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Abstract. In this writeup, we have discussed the role of ideals on σ-topological

spaces. Using this idea, we have also studied and discussed two operators ()∗σ

and ψσ . We have extended this concept to a new generalized set and investi-

gated some basic properties of these concepts using ()∗σ and ψσ operators.

1. Introduction

In topological space, the idea of ideal was known by Kuratowski [7] and Vaidyanath-
swamy [13]. After that, in the ideal topological space, local function was introduced
and studied by Vaidyanathswamy. Nj̊astad [12] has introduced compatability of the
topology with the help of an ideal. In [5, 6] Janković and Hamlett introduced fur-
ther the characteristics of ideal topological spaces and ψ-operator was introduced
by them in 1990. A new type of topology from original ideal topological space was
also introduced. In this new topological space, a Kuratowski-closure operator was
defined using the local function. Also from ψ-operator, they proved that interior
operator can be deduced in the new topological space. In 2007, using ψ-operator
Modak and Bandhyopadhyay in [8] introduced generalized open sets. The idea of
ideal m-space was introduced by Al-Omari and Noiri in [1, 2] and they also inves-
tigated two operators identical with ψ-operator and local function in 2012. Their
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extensive works related to this topic can be found in [3, 4].

The idea of σ-topological space have been introduced and studied here. In
this paper, ideal σ-topological space has been introduced and two set operators
σ-local and ψσ and their properties have been studied. Finally σ-codense ideal, σ-
compatible ideal and ψσ −C set using ψσ operator have been introduced. Further
investigation of various properties of that knowledge have been studied.

2. Preliminaries

Related to this paper, we have discussed some definitions, examples and results
in this article.

Definition 1. A family γ of subsets of a set T is called σ-topology if the following
conditions are satisfied:
(i) ∅, T ∈ γ.
(ii) γ is closed under countable union.
(iii) γ is closed under finite intersection.
The couple (T, γ) is said to be a σ-topological space. The member of γ is called
σ-open set in (T, γ) and the complement of σ-open set is called σ-closed set.

Note 1. Every topology on a non-empty set T is a σ-topology but every σ-topology
on T may not be a topology. For an example, let T = R, set of all real numbers and
γ = {∅,R}∪{S⊂ R :S is countable}. Then γ is σ-topology on T . But

⋃
p∈R\Q

{p} /∈ γ,

i.e, γ is not closed under arbitrary union. Hence γ is not a topology on T = R.

Definition 2. A non-empty family J of subsets of T is called an ideal on T , if
(i) M ∈ J and N ⊂M implies N ∈ J (heredity).
(ii) M ∈ J and N ∈ J imply M ∪N ∈ J (finite additivity).

Definition 3. Let (T, γ) be a σ-topological space and M ⊂ T . The σ-interior and
σ-closure of M in (T, γ) are defined as respectively:

∪{V:V⊂ M and V∈ γ} and ∩{C:M⊂ C and T\C ∈ γ}
The σ-interior and σ-closure of M in (T, γ) are denoted as Intσ(M) and Clσ(M)
respectively.

Theorem 1. Let (T, γ) be a σ-topological space and M, N be two subsets of T, then
(i) p ∈ Clσ(M) if and only if for any σ-open set V containing p, V ∩M ̸= ∅.
(ii) If M ⊂ N then Clσ(M) ⊂ Clσ(N).

Proof. (i) Let p ∈ Clσ(M). If possible let there exists a σ-open set V containing
p such that V ∩M = ∅. This implies M ⊂ T \ V . Since T \ V is σ-closed in T
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containingM , so Clσ(M) ⊂ T \V . This implies Clσ(M)∩V = ∅, which contradicts
the fact that p ∈ Clσ(M) ∩ V . Thus if p ∈ Clσ(M), then for any σ-open set V
containing p, V ∩M ̸= ∅.
Conversely, let for any σ-open set V containing p, V ∩ M ̸= ∅. If possible let
p /∈ Clσ(M). Then p ∈ T \ Clσ(M) = V (say). This implies V ∩ Clσ(M) = ∅
and hence V ∩M = ∅, as M ⊂ Clσ(M), which contradicts our assumption. Hence
p ∈ Clσ(M).
(ii) Let p ∈ Clσ(M). Then for any σ-open set V containing p, V ∩M ̸= ∅. This
implies V ∩N ̸= ∅, sinceM ⊂ N . Thus p ∈ Clσ(N). Hence Clσ(M) ⊂ Clσ(N). □

Theorem 2. Let (T, γ) be a σ-topological space and M ⊂ T , then Intσ(M) =
T \ Clσ(T \M).

Proof. Clσ(T \M) = Clσ(M c) = ∩{F : M c ⊂ F, F c ∈ γ} where M c = T \M
and F c = T \ F . This implies {Clσ(T \M)}c = ∪{F c : M ⊃ F c, F c ∈ γ}. Thus
T \ Clσ(T \M) = Intσ(M). Hence the result. □

Definition 4. Let (T, γ) be a σ-topological space and M ⊂ T . Then M is called a
σ-neighbourhood of p ∈ T , if there exists V ∈ γ such that p ∈ V ⊂M .

Definition 5. Let (T, γ) be a σ-topological space and J be an ideal on T . Then the
triplicate (T, γ, J) is called an ideal σ-topological space.

Definition 6. Let (T, γ, J) be an ideal σ-topological space. Then

M∗(J, γ) ={p ∈ T :M ∩V /∈ J for every V ∈ γ(p)}, where γ(p) = {V ∈ γ : p ∈ V }
is said to be the σ-local function of M with respect to J and γ.

When there is no confusion, we will write MJ or simply M∗σ or M∗(J, γ) and call
it the “σ-local function of M”.

Example 1. Let T = {p, q, r}, γ = {∅, T, {p}, {p, q}, {p, r}} and J = {∅, {p}}.
Take M = {p, q}. Then M∗σ ={t ∈ T :M ∩ V /∈ J for every V ∈ γ(t)}={q}.

