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Introduction 

Kinematics is a Greek word that means ’motion’, and 
it is one of the branches of mechanics that deals with the 
analysis of the motion of particles and rigid bodies. The 
rigid body is a set of the points that the distance between 
two of the points never varies after motion [1]. 

In order to represent a rigid motion in Euclidean or 
Lorentzian space equipped with multiple coordinate 
frames, it is required to determine the concept of a 
rotation matrix and a translation axis. These concepts are 
used to construct homogeneous transformation matrices 
that are used to represent the position and orientation of 
a coordinate frame relative to the other. These 
transformations allow us to navigate from one to another 
coordinate frame [2-6]. 

Recent studies on robot kinematics are dealing with 
the establishment of different coordinate systems to 
represent the positions and orientations of rigid bodies. 
Also, Robot kinematics is concerned with the 
transformations between these coordinate systems [7-
10]. 

To obtain frame M from frame F, it is needed to first 
apply a rotation determined by R and then a translation 
(with respect to F) given as t. This transformation called 
coordinates transformation is denoted as T:F→M, and it is 
determined as x^'=R⋅x+t.  In this notation, R is an n×n 
orthogonal matrix called a rotation matrix, and t is an n-
dimensional vector called a translation. This 
transformation is denoted by T=(R,t) and defined as a 
matrix-vector pair [11,12].  

The derivative of a motion represents the velocity of a 
point from the fixed frame F to the moving frame M. 
Linear velocity is the instantaneous rate of change in the 
linear position of a point relative to some frame. The 
angular velocity is ω, which describes the rotational 
motion of M with respect to F. The relationship between  

the angular velocity vector ω and time-varying rotation 
matrix R(t) is defined by [Ω]=[RR^T] [6,11,12]. 

The rotation matrix, which is used to represent relative 
orientations between coordinate frames, is an orthogonal 
matrix in Euclidean or Lorentzian space. In Euclidean and 
Lorentzian spaces, if A is an orthogonal matrix, detA=1 
denotes rotation and detA=-1 denotes reflection [11-14]. 

The generalized quaternions H(α,β) are four-
dimensional algebra that is associative but not 
commutative. This algebra is a pair of sub-algebras of 
Clifford algebra of three-dimensional generalized space 
E^3 (α,β), where E^3 (α,β) is a real vector space R^3 
equipped with the metric <u,v>_G=αu_1 v_1+βu_2 
v_2+αβu_3 v_3, α,β∈R. For 3-dimensional non-
degenerate vector space, E^3 (α,β) with an orthonormal 
basis {e_1,e_2,e_3}, the Clifford algebra Cl(E^3 
(α,β))=Cl_(p,q), p+q=2 has the basis {1,e_1=i,e_2=j,e_1 
e_2=k}, where e_1^2=-α, e_2^2=-β and  e_1 e_2=-e_2 
e_1. General information about generalized space and 
their algebraic properties can be found from [15-21]. 

Beggs (1965) gave a derivation for a screw matrix by 
using two different coordinate systems [3]. By defining the 
pitch for a finite screw as the ratio of one-half the 
translation to the tangent of one-half the rotation, Parkin 
has shown that the finite screw cylindroid can be 
represented by the linear combinations of two bases 
screws in 1992 [22]. In 1994, Huang and Roth showed the 
finite displacement of a rigid body can be represented 
completely by six independent parameters  [23]. Knossow, 
Ronfard, and Horaud showed that the tangent operator 
can be used to explain the human body kinematic chain 
and robotics motion in 2008 [24]. In 2017 Durmaz, Aktaş 
and Gundogan computed the derivative and the tangent 
operator of motion in Lorentzian space [25]. In 2021 Ata 
and Savci obtained the generalized Cayley formula, 
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Rodrigues equation, and Euler parameters of a 
generalized orthogonal matrix in 3-dimensional 
generalized space E^3 (α,β)[16].  

Due to the definition of the generalized space E^3 
(α,β), it is Euclidean space E^3 (1,1) if α=β=1, and it is semi-
Euclidean space E^3 (1,-1) if α=1 and β=-1. Therefore, this 
space E^3 (α,β) allows us to define more general algebraic 
structures and study them. In this study, for all situations 
of α and β except zero, derivatives of spherical and spatial 
motion and tangent operators have been obtained for 
one- and multi-parameter motions in generalized space. 
We get ordinary differential equations using these 
derivatives. The rotation matrix is obtained from the 
solution of these equations. In addition, Lie product of 
tangent operators and some properties provided by Lie 
product is defined. 

Preliminaries 

In this section, we provide some fundamental 
properties of the generalized space, the transformation and 
the rotation. 

Definition 1: Let 𝑢 = (𝑢 , 𝑢 , 𝑢 ), 𝑣 = (𝑣 , 𝑣 , 𝑣 ) be 
two vectors in ℝ  and 𝛼, 𝛽 ∈ ℝ. Then the generalized 
metric tensor product is defined by 

< 𝑢, 𝑣 > = 𝛼𝑢 𝑣 + 𝛽𝑢 𝑣 + 𝛼𝛽𝑢 𝑣 . 

