

𝜕𝑥6 ]
 
 
 
 
 
 

. 
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☐ 

Let 𝐴1 and 𝐴2 be 𝑛 × 𝑛 dimensional complex Hurwitz stable matrices. 

Theorem 3. [6] Let 𝜀 > 0 and 𝐼 be the identity matrix. Then 

∃𝑃 > 0,
𝐴1

∗𝑃 + 𝑃𝐴1 < 0,

𝐴2
∗𝑃 + 𝑃𝐴2 < 0,

⟺ ∃𝑃 > 0,
𝐴1

∗𝑃 + 𝑃𝐴1 + 𝜀𝐼 ≤ 0,

𝐴2
∗𝑃 + 𝑃𝐴2 + 𝜀𝐼 ≤ 0.

 

 Let 𝜀 > 0 and 𝑄 ≥ 0 be given. Denote by 𝑃𝐴2(𝑄) > 0 the solution of 

𝐴2
∗𝑃 + 𝑃𝐴2 = −𝑄 − 𝜀𝐼 

and define the following convex matrix functional: 

𝐹(𝑄) = 𝜆max(𝐴1
∗𝑃𝐴2(𝑄) + 𝑃𝐴2(𝑄)𝐴1). 

If 𝐹(�̃�) < 0 at some �̃� ≥ 0, then the matrix 𝑃𝐴2(𝑄) is a common solution. 

 Consider the minimization of 𝐹(𝑄). For Hermitian matrix 𝐻, the projection of 𝐻 onto the convex 
cone of nonnegative definite matrices denote by [𝐻]+. For the convergence of the proposed algorithm 
we impose the following condition (see [6]). 

Condition 1. For 𝑡 > 0 there exists 𝑄∗ ≥ 0 such that the closed ball of radius 𝑡 and centered at 𝑄∗ is 
contained in the set {𝑄 ≥ 0: 𝐹(𝑄) < 0}. 

 Consider the following convex problem 

{
𝐹(𝑄) → min

𝑄 ≥ 0.
 

Using Theorem 2 we suggest the following solution algorithm. 

Algorithm 1. 

1. Choose 𝑄0 ≥ 0. 
If 𝐹(𝑄0) < 0 then stop. Otherwise continue. 

2. For 𝑘 = 0,1,2,… define 
𝑄𝑘+1 = [𝑄𝑘 − 𝜇𝑘𝜕𝐹(𝑄)|𝑄=𝑄𝑘]

+
 

where 

𝜇𝑘 ≔
𝛼𝐹(𝑄𝑘) + 𝑡‖𝜕𝐹(𝑄)|𝑄=𝑄𝑘‖

‖𝜕𝐹(𝑄)|𝑄=𝑄𝑘‖
2 , 

 
0 ≤ 𝛼 ≤ 2 and 𝑡 > 0 is defined from Condition 1. 

3. If 𝐹(𝑄𝑘) < 0 for some 𝑘 then stop. The corresponding 𝑃𝐴2
(𝑄𝑘) < 0 is a common solution.  

 

Example 2. This example taken from [4]. Consider the following complex Hurwitz matrices 

 

 𝐴1 = [
−2 − 𝑗 1 + 2𝑗

−1.5 − 𝑗 −1.1 + 𝑗
] , 𝐴2 = [

−2 − 𝑗 3 + 4𝑗
−2.5 − 𝑗 −2.5 + 𝑗

]. 

Let 𝑄0 = 𝐼 and 𝜀 = 0.001. We have 
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𝑃𝐴2(𝑄0) = [
6.673 −2.558 + 6.450𝑗

−2.558 − 6.450𝑗 7.451
] 

and 𝐹(𝑄0) = 10.729 > 0. By Theorem 2, 

𝜕𝐹(𝑄)|𝑄=𝑄0 = [
8.323 −0.572 + 4.924𝑗

−0.572 − 4.924𝑗 2.394
]. 

Therefore, 

𝑄1 = [𝑄0 − 𝜇0𝜕𝐹(𝑄)|𝑄=𝑄0]
+

= [
0.270 0.055 − 0.472𝑗

0.055 + 0.472𝑗 0.839
] 

where 𝛼 = 2, 𝑡 = 1 and 𝜇0 = 0.262. 

Algorithm 1 after 5 steps gives 

𝑄5 = [
0.318 0.044 − 0.564𝑗

0.044 + 0.564 1.006
] , 𝐹(𝑄5) = − 0.085 < 0 

and the matrix 

𝑃𝐴2(𝑄5) = [
0.0582 −0.001 − 0.046𝑗

−0.001 + 0.046𝑗 0.126
] 

is a common solution for 𝐴1 and 𝐴2. 

Example 3. Consider the following complex Hurwitz matrices 

 𝐴1 = [

−3 𝑗 1 − 𝑗
1 + 𝑗 −3 − 3𝑗 −2 + 𝑗
2 − 𝑗 −3 − 2𝑗 −4 − 𝑗

] , 𝐴2 = [

−0.6 + 𝑗 −2 + 3𝑗 1 + 2𝑗
3 + 𝑗 −0.6 − 3𝑗 2 + 𝑗

−2 − 𝑗 −5 − 2𝑗 −1.6 − 𝑗
]. 

Let 𝑄0 = 𝐼 and 𝜀 = 0.001. We have 

𝑃𝐴2(𝑄0) = [

2.068 −0.403 − 1.239𝑗 0.260 + 1.231𝑗
−0.403 + 1.239𝑗 1.999 −0.707 + 0.037𝑗
0.260 − 1.231𝑗 −0.707 − 0.037𝑗 1.153

] 

and 𝐹(𝑄0) = 1.8808 > 0. By Theorem 1, 

𝜕𝐹(𝑄)|𝑄=𝑄0 = [

0.403 −0.171 + 0.236𝑗 −0.816 + 0.277𝑗
−0.171 − 0.236𝑗 0.368 0.094 + 0.805𝑗
−0.816 − 0.277𝑗 0.094 − 0.805𝑗 1.106

]. 

Therefore, 

𝑄1 = [𝑄0 − 𝜇0𝜕𝐹(𝑄)|𝑄=𝑄0]
+

= [

0.834 0.217 + 0.031𝑗 0.473 − 0.230𝑗
0.217 − 0.031𝑗 0.836 0.011 − 0.499𝑗
0.473 + 0.230𝑗 0.011 + 0.499𝑗 0.574

]
 

where 𝛼 = 2, 𝑡 = 1 and 𝜇0 = 1.308. 

Algorithm 1 after 3 steps gives 
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𝑄3 = [

0.813 0.277 + 0.060𝑗 0.508 − 0.428𝑗
0.277 − 0.060𝑗 0.875 0.188 − 0.652𝑗
0.508 + 0.428𝑗 0.188 + 0.652𝑗 0.828

] , 𝐹(𝑄3) = −0.08 < 0 

and the matrix 

𝑃𝐴2(𝑄3) = [

0.558 0.012 − 0.135𝑗 0.179 + 0.112𝑗
0.012 + 0.135𝑗 0.643 −0.109 − 0.085𝑗
0.179 − 0.112𝑗 −0.109 + 0.085𝑗 0.322

] 

is a common solution for 𝐴1 and 𝐴2. 
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