Theorem 3. Let (T, γ) be a σ-topological space with I and J ideals on T and let
M and N be subsets of T. Then
(i) ∅∗σ = ∅.
(ii) (M∗σ)∗σ ⊂M∗σ.
(iii) If M ⊂ N then M∗σ ⊂ N∗σ.
(iv) If I1 ∈ I then I∗σ1 = ∅.
(v) I ⊂ J implies M∗σ(J) ⊂M∗σ(I).
(vi) M∗σ ∪N∗σ = (M ∪N)∗σ.
(vii) (

⋃
i

Mi)
∗σ =

⋃
i

(M∗σ
i ).

(viii) (M ∩N)∗σ ⊂M∗σ ∩N∗σ.
(ix) M∗σ \N∗σ = (M \N)∗σ \N∗σ.
(x) For any O ∈ γ,O ∩ (O ∩M)∗σ ⊂ O ∩M∗σ.
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(xi) For any I1 ∈ I, (M ∪ I1)∗σ =M∗σ = (M \ I1)∗σ.
(xii) M∗σ(I ∩ J) =M∗σ(I) ∪N∗σ(J).
(xiii) γ ∩ I = {∅} if and only if T = T ∗σ.
(xiv) M∗σ ⊂ Clσ(M).

Proof. (i) Here ∅∗σ ={p ∈ T : ∅ ∩ V /∈ I for every V ∈ γ(p)}. But ∅ ∩ V = ∅ ∈ I
for every V ∈ γ(p). Thus ∅∗σ contains no element of T. Therefore ∅∗σ = ∅.
(ii) Let p ∈ (M∗σ)∗σ. Then for every V ∈ γ(p), V ∩M∗σ /∈ I and hence V ∩M∗σ ̸= ∅.
Let y ∈ V ∩M∗σ. Then V ∈ γ(y) and y ∈M∗σ. This implies V ∩M /∈ I and hence
p ∈M∗σ. Therefore (M∗σ)∗σ ⊂M∗σ.
(iii) Let p ∈ M∗σ. Then for every V ∈ γ(p), V ∩M /∈ I. Since M ⊂ N , therefore
V ∩M ⊂ V ∩ N . Since V ∩M /∈ I, so V ∩ N /∈ I. This implies p ∈ N∗σ and so
M∗σ ⊂ N∗σ.
(iv) Since I1 ∈ I. Then for every V ∈ γ, V ∩I1 ⊂ I1 ∈ I and by heredity, V ∩I1 ∈ I.
So I∗σ1 ={p ∈ T : I1 ∩ V /∈ I for every V ∈ γ(p)} implies I∗σ1 = ∅.
(v) Let p ∈M∗σ(J). Then for every V ∈ γ(p), M ∩V /∈ J impliesM ∩V /∈ I (since
I ⊂ J). So p ∈M∗σ(I). Hence M∗σ(J) ⊂M∗σ(I).
(vi) We know M ⊂M ∪N and N ⊂M ∪N . This implies M∗σ ⊂ (M ∪N)∗σ and
N∗σ ⊂ (M ∪N)∗σ (by Theorem 3 (iii)). So M∗σ ∪N∗σ ⊂ (M ∪N)∗σ. For reverse
inclusion, let p /∈ (M∗σ ∪ N∗σ). Then p /∈ M∗σ and p /∈ N∗σ. So there exist V ,
O ∈ γ(p) such that V ∩M ∈ I and O∩N ∈ I. This implies (V ∩M)∪ (O∩N) ∈ I
since I is additive.
Now

(V ∩M) ∪ (O ∩N) = [(V ∩M) ∪O] ∩ [(V ∩M) ∪N ]

= (V ∪O) ∩ (M ∪O) ∩ (V ∪N) ∩ (M ∪N)

⊃ (V ∩O) ∩ (M ∪N)

This implies (V ∩ O) ∩ (M ∪ N) ∈ I (since I is hereditary). Since V ∩ O ∈ γ(p),
p /∈ (M ∪ N)∗σ. Contrapositively p ∈ (M ∪ N)∗σ implies p ∈ M∗σ ∪ N∗σ. Thus
(M ∪N)∗σ ⊂M∗σ ∪N∗σ. Hence we get M∗σ ∪N∗σ = (M ∪N)∗σ.
(vii) Proof is obvious and hence omitted.
(viii) We know M ∩N ⊂M and M ∩N ⊂ N . This implies (M ∩N)∗σ ⊂M∗σ and
(M ∩N)∗σ ⊂M∗σ (by Theorem 3 (iii)). So (M ∩N)∗σ ⊂M∗σ ∩N∗σ.

Independent Proof: If possible let (M ∩ N)∗σ not be a subset of M∗σ ∩ N∗σ.
Then there exists p ∈ (M ∩N)∗σ but p /∈M∗σ ∩N∗σ. Now p ∈ (M ∩N)∗σ implies
V ∩ (M ∩N) /∈ I for every V ∈ γ(p), i.e., (V ∩M)∩ (V ∩N) /∈ I for every V ∈ γ(p).
This implies V ∩M /∈ I and V ∩N /∈ I for every V ∈ γ(p). So p ∈M∗σ and p ∈ N∗σ

which implies p ∈M∗σ∩N∗σ which contradicts the fact that p /∈M∗σ∩N∗σ. Hence
(M ∩N)∗σ ⊂M∗σ ∩N∗σ.
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(ix) We know M = (M \N) ∪ (M ∩N). This implies

M∗σ = [(M \N) ∪ (M ∩N)]∗σ

= (M \N)∗σ ∪ (M ∩N)∗σ (by Theorem 3 (vii))

⊂ (M \N)∗σ ∪N∗σ (by Theorem 3 (iii))