This can be written as < 𝑢, 𝑣 > = 𝑢

𝛼 0 0
0 𝛽 0
0 0 𝛼𝛽

𝑣. 

The vector space ℝ  equipped with the generalized 
scalar product, is called as 3 −dimensional generalized 
space and is denoted by 𝐸 (𝛼, 𝛽) = (𝑅 , <, > ). The 
generalized cross product in 𝐸 (𝛼, 𝛽) is defined by 

𝑢 ∧ 𝑣 = 𝛽(𝑢 𝑣 − 𝑢 𝑣 )𝑖 − 𝛼(𝑢 𝑣 − 𝑢 𝑣 )𝑗 + (𝑢 𝑣 − 𝑢 𝑣 )𝑘,

where 𝑖 ∧ 𝑗 = 𝑘, 𝑗 ∧ 𝑘 = 𝛽𝑖, and 𝑘 ∧ 𝑖 = −𝛼𝑗 [18]. 

If < 𝑢, 𝑣 >  is a generalized semi-Euclidean inner 
product, then 𝐸 (𝛼, 𝛽) is a 3 −dimensional generalized 
semi-Euclidean space 𝐸 . If  < 𝑢, 𝑣 >  is an Euclidean inner 
product, then 𝐸 (𝛼, 𝛽) space is known as 𝐸  Euclidean 
space. 

Definition 2: Let 𝐸 (𝛼, 𝛽) be a generalized semi-
Euclidean space with a generalized semi-Euclidean inner 
product. A vector 𝑤 ∈ 𝐸 (𝛼, 𝛽) is called 
generalized spacelike vector, if  < 𝑣, 𝑣 > >0 or  𝑣 = 0, 
generalized timelike vector, if   < 𝑣, 𝑣 >   <0,  
generalized null vector, if  < 𝑣, 𝑣 > =0 and 𝑣 ≠ 0.  

‖𝑣‖ = | 𝛼𝑣 + 𝛽𝑣 + 𝛼𝛽𝑣 | represents the norm of 
a vector 𝑣 ∈ 𝐸 (𝛼, 𝛽) [13,14,18]. 

Definition 3: The set of the 3 × 3 invertible matrices, 
denoted 𝐺𝐿(𝛼, 𝛽)(3), is an algebraic group under the 
operation of matrix multiplication in generalized space 
𝐸 (𝛼, 𝛽) [17]. 

Definition 4: A matrix 𝐶 =
0 𝛽𝑠 𝛽𝑠

𝛼𝑠 0 −𝛼𝑠
−𝑠 𝑠 0

called a 

generalized skew-symmetric matrix if 𝐶 𝜀 = −𝜀𝐶, where 

𝜀 =

𝛼 0 0
0 𝛽 0
0 0 𝛼𝛽

 and 𝛼, 𝛽 ∈ ℝ − {0} [18]. 

Definition 5: A matrix  𝑅 is called a generalized 
orthogonal matrix if 𝑅 𝜀𝑅 = |𝑅|𝜀 where  

𝜀 =

𝛼 0 0
0 𝛽 0
0 0 𝛼𝛽

 and 𝛼, 𝛽 ∈ ℝ − {0}. 

The set of all generalized orthogonal matrices with the 
operation of matrix multiplication is called the rotation 
group in 𝐸 (𝛼, 𝛽) [14]. 

A rotation about the origin can be given with the 
equation of 𝑥 = 𝑅 ⋅ 𝑥, where 𝑅 is 3 × 3 G-orthogonal 
matrix and 𝑥 ∈ 𝐸 (𝛼, 𝛽). Generalized Cayley formula is 
defined as 𝑅 = (𝐼 − 𝐶) ∙ (𝐼 + 𝐶) = (𝐼 + 𝐶) ∙ (𝐼 − 𝐶) , 
where 𝐶 is a G-skew symmetric matrix. By using G-Cayley 
formula, any G-orthogonal matrix can be obtained by a G-
skew symmetric matrix 𝐶, where 

𝐶 =
0 −𝛽𝑐 𝛽𝑐

𝛼𝑐 0 −𝛼𝑐
−𝑐 𝑐 0

 

the matrix 𝐶 obtained the vector 𝑐 = (𝑐 , 𝑐 , 𝑐 ) and 
satisfying the equation 𝐶 ⋅ 𝑦 = 𝑐 ∧ 𝑦 [16]. 

The rotations in the three-dimensional space are 
represented by 3 × 3  rotation matrices, i.e. by means of 9 
parameters. Since constrained by the orthogonality 
conditions 𝑅 𝜀𝑅 = |𝑅|𝜀  these parameters are not 
independent. Only three independent parameters are 
needed to obtain a minimal representation of rotations in 
space. 

If frame 𝑀 is obtained from frame 𝐹 by first applying a 
rotation specified by 𝑅 followed by a translation given (with 
respect to 𝐹) by 𝑡, then the coordinates are given by 

𝑥 = 𝑅 ⋅ 𝑥 + 𝑡 (1) 

Since the displacement is not a linear transformation it 
not be represented by 3 × 3 matrix transformation. 

Definition 6: A transformation of the form given in eq. 
(1) is called a rigid motion if 𝑅 is generalized orthogonal
matrix.

Since the set of displacements of an 3-dimensional 
generalized space 𝐸 (𝛼, 𝛽) is an algebraic group. If 𝑇 : 𝐹 →
𝑀  and 𝑇 : 𝑀 → 𝑀  are displacements, then 𝑇 =
𝑇 𝑇 : 𝐹 → 𝑀  is also a displacement [26]. 

A combination of those two displacements with the 
matrices identity; 

𝑅 𝑡
0 1

∙
𝑅 𝑡
0 1

=
𝑅 ∙ 𝑅 𝑅 ∙ 𝑡 + 𝑡

0 1
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where 0 denotes the row vector (0,0,0), shows that the 
rigid motions can be represented by the set of matrices of 
the form; 

 

𝐺 − 𝐻(4) =
𝑅 𝑡
0 1

;  𝑅 ∈ SO(𝛼, 𝛽)(3)  (2)

  
Transformation matrices of the form eq. (2) are called 

homogeneous transformation in 𝐸 (𝛼, 𝛽) space and 
denote by [𝑔] = [𝑅, 𝑡]. The displacement is not a linear 
transformation, but the homogeneous transformation 
[𝑔] = [𝑅, 𝑡] is a linear transformation. The homogeneous 
representation eq. (2) is a special case of homogeneous 
coordinates, which have been extensively used in the field 
of computer graphics. The most general homogeneous 
transformation takes the form; 

 

𝐺 − 𝐻(4) =
𝑅 × ∣  𝑡 ×

𝑓 × ∣ 𝑠 ×
=

Rotation    ∣   Translation

perspective ∣ scale factor
 

 
From the definition of the metric tensor, all possible 

selections of 𝛼 and 𝛽 can be covered by two conditions 
given above. From now on we take these two cases into 
consideration. 

 
The Derivative of a Motion and G-Tangent 
Operators in Generalized Space 

 
We will use G-tangent operator instead of tangent 

operator in generalized space for appropriate notation. The 
continuous motion of a rigid body is the parametrized set 
of linear transformations, [𝑔(𝑠)]: ℝ → 𝐺𝐿(𝛼, 𝛽)(3). In 
particular, spherical motion define by [𝑔(𝑠)]: ℝ →
𝑆𝑂(𝛼, 𝛽)(3) and spatial motion define by [𝑔(𝑠)]: ℝ → 𝐺 −
𝐻(4) in generalized space 𝐸 (𝛼, 𝛽). 

Generally, since elements 𝑠  of [𝑔(𝑠)]: ℝ →

𝐺𝐿(𝛼, 𝛽)(3) are continuous functions of a real parameter, 
derivative of this matrix function is the matrix of derivatives 
of its elements and defined by [�̇� (𝑠)]. The tangent 
direction of the motion at [𝑔(𝑠 )] defined by [�̇�(𝑠 )]. 

The matrix function [𝑔(𝑠)]: ℝ → 𝐺𝐿(𝛼, 𝛽)(3) 
generates a continuous set of points 

 
𝐵(𝑠) = [𝑔(𝑠)] ∙ 𝑏 

 
is called the trajectory of 𝑏. The direction of the tangent to 
the trajectory 𝐵(𝑠) at 𝑠 = 𝑠  is the derivative 
 
�̇�(𝑠 ) = [�̇�(𝑠 )] ∙ 𝑏 = [�̇� ∙ 𝑔 (𝑠 )] ∙ 𝐵(𝑠 ) 
 
From the equation above we can see that [�̇� ∙ 𝑔 ] 
calculates the derivative of �̇�(𝑠) by using the the trajectory 
𝐵(𝑠).  Also, from the following equation, we can see that 
[�̇� ∙ 𝑔 ] also computes the derivative of [𝑔(𝑠)]. 
 
[�̇�(𝑠)] = [�̇� ∙ 𝑔 ] ∙ [𝑔(𝑠)]. 

 
Definition 7: [�̇� ∙ 𝑔 ] matrix is called G-tangent 

operator on 𝐺𝐿(𝛼, 𝛽)(3). We now determine the motion 

[𝐴(𝑠)] that has a constant matrix [𝑤] as its tangent 
operator. As the matrix [𝑤] calculates the derivative �̇�(𝑠)  
at every point [𝐴(𝑠)] we obtain the matrix differential 
equation 

 
�̇�(𝑠) = [𝑤] ∙ [𝐴(𝑠)] 

 
If the initial condition is [𝐴(0)] = [𝐴 ], then it has the 
solution 
 
[𝐴(𝑠)] = [𝐴 ] ⋅ 𝑒 [ ] = [𝐴 ](𝐼 + 𝑠[𝑤] +

( [ ])

!
+

( [ ])

!
+ ⋯ ).  