This implies M∗σ \N∗σ ⊂ (M \N)∗σ \N∗σ.
Again M \ N ⊂ M . Then (M \ N)∗σ ⊂ M∗σ and hence (M \ N)∗σ \ N∗σ ⊂

M∗σ \N∗σ. Thus we obtain M∗σ \N∗σ = (M \N)∗σ \N∗σ

(x) We have O∩M ⊂M . This implies (O∩M)∗σ ⊂M∗σ (by Theorem 3 (iv)). So
O ∩ (O ∩M)∗σ ⊂ O ∩M∗σ.
(xi) We have M ⊂ (M ∪ I1). This implies M∗σ ⊂ (M ∪ I1)∗σ. Let p ∈ (M ∪ I1)∗σ.
Then for every V ∈ γ(p), V ∩(M ∪I1) /∈ I. This implies V ∩M /∈ I. If not, suppose
that V ∩M ∈ I. Since V ∩ I1 ⊂ I1 ∈ I, by heredity V ∩ I1 ∈ I and hence by finite
additivity (V ∩M) ∪ (V ∩ I1) ∈ I. This implies V ∩ (M ∪ I1) ∈ I, a contradiction.
Consequently p ∈M∗σ. Therefore (M ∪ I1)∗σ ⊂M∗σ. So (M ∪ I1)∗σ =M∗σ.
Also M \ I1 ⊂ M implies (M \ I1)∗σ ⊂ M∗σ. For the converse, let p ∈ M∗σ, we
claim that p ∈ (M \ I1)∗σ. If not, there exists V ∈ γ(p) such that V ∩ (M \ I1) ∈ I.
This implies I1 ∪ (V ∩ (M \ I1)) ∈ I, since I1 ∈ I (by finite additivity). Thus
I1 ∪ (V ∩M) ∈ I. So V ∩M ∈ I, a contradiction to the fact that p ∈M∗σ. Hence
M∗σ ⊂ (M \ I1)∗σ. So M∗σ = (M \ I1)∗σ. Consequently (M ∪ I1)∗σ = M∗σ =
(M \ I1)∗σ.
(xii) We have I ∩ J ⊂ I and I ∩ J ⊂ J . This implies M∗σ(I ∩ J) ⊃ M∗σ(I) and
M∗σ(I ∩ J) ⊃M∗σ(J) (by Theorem 3 (v)). So M∗σ(I ∩ J) ⊃M∗σ(I) ∪M∗σ(J).
For reverse, let p ∈ M∗σ(I ∩ J). Then for every V ∈ γ(p), V ∩M /∈ I ∩ J . Thus
V ∩ M /∈ I or V ∩ M /∈ J . This implies p ∈ M∗σ(I) or p ∈ M∗σ(J). These
imply p ∈ M∗σ(I) ∪ M∗σ(J) and hence M∗σ(I) ∪ M∗σ(J) ⊃ M∗σ(I ∩ J). So
M∗σ(I ∩ J) =M∗σ(I) ∪M∗σ(J).
(xiii) From definition T ∗σ ⊂ T .
For reverse inclusion let p ∈ T . If possible let p /∈ T ∗σ. Then there exists V ∈ γ(p)
such that V ∩ T ∈ I. This implies V ∈ I, a contradiction. Hence T ⊂ T ∗σ. Thus
T = T ∗σ.
Conversely, suppose that T = T ∗σ holds. If possible let V ∈ γ ∩ I and p ∈ V . Then
V ∩T ⊂ V ∈ γ ∩ I. This implies V ∩T ∈ γ ∩ I and hence V ∩T ∈ I. Thus p /∈ T ∗σ,
a contradiction.
(xiv) Let p ∈M∗σ. Then for every V ∈ γ(p), V ∩M /∈ I. This implies V ∩M ̸= ∅,
for all p ∈M∗σ. Thus p ∈ Clσ(M). Hence M∗σ ⊂ Clσ(M). □

Result 1. Let (T, γ) be a σ-topological space with J an ideal on T and M ⊂ T .
Then V ∈ γ, V ∩M ∈ J implies V ∩M∗σ = ∅.
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Proof. If possible let V ∩M∗σ ̸= ∅ and let p ∈ V ∩M∗σ. This implies p ∈ V and
for all Np ∈ γ(p) such that Np ∩M /∈ J . Since p ∈ V ∈ γ then V ∩M /∈ J , which
is a contradiction. Hence the result. □

Result 2. Let (T, γ) be a σ-topological space with J an ideal on T . Then (M ∪
M∗σ)∗σ ⊂M∗σ for all M ∈ ℘(T ).

Proof. Let p /∈M∗σ. Then there exists Vp ∈ γ(p) such that Vp∩M ∈ J . This implies
Vp∩M∗σ = ∅. This implies Vp∩(M ∪M∗σ) = (Vp∩M)∪(Vp∩M∗σ) = Vp∩M ∈ J .
Thus p /∈ (M ∪M∗σ)∗σ. Hence (M ∪M∗σ)∗σ ⊂M∗σ. □

Theorem 4. Let (T, γ) be a σ-topological space with J an ideal on T . Then the
operator Cl∗σ : ℘(T ) → ℘(T ) defined by Cl∗σ(M) =M ∪M∗σ for all M ∈ ℘(T ), is
a Kuratowski closure operator and it generates a σ-topology γ∗(J) = {M ∈ ℘(T ) :
Cl∗σ(M c) =M c} which is finer than γ.