 
The last equation has the initial condition [𝐴(0)] = [𝐼], 
becomes simplified as 
 
[𝑅(𝑡)] = 𝑒 [ ]. 
 
Notice that in this case, the tangent operator [𝑤] is the 
derivative of [𝐴(𝑠)] at [𝐴(0)] = [𝐼]. Thus, the set of 
tangent operators on 𝐺𝐿(𝛼, 𝛽)(3) is identical to the 
tangent directions at the identity [𝐼]. 

If the set of tangent directions at the identity [𝐴(0)] =

[𝐼] is �̇�(0)  then, 
 

�̇�(0) = [𝑤] ⋅ 𝑒 [ ] = [𝑤] ∙ [𝐴(𝑠)]

�̇�(0) = [𝑤] ∙ [𝐴(0)] = [𝑤].
 

 
Lie product is defined for the tangent operators [𝑔] and 

[𝑤] as [𝑔] ∧ [𝑤] is also tangent operator 
 

[𝑔] ∧ [𝑤] = [𝑔 ∙ 𝑤 − 𝑤 ∙ 𝑔]   (3) 
 
where 𝑔 ∙ 𝑤 denotes the matrix product in generalized 
space. 
 
The Tangent Operators of SO(𝜶, 𝜷)(3) 

The condition defining the tangent operators of 
𝑆𝑂(𝛼, 𝛽)(3) is obtained from the relation [𝑅 𝜀𝑅] = [𝜀] 
which must be satisfied by all rotation matrices in 𝐸 (𝛼, 𝛽). 
Differentiating both sides, we obtain 
 
[�̇� 𝜀𝑅] + [𝑅 𝜀�̇�] = [0] 
 
which can be written as 
 
[𝑅 𝜀�̇�] = −[𝑅 𝜀�̇�]  
 
the last equation shows that [𝑅 𝜀�̇�] = [𝛩] is a skew-
symmetric matrix that is called G-angular velocity matrix of 
the rotation [𝐴(𝑠)] in 𝐸 (𝛼, 𝛽). If we can calculate that 
[�̇�] = [𝑅𝜀 𝛩], let  [𝜀 𝛩] = [𝛷]  , then  �̇� = [𝑅] ∙ [𝛷]. 
Note that [𝛷] is a G-skew-symmetric matrix. 
For a given matrix [𝛷] we obtain a one parameter group of 
rotations from the matrix differential equation 
 
�̇�(𝑠) = [𝑅(𝑠)] ∙ [𝛷] 

the equation has solution 



Savcı / Cummhuriyet Sci. J., 43(2) (2022) 299-307 

302 

[𝑅(𝑠)] = 𝑒 [ ] 

so [𝑅(𝑠)] = 𝑒 [ ] = ∑
( [ ])

!
 note, we assume 

[𝑅(0)] = [𝐼]. 
Let 𝑘 = (𝑐 , 𝑐 , 𝑐 ) ∈ 𝐸 (𝛼, 𝛽) be vector corresponding to 
G-skew-symmetric matrix in 𝐸 (𝛼, 𝛽), then 
 

[𝛷] =
0 −𝛽𝑐 𝛽𝑐

𝛼𝑐 0 −𝛼𝑐
−𝑐 𝑐 0.

 

 
The norm of 𝑘 = (𝑐 , 𝑐 , 𝑐 ) is = ‖ 𝑘‖ =

𝛼𝑐 + 𝛽𝑐 + 𝛼𝛽𝑐  . We can obtain the unit vector in 

direction of 𝜙 as 𝑡 = = (𝑡 , 𝑡 , 𝑡 ). Thus, we get 
[ ]

= [𝑇] 

 

[𝑇] =
0 −𝛽𝑡 𝛽𝑡

𝛼𝑡 0 −𝛼𝑡
−𝑡 𝑡 0.

 

 
[𝑅(𝑠)] = 𝑒( )[ ] = ∑

(( )[ ])

!

= 𝐼 +
( )[ ]

!
+

(( )[ ])

!
+

(( )[ ])

!
+

(( )[ ])

!
+

(( )[ ])

!
+

(( )[ ])

!
+ ⋯

= 𝐼 +
( )[ ]

!
+

( )

!
+

( )

!
+

( )

!
+

( )

!
+

( )

!
+ ⋯

    (4) 

 
Let 𝑡 = (𝑡 , 𝑡 , 𝑡 ) ∈ 𝐸 (𝛼, 𝛽) be unit vector corresponding to G-skew-symmetric matrix in 𝐸 (𝛼, 𝛽), then 
 

[𝑇] =
0 −𝛽𝑡 𝛽𝑡

𝛼𝑡 0 −𝛼𝑡
−𝑡 𝑡 0.