Proof. (i) Since ∅∗σ = ∅, then Cl∗σ(∅) = ∅ ∪ ∅∗σ = ∅ ∪ ∅ = ∅.
(ii) Cl∗σ(M) =M ∪M∗σ. This implies M ⊂ Cl∗σ(M).
(iii) Cl∗σ(M ∪ N) = (M ∪ N) ∪ (M ∪ N)∗σ = (M ∪ N) ∪ (M∗σ ∪ N∗σ) =
(M ∪M∗σ) ∪ (N ∪N∗σ) = Cl∗σ(M) ∪ Cl∗σ(N).
(iv) Let M,N ⊂ T with M ⊂ N . Then Cl∗σ(M) = M ∪ M∗σ ⊂ N ∪ N∗σ =
Cl∗σ(N). This implies Cl∗σ(M) ⊂ Cl∗σ(N). We have M ⊂ Cl∗σ(M). This
implies Cl∗σ(M) ⊂ Cl∗σ(Cl∗σ(M)). But Cl∗σ(Cl∗σ(M)) = Cl∗σ(M ∪ M∗σ) =
(M ∪M∗σ) ∪ (M ∪M∗σ)∗σ ⊂ (M ∪M∗σ) ∪M∗σ = M ∪M∗σ = Cl∗σ(M). Hence
Cl∗σ(Cl∗σ(M)) = Cl∗σ(M). Consequently Cl∗σ(M) is a Kuratowski closure oper-
ator.
Now we have to show that γ∗(J) = {M ∈ ℘(T ) : Cl∗σ(M c) =M c} is a σ-topology
on T .
Since Cl∗σ(∅) = ∅, then ∅c ∈ γ∗(J). This implies T ∈ γ∗(J). Also since T ⊂
Cl∗σ(T ) ⊂ T , then Cl∗σ(T ) = T . This implies T c ∈ γ∗(J). Hence ∅ ∈ γ∗(J)
Let M1,M2, ...,Mn, ... ∈ γ∗(J). Then Cl∗σ(M c

i ) = M c
i for all i ∈ N. Now⋂

i∈N
M c

i ⊂ M c
i for all i ∈ N. This implies Cl∗σ(

⋂
i∈N

M c
i ) ⊂ Cl∗σ(M c

i ) = M c
i for

all i ∈ N. This implies Cl∗σ(
⋂
i∈N

M c
i ) ⊂ (

⋂
i∈N

M c
i ) ⊂ Cl∗σ(

⋂
i∈N

M c
i ). This implies

Cl∗σ(
⋂
i∈N

M c
i ) = (

⋂
i∈N

Mi
c). Thus Cl∗σ(

⋃
i∈N

Mi)
c = (

⋃
i∈N

Mi)
c. Hence

⋃
i∈N

Mi ∈ γ∗(J).

Therefore γ∗(J) is closed under countable union.
Again let Mj ∈ γ∗(J), j = 1, 2, 3, ...n. Then Cl∗σ(M c

j ) =M c
j for all j = 1, 2, 3, ...n.

Therefore Cl∗σ{(
n⋂

j=1

Mj)
c} = Cl∗σ(

n⋃
j=1

M c
j ) =

n⋃
j=1

Cl∗σ(M c
j ) =

n⋃
j=1

(M c
j ) = (

n⋂
j=1

Mj)
c.

This implies
n⋂

j=1

Mj ∈ γ∗(J). Therefore γ∗(J) is closed under finite intersection.

Thus γ∗(J) is a σ-topology on T .



876 C. MIAH, MD. M. ISLAM, S. MODAK, S. MISTRY

Next from Theorem 3 (xiv), we have M∗σ ⊂ Clσ(M) implies M ∪M∗σ ⊂ M ∪
Clσ(M) = Clσ(M) implies Cl∗σ(M) ⊂ Clσ(M). Hence γ ⊂ γ∗(J). □

The member of γ∗(J) is called σ∗(J)-open set or simply σ∗-open set and the
complement of σ∗(J)-open set is called σ∗(J)-closed set or simply σ∗-closed set.

Result 3. Let (T, γ) be a σ-topological space. If J = {∅}, then γ = γ∗(J).

Proof. If p ∈ Clσ(M), then (by Theorem 1 (i)), Vp ∩M ̸= ∅, for all Vp ∈ γ(p).
This implies Vp ∩M /∈ {∅} = J , for all Vp ∈ γ(p) implies p ∈ M∗σ implies p ∈
M ∪M∗σ = Cl∗σ(M). Since p is an arbitrary member of Clσ(M), then Clσ(M) ⊂
Cl∗σ(M). Also by Theorem 3 (xiv), M∗σ ⊂ Clσ(M). This implies M ∪M∗σ ⊂
M ∪ Clσ(M) implies Cl∗σ(M) ⊂ Clσ(M). Hence Cl∗σ(M) = Clσ(M), for all
M ∈ ℘(T ). Consequently γ∗(J) = γ implies γ = γ∗({∅}). □

Theorem 5. Let (T, γ) be a σ-topological space and J1, J2 be two ideals on T . If
J1 ⊂ J2, then γ

∗(J1) ⊂ γ∗(J2).

Proof. Let O ∈ γ∗(J1). Then Cl
∗σ
J1
(Oc) = Oc ⇒ Oc ∪Oc∗σ (J1) = Oc. This implies

Oc∗σ (J1) ⊂ Oc implies Oc∗σ (J2) ⊂ Oc∗σ (J1) ⊂ Oc (by Theorem 3 (v)). This implies
Oc∗σ (J2) ∪ Oc = Oc implies Cl∗σJ2

(Oc) = Oc implies O ∈ γ∗(J2). Since O ∈ γ∗(J1)
is arbitrary, then γ∗(J1) ⊂ γ∗(J2). □

Theorem 6. Let (T, γ) be a σ-topological space with J an ideal on T . Then
(i) I ∈ J implies Ic ∈ γ∗(J).
(ii) M∗σ = Cl∗σ(M∗σ), for all M ∈ ℘(T ).

Proof. : (i) We have for all I ∈ J , (M ∪ I)∗σ = M∗σ. If we take M = ∅, then
I∗σ = ∅∗σ = ∅, for all I ∈ J . Hence Cl∗σ(I) = I ∪ I∗σ = I ∪ ∅ = I. Therefore
Ic ∈ σ∗(J). This implies I is γ∗(J)-closed, for all I ∈ J .
(ii) We have (M∗σ)∗σ ⊂M∗σ. This implies M∗σ =M∗σ ∪ (M∗σ)∗σ = Cl∗σ(M∗σ).
Hence M∗σ is a σ∗(J)-closed. □

Theorem 7. Let (T, γ) be a σ-topological space and M ⊂ T . Then M is σ∗-closed
if and only if M∗σ ⊂M .

Proof. If M is σ∗-closed, then M = Cl∗σ(M) =M ∪M∗σ. This implies M∗σ ⊂M .
Conversely let M∗σ ⊂ M . This implies M = M ∪M∗σ = Cl∗σ(M). Hence M is
σ∗-closed. □

Theorem 8. Let (T, γ1) and (T, γ2) be two σ-topological spaces and J be an ideal
on T . Then γ1 ⊂ γ2 implies M∗σ(J, γ2) ⊂M∗σ(J, γ1).

Proof. Let p ∈ M∗σ(J, γ2). This implies Vp ∩M /∈ J for all Vp ∈ γ2(p) implies
Vp ∩M /∈ J for all Vp ∈ γ1(p). This implies p ∈M∗σ(J, γ1). Since p is an arbitrary
element of M∗σ(J, γ2), then M

∗σ(J, γ2) ⊂M∗σ(J, γ1). □
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Theorem 9. Let (T, γ) be a σ-topological space and J be an ideal on T . Then the
collection β(J, γ) = {M \ I :M ∈ γ, I ∈ J} is a basis for the σ-topology γ∗(J).

Proof. Let M ∈ γ∗(J) and p ∈M . Then M c is σ∗-closed, i.e, Cl∗σ(M c) =M c and
hence M c ∪ (M c)∗σ = M c implies (M c)∗σ ⊂ M c. This implies p /∈ (M c)∗σ and
there exists Vp ∈ γ(p) such that Vp ∩M c ∈ J . Take K = Vp ∩M c, then p /∈ K
and K ∈ J . Thus p ∈ Vp \K = Vp ∩Kc = Vp ∩ (Vp ∩M c)c = Vp ∩ (V c

p ∪M) =
(Vp∩V c

p )∪(Vp∪M) = Vp∩M ⊂M . Hence p ∈ Vp\K ⊂M , where Vp\K ∈ β(J, γ).
Thus β(J, γ) is an open base of γ∗(J). □

The example given below proves that M∗σ ∩N∗σ = (M ∩N)∗σ is not satisfied
in general.

Example 2. Let T={p,q,r,s}, γ={∅,T,{p},{s},{p,s},{q,s},{r,s},{p,r,s},{p,q,s},{q,r,s}},
J = {∅, {p}}. Then σ-open sets containing p are: T, {p}, {p,s}, {p,r,s}, {p,q,s};
σ-open sets containing q are: T, {q,s}, {p,q,s}, {q,r,s}; σ-open sets containing r
are: T, {r,s}, {p,r,s}, {q,r,s}; σ-open sets containing s are: T, {s}, {p,s}, {q,s},
{r,s}, {p,q,s}, {p,r,s}, {q,r,s}. Take M={p,q} and N={p,s}. Then M∗σ = {q} and
N∗σ = {q, r, s} and hence M∗σ ∩N∗σ = {q}. Now (M ∩N)∗σ = {p}∗σ = ∅ and so
M∗σ ∩N∗σ ̸= (M ∩N)∗σ.

3. ψσ-Operator

In this part, we have introduced another set operator ψσ in (T, γ, J). This
operator is as like similar of ψ-operator [5, 10], in ideal topological space.
Definition of ψσ-operator is given below:

Definition 7. Let (T, γ, J) be an ideal σ-topological space. An operator ψσ :
℘(T ) → γ is defined as follows:

for every M ∈ ℘(T ), ψσ(M)={p ∈ T : there exists a V ∈ γ(p) such that
V \M ∈ J}.

Observe that (T \M)∗σ = {p ∈ T : V ∩ (T \M) /∈ J for every V ∈ γ(p)}.
This implies

T \ (T \M)∗σ = T \ {p ∈ T : V ∩ (T \M) /∈ J for every V ∈ γ(p)}
= {p ∈ T : ∃V ∈ γ(p) such that V ∩ (T \M) ∈ J}
= {p ∈ T : ∃V ∈ γ(p) such that V \M ∈ J}
= ψσ(M)

Hence ψσ(M) = T \ (T \M)∗σ.

Here we have to find out the value of ψσ(M) of a set in σ-topological space.

Example 3. Let T={p,q,r,}, γ={∅,T,{r},{p,r},{q,r}}, J = {∅, {r}}. Then for
M={p,q}, ψσ(M) = T \ (T \M)∗σ = T \ {r}∗σ = T \ ∅ = T .
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The characteristics of the operator ψσ has been studied in the following results:

Theorem 10. Let (T, γ, J) be an ideal σ-topological space. Then the following
properties hold:
(i) If M ⊂ N , then ψσ(M) ⊂ ψσ(N).
(ii) If M,N ∈ ℘(T ), then ψσ(M) ∪ ψσ(N) ⊂ ψσ(M ∪N).
(iii) If M,N ∈ ℘(T ), then ψσ(M) ∩ ψσ(N) = ψσ(M ∩N).
(iv) IfM ⊂ T , then ψσ(M) = ψσ(ψσ(M)) if and only if (T \M)∗σ ⊂ ((T \M)∗σ)∗σ.
(v) If M ∈ J , then ψσ(M) = T \ T ∗σ.
(vi) If M ⊂ T, J1 ∈ J , then ψσ(M \ J1) = ψσ(M).
(vii) If M ⊂ T, J1 ∈ J , then ψσ(M ∪ J1) = ψσ(M).
(viii) If V ∈ γ, then V ⊂ ψσ(V ).
(ix) If (M \N) ∪ (N \M) ∈ J , then ψσ(M) = ψσ(N).
(x) Intσ

∗
(M) =M ∩ ψσ(M).