 

 
We get [𝑇 ] and [𝑇 ] as; 
 

[𝑇 ] =

−𝛽𝑡 − 𝛼𝛽𝑡 𝛽𝑡 𝑡 𝛼𝛽𝑡 𝑡

𝛼𝑡 𝑡 −𝛼𝑡 − 𝛼𝛽𝑡 𝛼𝛽𝑡 𝑡

𝛼𝑡 𝑡 𝛽𝑡 𝑡 −𝛼𝑡 − 𝛽𝑡

 

 
and 
 

[𝑇 ] =

0 𝛽𝑡 (𝛼𝑡 + 𝛽𝑡 + 𝛼𝛽𝑡 ) −𝛽𝑡 (𝛼𝑡 + 𝛽𝑡 + 𝛼𝛽𝑡 )

−𝛼𝑡 (𝛼𝑡 + 𝛽𝑡 + 𝛼𝛽𝑡 ) 0 𝛼𝑡 (𝛼𝑡 + 𝛽𝑡 + 𝛼𝛽𝑡 )

𝑡 (𝛼𝑡 + 𝛽𝑡 + 𝛼𝛽𝑡 ) −𝑡 (𝛼𝑡 + 𝛽𝑡 + 𝛼𝛽𝑡 ) 0

 

 
case 1: Let 𝛼 > 0 and 𝛽 > 0. Since norm of unit vector 𝑡 = (𝑡 , 𝑡 , 𝑡 ) is ‖𝑡‖ = 1, we have 
 
[ T ] = −[ T] 
 
[ T ] = [ T] ∙ [ T ] = −[ T] ∙ [ T] = −[ 𝑇 ] 
 
[ T ] = [ T] ∙ [ T ] = −[ T ] = [ T]          (5) 
 
[ T ] = [ T] ∙ [ T ] = [ T] ∙ [ T] = [ 𝑇 ]. 
 
if we use eq. (5) in eq. (4), we obtain 
 

[𝑅(𝑠)] = 𝐼 +
( )[ ]

!
+

( )

!
−

( ) [ ]

!
−

( )

!
+

( ) [ ]

!
+

( )

!
+ ⋯

= 𝐼 + (
( )

!
−

( )

!
+

( )

!
− ⋯ )[𝑇] + (

( )

!
−

( )

!
+

( )

!
− ⋯ )[𝑇 ]

= 𝐼 + (∑
( ) ( )

( )!
)[𝑇] + (1 − ∑

( ) ( )

( )!
)[𝑇 ]

              

 
[𝑅(𝑠)] = 𝐼 + sin( 𝜙𝑠)[ T] + (1 − cos(𝜙𝑠))[ 𝑇 ]         (6).  
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case 2: Let 𝛼 > 0 and 𝛽 < 0. We should consider two subcases such that the unit vector 𝑡 is a spacelike or timelike vector. 
If 𝑡 is a spacelike, then we have the same result in case 1. If 𝑡 is a timelike, then norm of the unit timelike vector is ‖𝑡‖ =
−1. Thus, we get 
[ T ] = [ T] 
 
[ T ] = [ T] ∙ [ T ] = [ T] ∙ [ T] = [ 𝑇 ] 
 
[ T ] = [ T] ∙ [ T ] = [ T ] = [ T]           (7) 
 
[ T ] = [ T] ∙ [ T ] = [ T] ∙ [ T] = [ 𝑇 ]. 
 
if we use eq. (7) in eq. (4), we have 
 

[𝑅(𝑠)] = 𝐼 +
(𝜙𝑠)[𝑇]

1!
+

(𝜙𝑠) [𝑇 ]

2!
+

(𝜙𝑠) [𝑇]

3!
+

(𝜙𝑠) [𝑇 ]

4!
+

(𝜙𝑠) [𝑇]

5!
+

(𝜙𝑠) [𝑇 ]

6!
+ ⋯

= 𝐼 + (
(𝜙𝑠)

1!
+

(𝜙𝑠)

3!
+

(𝜙𝑠)

5!
+ ⋯ )[𝑇] + (

(𝜙𝑠)

2!
+

(𝜙𝑠)

4!
+

(𝜙𝑠)

6!
+ ⋯ )[𝑇 ]

= 𝐼 + (
(𝜙𝑠)

(2𝑛 + 1)!
)[𝑇] + (

(𝜙𝑠)

(2𝑛)!
− 1)[𝑇 ]

 

 
[𝑅(𝑠)] = 𝐼 + sin ℎ( 𝜙𝑠)[ T] + (cos ℎ(𝜙𝑠) − 1)[ 𝑇 ]        (8). 
Example 1: Let G-skew symmetric matrix 𝐶 given as; 
 

𝐶 =
0 0 𝛽𝑡
0 0 0

−𝑡 0 0

 

 
We can obtain G-orthogonal matrix 𝑅 from the matrix 𝐶 using by G-Cayley formula as 
 