Proof. (i)M ⊂ N implies (T \M) ⊃ (T \N). This implies (T \M)∗σ ⊃ (T \N)∗σ (by
Theorem 3 (iii)). This implies T \(T \M)∗σ ⊂ T \(T \N)∗σ. Hence ψσ(M) ⊂ ψσ(N).
(ii) We knowM ⊂M ∪N and N ⊂M ∪N . This implies ψσ(M) ⊂ ψσ(M ∪N) and
ψσ(N) ⊂ ψσ(M ∪N) (by Theorem 10 (i)). Hence ψσ(M) ∪ ψσ(N) ⊂ ψσ(M ∪N).
(iii) Since M ∩N ⊂ M and M ∩N ⊂ N . This implies ψσ(M ∩N) ⊂ ψσ(M) and
ψσ(M ∩N) ⊂ ψσ(N) (by Theorem 10 (i)). Hence ψσ(M ∩N) ⊂ ψσ(M)∩ψσ(N) .

For reverse inclusion let p ∈ ψσ(M)∩ ψσ(N). Then p ∈ ψσ(M) and p ∈ ψσ(N).
Then there exist V,O ∈ γ(p) such that V \M ∈ J and O \ N ∈ J . This implies
(V \M) ∪ (O \N) ∈ J , since J is finite additive. Now

(V \M) ∪ (O \N) = [(V ∩M c) ∪O] ∩ [(V ∩M c) ∪N c]

= (V ∪O) ∩ (M c ∪O) ∩ (V ∪N c) ∩ (M c ∪N c)

⊃ (V ∩O) ∩ (M c ∪N c)

= (V ∩O) \ (M ∩N)

This implies (V ∩ O) \ (M ∩ N) ∈ J , since J is heredity. Since V ∩ O ∈ γ(p)
then p ∈ ψσ(M ∩ N). Thus ψσ(M) ∩ ψσ(N) ⊂ ψσ(M ∩ N). Hence we obtain
ψσ(M) ∩ ψσ(N) = ψσ(M ∩N).
(iv) Let ψσ(M) = ψσ(ψσ(M)). Then T \ (T \ M)∗σ = T \ [T \ ψσ(M)]∗σ =
T \ [T \ {T \ (T \ ψσ(M))}]∗σ. This implies (T \M)∗σ = ((T \M)∗σ)∗σ.

Conversely, suppose that (T \M)∗σ = ((T \M)∗σ)∗σ holds. Then T \(T \M)∗σ =
T \ ((T \M)∗σ)∗σ = T \ [T \ {T \ (T \ψσ(M))}]∗σ. This implies ψσ(M) = T \ (T \
ψσ(M))∗σ = ψσ(ψσ(M)).

(v) We have ψσ(M) = T \ (T \M)∗σ = T \ T ∗σ (by Theorem 3 (xi)).
(vi) We have T \ [T \ (M \J1)]∗σ = T \ [T \ (M ∩Jc

1)]
∗σ = T \ [T ∩ (M c∪J1)]∗σ =

T \ [(T ∩M c)∪ (T ∩ J1)]∗σ = T \ [(T \M)∪ J1]∗σ = T \ (T \M)∗σ (by Theorem 3
(xi)). So ψσ(M \ J1) = ψσ(M).
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(vii) We have T \ [T \ (M ∪J1)]∗σ = T \ [T ∩ (M c∩Jc
1)]

∗σ = T \ [(T \M)\J1]∗σ =
T \ (T \M)∗σ (by Theorem 3 (xi)). So ψσ(M ∪ J1) = ψσ(M).

(viii) Let p ∈ V . Then p /∈ T \ V and hence V ∩ (T \ V ) = ∅ ∈ J . Thus
p /∈ (T \V )∗σ. This implies p ∈ T \ (T \V )∗σ and hence p ∈ ψσ(V ). So V ⊂ ψσ(V ).

(ix) Let J1 = M \ N and J2 = N \M . Since J1 ∪ J2 ∈ J , then by heredity
J1, J2 ∈ J . Also N = (M \ J1) ∪ J2. This implies ψσ(N) = ψσ((M \ J1) ∪ J2). So
ψσ(N) = ψσ((M \J1) and hence ψσ(N) = ψσ(M), (by Theorem 10 (vi) and (vii)).

(x) Let p ∈ M ∩ ψσ(M). Then p ∈ M and p ∈ ψσ(M). Thus p ∈ M and
there exists a Vp ∈ γ(p) such that Vp \M ∈ J implies Vp \ (Vp \M) is a σ∗-open

neighborhood of p and hence p ∈ Intσ
∗
(M). Hence M ∩ ψσ(M) ⊂ Intσ

∗
(M).

Again, if p ∈ Intσ
∗
(M), then there exists a σ∗-open neighborhood Vp \ I of p where

Vp ∈ γ and I ∈ J such that p ∈ Vp \ I ⊂ M which implies Vp \ M ⊂ I and

Vp \M ∈ J . Hence p ∈M ∩ ψσ(M). Hence Intσ
∗
(M) =M ∩ ψσ(M). □

Note 2. We have V ⊂ ψσ(V ), for every V ∈ γ. But there exists a set M which is
not σ-open set but satisfies M ⊂ ψσ(M).

Example 4. Let T={p,q,r,}, γ={∅,T,{r},{p,r},{q,r}}, J = {∅, {r}}. Then for
M={p,q}, ψσ(M) = T \ (T \M)∗σ = T \ {r}∗σ = T \ ∅ = T . Thus M ⊂ ψσ(M)
but M is not a σ-open set.

The example given below shows that ψσ(M) ∪ ψσ(N) = ψσ(M ∪ N) does not
hold in general.

Example 5. In Example 2 we considerM = {r, s} and N = {q, r}. Then ψσ(M) =
T \ {p, q}∗σ = T \ {q} = {p, r, s} and ψσ(N) = T \ {p, s}∗σ = T \ {q, r, s} = {p}.
Therefore ψσ(M) ∪ ψσ(N) = {p, r, s} and ψσ(M ∪N) = T \ {p}∗σ = T \ ∅ = T .
Hence ψσ(M) ∪ ψσ(N) ̸= ψσ(M ∪N).

Definition 8. Let γ be a σ-topological space on a non empty set T . If an ideal J
satisfies the property γ ∩ J = {∅} then the ideal J is called σ-codense ideal.

Theorem 11. Let (T, γ, J) be an ideal σ-topological space. Then the properties
given below are equivalent.
(i) γ ∩ J = {∅}.
(ii) ψσ(∅) = ∅.
(iii) If J1 ∈ J then ψσ(J1) = ∅.

Proof. (i) ⇒ (ii) : Let γ ∩ J = {∅}. Then T = T ∗σ . Then ψσ(∅) = T \ (T \ ∅)∗σ =
T \ T ∗σ = ∅.

(ii) ⇒ (iii) : Let ψσ(∅) = ∅ holds. Then ψσ(J1) = T \ (T \ J1)∗σ = T \ T ∗σ (by
Theorem 3 (xi)) = T \ (T \ ∅)∗σ = ψσ(∅) = ∅.

(iii) ⇒ (i) : Let J1 ∈ J be such that ψσ(J1) = ∅. Now ψσ(J1) = ∅ implies
T \ (T \ J1)∗σ = ∅. This implies T \ T ∗σ = ∅, since J1 ∈ J (by Theorem 3 (xi)).
Thus T = T ∗σ. Hence γ ∩ J = {∅}. □
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4. σ-Compatible Ideal

In this section, we have studied a particular type of ideal and its several features.
This ideal is as like similar of µ-compatible ideal [9] on supra topological space. This
particular type of ideal is:

Definition 9. Let (T, γ, J) be an ideal σ-topological space. We say the σ-structure
is σ-compatible with the ideal J denoted γ ∼ J , if the condition holds: for every
M ⊂ T , if for all p ∈M , there exists V ∈ γ(p) such that V ∩M ∈ J , then M ∈ J .

Theorem 12. Let (T, γ, J) be an ideal σ-topological space. Then γ ∼ J if and only
if ψσ(M) \M ∈ J for every M ⊂ T .

Proof. Suppose γ ∼ J . Observe that p ∈ ψσ(M) \M if and only if p /∈ M and
there exists Vp ∈ γ(p) such that Vp \M ∈ J . Now for each p ∈ ψσ(M) \M and
Vp ∈ γ(p), Vp ∩ (ψσ(M) \M) ∈ J (by heredity) and hence (ψσ(M) \M) ∈ J , since
γ ∼ J .
Conversely, suppose the given condition holds andM ⊂ T and assume that for each
p ∈M , there exists Vp ∈ γ(p) such that Vp∩M ∈ J . Observe that ψσ(T \M)\ (T \
M) = M \M∗σ={p ∈ T : there exists Vp ∈ γ(p) such that p ∈ Vp ∩M ∈ J}. Thus
we have M ⊂ ψσ(T \M) \ (T \M) ∈ J and hence M ∈ J , by heredity of J. □

Example 6. Let T={p,q}, γ={∅,T,{p},{q}}, J = {∅, {p}}. Then ∅∗σ = ∅, {p}∗σ =
∅, {q}∗σ = {q} and {T}∗σ = {q}. Then ψσ(∅) = T \ T ∗σ = {p, q} \ {q} = {p},
ψσ({p}) = T \ (T \{p})∗σ = T \{q}∗σ = T \{q} = {p}, ψσ({q}) = T \ (T \{q})∗σ =
T \ {p}∗σ = T \ ∅ = T , ψσ(T ) = T \ ∅∗σ = T \ ∅ = T . Then we see that ψσ(∅) \ ∅ =
{p} ∈ J , ψσ({q}) \ {q} = T \ {q} = {p} ∈ J , ψσ({p}) \ {p} = {p} \ {p} = ∅ ∈ J
and ψσ(T ) \ T = T \ T = ∅ ∈ J . So γ ∼ J .

Corollary 1. Let (T, γ, J) be an ideal σ-topological space with γ ∼ J . Then
ψσ(ψσ(M)) = ψσ(M) for every M ⊂ T .

Proof. We know ψσ(M) ⊂ ψσ(ψσ(M)). Also since γ ∼ J , then for every M ⊂ T ,
ψσ(M) \M ∈ J . This implies ψσ(M) \M = J1 for some J1 ∈ J . This implies
ψσ(M) ⊂M ∪J1. Then ψσ(ψσ(M)) ⊂ ψσ(M ∪J1) = ψσ(M). Thus ψσ(ψσ(M)) =
ψσ(M). □

Example 7. Consider T={p,q}, γ={∅,T,{p},{q}} and J = {∅, {p}}. Then by Ex-
ample 6, γ ∼ J and ψσ(ψσ(ϕ)) = ψσ(∅), ψσ(ψσ({p})) = ψσ({p}), ψσ(ψσ({q})) =
ψσ(T ) = T = ψσ({q}) and ψσ(ψσ(T )) = ψσ(T )

Newcomb in [11] has definedM = N (mod J), if (M \N)∪(N \M) ∈ J . Further,
he studied several characteristics of M = N (mod J). Here we shall observe that if
M = N (mod J) then ψσ(M) = ψσ(N).
Now we define Baire set in (T, γ, J).
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Definition 10. Let (T, γ, J) be an ideal σ-topological space. A subset M of T is
called a Baire set with respect to γ and J denoted by M ∈ Br(T, γ, J), if there
exists a σ-open set V ∈ γ such that M = V (mod J).