𝑅 = (𝐼 − 𝐶) (𝐼 + 𝐶) =
1

1 + 𝛽𝑡

1 − 𝛽𝑡 0 2𝛽𝑡

0 1 + 𝛽𝑡 0

−2𝑡 0 1 − 𝛽𝑡

 

 

Let 𝑐𝑜𝑠𝜃 =  and 𝑠𝑖𝑛𝜃 = , then 

 

𝑅 =

⎣
⎢
⎢
⎢
⎡ cos𝜃 0 𝛽𝑠𝑖𝑛𝜃

0 1 0

−
𝑠𝑖𝑛𝜃

𝛽
0 cos𝜃

⎦
⎥
⎥
⎥
⎤

 

 
we see that 𝑅 is a G-orthogonal matrix that it is the 𝜃 −degree rotation about 𝑦 −axis in 𝐸 (𝛼, 𝛽) space. If we calculate 
[𝛩] = [𝑅 𝜀�̇�] 
 

[𝛩] = [𝑅 𝜀�̇�] =

⎣
⎢
⎢
⎢
⎢
⎡
1 − 𝛽𝑡

1 + 𝛽𝑡
0 −

2𝑡

1 + 𝛽𝑡
0 1 0

2𝛽𝑡

1 + 𝛽𝑡
0

1 − 𝛽𝑡

1 + 𝛽𝑡 ⎦
⎥
⎥
⎥
⎥
⎤

𝛼 0 0
0 𝛽 0
0 0 𝛼𝛽

⎣
⎢
⎢
⎢
⎢
⎡−

4𝛽𝑡

(1 + 𝛽𝑡 )
0

2𝛽 − 2𝛽 𝑡

(1 + 𝛽𝑡 )
0 0 0

−2 + 2𝛽𝑡

(1 + 𝛽𝑡 )
0 −

4𝛽𝑡

(1 + 𝛽𝑡 ) ⎦
⎥
⎥
⎥
⎥
⎤

 

 
we get the tangent operator of 𝑅(𝑡); 
 

[𝛩] =

⎣
⎢
⎢
⎢
⎡ 0 0

2𝛼𝛽

(1 + 𝛽𝑡 )

0 0 0

−
2𝛼𝛽

(1 + 𝛽𝑡 )
0 0

⎦
⎥
⎥
⎥
⎤

. 
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Example 2: Let 𝛼 > 0 and 𝛽 < 0. The G-skew symmetric matrix 𝐶 corresponding to the vector 𝑐 = (0,3,0); 
 

𝐶 =
0 0 3𝛽
0 0 0
3 0 0

 

 
The norm of 𝑐 = (0,3,0) is ‖𝑐‖ = 3 −𝛽. The unit vector in direction of 𝑐 is 𝑡 = = (0, , 0). So G-skew symmetric 

matrix 𝑇 corresponding to the vector 𝑠; 
 

𝑇 =

⎣
⎢
⎢
⎢
⎡ 0 0 −𝛽

0 0 0

−
1

−𝛽
0 0

⎦
⎥
⎥
⎥
⎤

. 

 
We can obtain the rotation matrix 𝑅 from eq. (7) 
 
𝑅 = 𝐼 + sinh(3 −𝛽𝑡)[𝑆] + (cosh(3 −𝛽𝑡) − 1)[𝑆 ]

=

⎣
⎢
⎢
⎢
⎡cosh(3 −𝛽𝑡) 0 −𝛽sinh(3 −𝛽𝑡)

0 1 0

sinh(3 −𝛽𝑡)

−𝛽
0 cosh(3 −𝛽𝑡)

⎦
⎥
⎥
⎥
⎤

 
The Tangent Operators of 𝑮 − 𝑯(𝟒) 
 

In this chapter, we study the operations of rotation and translation and introduce the notion of homogeneous 
transformations. 
The tangent operators of 𝐺 − 𝐻(4) must satisfy the relation 
 

[�̇� ∙ 𝑔 ] = �̇� �̇�
0 0

𝑅 −𝑅 ∙ 𝑡
0 1

= �̇�𝑅 − 𝑅 ∙̇ 𝑅 ∙ 𝑡 + �̇� 
0 0

 

or 
 

[�̇� ∙ 𝑔 ] =
𝛺 𝑣
0 0

= [𝛺, 𝑣] 

 
where [𝛺] = [�̇�𝑅 ] is the 3 × 3 G-angular velocity matrix of the moving body and 𝑣 = −[𝑅] ∙ 𝑡 + �̇� is its 3-dimensional 
G-linear velocity vector. 
Let us consider a special case of the equation [�̇�(𝑠) ∙ 𝑔 (𝑠)] = [𝐵(𝑠)] when the [𝐵(𝑠)] is a constant matrix. Thus, the 
one parameter subgroup of 𝐺 − 𝐻(4) can be obtained from ordinary differential equation 
 
[�̇�(𝑠)] = [B] ∙ [𝑔(𝑠)]           (9) 
 
where [𝐵] = [𝐴, 𝑠]. Let us consider a special case of the eq. (9) when the [𝐵] is a constant matrix. Assuming that a fixed 
frame and a moving frame coincide at the moment 𝑡 = 0, so [𝑔(0)] = [𝐼]. We may conclude that: 
 
[𝑔(𝑠)] = 𝑒 [ ]. 
 
We can decompose G-linear velocity vector 𝑣 into components. Let 𝑐 be a point on the G-screw axis, then 𝑣 = 𝑐 ∧ 𝑤 and 
𝑘𝑤 = 𝑣 − 𝑣  perpendicular and G-angular velocity vector 𝑤, respectively. 
We consider the case 𝑣 = 0, then 𝑣 = 𝑝𝑤. Since [𝛺] ∙ 𝑤 = 0, we have 
 

[𝐵 ] = 𝛺 0
0 0
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therefore, 
 

[𝑔(𝑠)] = 𝑒 [ ] = 𝑒 [ ] 𝑝𝑤𝑠
0 1

=
𝑅(𝑠) 𝑝𝑤𝑠

0 1
 

 
where [𝑅(𝑠)] is the rotation matrix. 
 
Vector Associated with Tangent Operators 
 

The tangent operator of 𝑆𝑂(𝛼, 𝛽)(3) is 3 × 3 G-skew symmetric matrix has only three independent elements of nine 
elements, likewise, the tangent operator of 𝐺 − 𝐻(4) is 4 × 4 has only six independent elements of sixteen elements. 
Definition 8: The components of a tangent operator of [𝑅] = [𝛹, 𝑣] are assembled into the 6 −dimensional vector 𝑅 =
(𝜓, 𝑣), called a screw. 
Lie product defined in eq. (3) provides a product operation for the vectors associated with each of these tangent operators. 
For 𝑆𝑂(𝛼, 𝛽)(3), 𝜓 and 𝜙 are corresponding vectors of the G-skew symmetric matrices [𝛹] and [𝛷], then we find that 
vectors corresponding vectors the G-skew symmetric matrices obtained from the Lie product 
 
[𝛹] ∧ [𝛷] = [𝛹 ∙ 𝛷 − 𝛷 ∙ 𝛹] 
 
is 𝜓 × 𝜙. 
For homogeneous transformation 𝐺 − 𝐻(4), Lie product of the tangent operators [𝑅] = [𝛹, 𝑟] and [𝑆] = [𝛷, 𝑠] is defined 
by 
 
[𝑅] ∧ [𝑆] = [𝑅 ∙ 𝑆 − 𝑆 ∙ 𝑅]

= [𝛹, 𝑟][𝛷, 𝑠] − [𝛷, 𝑠][𝛹, 𝑟]

= [𝛹 ∙ 𝛷 − 𝛷 ∙ 𝛹, [𝛹] ∙ 𝑠 − [𝛷] ∙ 𝑟]

= (𝜓 ∧ 𝜙, 𝜓 ∧ 𝑠 − 𝜙 ∧ 𝑟),

 

 
where [𝑅] and [𝑆] as follow respectively; 
 

[𝑅] =

0 −𝛽𝜓 𝛽𝜓 𝑟
𝛼𝜓 0 −𝛼𝜓 𝑟
−𝜓 𝜓 0. 𝑟

0 0 0 0

 and [𝑆] =

0 −𝛽𝜙 𝛽𝜙 𝑠
𝛼𝜙 0 −𝛼𝜙 𝑠
−𝜙 𝜙 0. 𝑠

0 0 0 0

. 

 
Multi-Parameter Motion in Generalized Space 
 

The matrix function [𝑔(𝑠)]: ℝ → 𝐺𝐿(𝛼, 𝛽)(3) defines a motion of a body that is parameterized by a single variable, we 
now consider the motions parameterized by 𝑛 variables 𝜃 = (𝜃 , . . . , 𝜃 ), denoted [𝐹(𝜃)]: ℝ → 𝐺𝐿(𝛼, 𝛽)(3). 
The partial derivative of [𝐹(𝜃)] = [𝑓 (𝜃 , . . . , 𝜃 ), 𝑓 (𝜃 , . . . , 𝜃 ), 𝑓 (𝜃 , . . . , 𝜃 )] with respect to a variable 𝜃  is the 3 × 𝑛 
matrix 
 

𝜕𝐹

𝜕𝜃
=

𝜕𝑓

𝜕𝜃
,
𝜕𝑓

𝜕𝜃
,
𝜕𝑓

𝜕𝜃
. 

 
If the variables 𝜃  are functions of a variable 𝚤, that 𝜃 = 𝜃(𝚤), then the chain rule the partial derivatives  to the derivative 

𝐹
⋅

 by the relation 
 

𝐹
⋅

=
𝜕𝐹

𝜕𝜃
𝜃
⋅

+. . . +
𝜕𝐹

𝜕𝜃
𝜃
⋅

. 

 
Multiplying on the right by [𝐹 𝜀], we obtain the tangent operator 
 

𝐹 𝜀𝐹
⋅

= 𝐹 𝜀
𝜕𝐹

𝜕𝜃
𝜃
⋅

+. . . + 𝐹 𝜀
𝜕𝐹

𝜕𝜃
𝜃
⋅

. 

 

The matrices 𝐹 𝜀𝐹
⋅

 are partial tangent operators associated with each of the parameters 𝜃 , individually. 
Now, let’s obtain the tangent operator of two parameters motion. 
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Example 3: Let G-skew symmetric matrix 𝐶 given as 
 

𝐶 =
0 0 𝛽𝑡
0 0 −𝛼𝑠

−𝑡 𝑠 0

 

 
We can obtain rotation matrix 𝑅 from the matrix 𝐶 using by G-Cayley formula as, 
 

𝑅 = (𝐼 + 𝐶)(𝐼 + 𝐶) =
1

1 + 𝛼𝑠 + 𝛽𝑡

1 + 𝛼𝑠 − 𝛽𝑡 2𝛽𝑠𝑡 2𝛽𝑡

2𝛼𝑠𝑡 1 − 𝛼𝑠 − 𝛽𝑡 0

−2𝑡 0 1 − 𝛼𝑠 − 𝛽𝑡

 

 
The derivatives of the rotation matrix [𝑅] with respect to 𝑡 and 𝑠, repectively; 
 

𝜕𝐹

𝜕t
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−4𝛽t(1 + 𝛼𝑠 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

2𝛽𝑠(1 + 𝛼𝑠 − 𝛽𝑡 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

2𝛽(1 + 𝛼𝑠 − 𝛽𝑡 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

2𝛼𝑠(1 + 𝛼𝑠 − 𝛽𝑡 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

4𝛼𝛽𝑠 t

(1 + 𝛼𝑠 + 𝛽𝑡 )

4𝛼𝛽𝑠t

(1 + 𝛼𝑠 + 𝛽𝑡 )

−2(1 + 𝛼𝑠 − 𝛽𝑡 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

−4𝛽𝑠t

(1 + 𝛼𝑠 + 𝛽𝑡 )

−4𝛽t

(1 + 𝛼𝑠 + 𝛽𝑡 ) ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
and 
 

𝜕𝐹

𝜕s
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

4𝛼𝛽s𝑡

(1 + 𝛼𝑠 + 𝛽𝑡 )

2𝛽𝑡(1 − 𝛼𝑠 + 𝛽𝑡 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

−4𝛼𝛽st

(1 + 𝛼𝑠 + 𝛽𝑡 )

2𝛼𝑡(1 − 𝛼𝑠 + 𝛽𝑡 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

−4𝛼𝑠(1 + 𝛽𝑡 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

−2𝛼(1 − 𝛼𝑠 + 𝛽𝑡 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

4𝛼st

(1 + 𝛼𝑠 + 𝛽𝑡 )

2(1 − 𝛼𝑠 + 𝛽𝑡 )

(1 + 𝛼𝑠 + 𝛽𝑡 )

−4𝛼s

(1 + 𝛼𝑠 + 𝛽𝑡 ) ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
If we calculate components of the tangent operator; 
 

[Φ] = 𝑅 𝜀
𝜕𝑅

𝜕t
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0

2𝛼𝛽𝑠

1 + 𝛼𝑠 + 𝛽𝑡

2𝛼𝛽

1 + 𝛼𝑠 + 𝛽𝑡
−2𝛼𝛽𝑠

1 + 𝛼𝑠 + 𝛽𝑡
0 0

−2𝛼𝛽

1 + 𝛼𝑠 + 𝛽𝑡
0 0

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

and 

[Φ] = 𝑅 𝜀
𝜕𝑅

𝜕s
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0

−2𝛼𝛽𝑡

1 + 𝛼𝑠 + 𝛽𝑡
0

2𝛼𝛽𝑡

1 + 𝛼𝑠 + 𝛽𝑡
0

−2𝛼𝛽

1 + 𝛼𝑠 + 𝛽𝑡

0
2𝛼𝛽

1 + 𝛼𝑠 + 𝛽𝑡
0

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

we get the tangent operator of the two parameters motion as; 
 

𝑅 𝜀𝐹
⋅

= 𝑅 𝜀
𝜕𝑅

𝜕𝑡

𝜕

𝜕𝑡
+ 𝑅 𝜀

𝜕𝑅

𝜕𝑠

𝜕

𝜕𝑠
. 

 
Conclusion 

Since the solutions obtained for generalized space cover 
both Lorentzian and Euclidean spaces, it is an undeniable fact 
that the results obtained in generalized space are valid in both 
spaces. Therefore, the data obtained as a result of the 
situations examined within the scope of this study provide the 
necessary conditions for both spaces. It is important in terms  

 

of enabling researchers to perform calculations in generalized 
space and then go to specific instead of making separate 
calculations for two different spaces. The generalization of the 
space studied in this study to n dimensions is also foreseen as 
an advanced research topic. 
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