Theorem 13. Let (T, γ, J) be an ideal σ-topological space with γ ∼ J . If V ∪O ∈ γ
and ψσ(V ) = ψσ(O), then V = O (mod J).

Proof. V ∈ γ implies V ⊂ ψσ(V ) and hence V \O ⊂ ψσ(V ) \O = ψσ(O) \O ∈ J .
By heredity of J, V \O ∈ J . Similarly, O \ V ∈ J . Then (V \O)∪ (O \ V ) ∈ J , by
finite additivity of J. So V = O (mod J). □

Clearly, M = N (mod J) is an equivalence relation. In this favour, following
theorem is observable:

Theorem 14. Let (T, γ, J) be an ideal σ-topological space with γ ∼ J . If M,N ∈
Br(T, γ, J) and ψσ(M) = ψσ(N). Then M = N (mod J).

Proof. Let V,O ∈ γ such thatM = V (mod J) and N = O (mod J). Now ψσ(M) =
ψσ(N) and ψσ(N) = ψσ(O) (by Theorem 10 (ix)). Since ψσ(M) = ψσ(V ) implies
that ψσ(V ) = ψσ(O), hence V = O (mod J) (by Theorem 13). Hence M = N
(mod J), by transitivity. □

Theorem 15. Let (T, γ, J) be an ideal σ-topological space.
(i) If N ∈ Br(T, γ, J)\J , then there exists M ∈ γ \{∅} such that N =M (mod J).
(ii) Let γ∩J = {∅}, then N ∈ Br(T, γ, J)\J if and only if there exists M ∈ γ \{∅}
such that N =M (mod J).

Proof. (i) Let N ∈ Br(T, γ, J) \ J , then N ∈ Br(T, γ, J). Now if there does not
existM ∈ γ \{∅} such that N =M (mod J), we have N = ∅ (mod J). This implies
N ∈ J , which is a contradiction.
(ii) Here we shall prove converse part only. Let M ∈ γ \ {∅} such that N = M
(mod J). Then M = (N \ J2) ∪ J1, where J2 = N \M , J1 = M \N both belong
to J . If N ∈ J , then M ∈ J , by heredity and additivity, which contradicts the fact
γ ∩ J = {∅}. □

5. ψσ − C sets

Modak and Bandyopadhyay in [8] have introduced a generalized set with the help
of ψ-operator in ideal topological space. In this part, we have studied a set with
the help of ψσ-operator in (T, γ, J) space. Further, we have studied the properties
of this type of sets.

Definition 11. Let (T, γ, J) be an ideal σ-topological space. A subset M of T is
called a ψσ − C sets, if M ⊂ Clσ(ψσ(M)).
The family of all ψσ-C sets in (T, γ, J) is denoted by ψσ(T, γ).
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Theorem 16. Let (T, γ, J) be an ideal σ-topological space. If M ∈ γ then M ∈
ψσ(T, γ).

Proof. By Theorem 10 (viii), it follows that γ ⊂ ψσ(T, γ). □

Now by the given example we are to show that the reverse inclusion is not true:

Example 8. From Example 4 we get M ∈ ψσ(T, γ) but M /∈ γ.

By the following example, we are to show that any σ-closed in (T, γ, J) may not
be a ψσ − C set.

In the following example, by Cσ(γ) we denote the family of all σ-closed sets in
(T, γ).

Example 9. We consider Example 2. Here M = {q} ∈ Cσ(γ). Then ψσ(M) =
T \ (T \M)∗σ = T \ {p, r, s}∗σ = T \ {q, r, s} = {p}. Hence Clσ(ψσ(M)) = ∩{C :
ψσ(M) ⊂ C, T \ C ∈ γ} = {p}. Therefore M ∈ Cσ(γ) but M /∈ ψσ(T, γ).

Theorem 17. Let {Mα : α ∈ ∆} be a family of non-empty ψσ −C sets in an ideal
σ-topological space (T, γ, J), then

⋃
α∈∆

∈ ψσ(T, γ).

Proof. For each α ∈ ∆, Mα ⊂ Clσ(ψσ(Mα)) ⊂ Clσ(ψσ(
⋃

α∈∆

Mα)). This implies

that
⋃

α∈∆

Mα ⊂ Clσ(ψσ(
⋃

α∈∆

Mα)). Thus
⋃

α∈∆

Mα ∈ ψσ(T, γ). □

6. Conclusion

In this writeup, we have introduced a new topology called σ-topology and de-
fined ideals on that spaces. Using this idea, we have discussed relationship of various
operators namely ()∗σ operator, ψσ-operator. The result of this writeup can be ex-
tended to σ-connected sets, σ-compact sets, σ-paracompact sets. The separation
axioms can also be introduced in this space. The other properties of ψσ-sets can be
found and one can introduce some operators on this type of sets to the development
of mathematical knowledge.
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6. Janković, D., Hamlett, T.R., New topologies from old via ideals, Amer. Math. Monthly, 97

(1990), 295-300. https://doi.org/10.1080/00029890.1990.11995593
7. Kuratowski, K., Topology, Vol. 1, Academic Press, New York, 1966.

8. Modak, S., Bandhyopadhyay, C., A note on ψ-operator, Bull. Malyas. Math. Sci. Soc., 30(1)

(2007), 43-48.
9. Modak, S., Mistry, S., Ideal on supra topological space, Int. Journal of Math. Analysis, 6(1)

(2012), 1-10.

10. Natkaniec, T., On I-continuity and I-semicontinuity points, Math. Slovaca, 36(3) (1986), 297-
312.

11. Newcomb, R.L., Topologies Which are Compact Codulo an Ideal, Ph.D. Dissertation, Univ.

of Cal. at Santa Barbara, 1967.
12. Nj̊astad, O., On some classes of nearly open sets, Pacific J. Math., 15(3) (1965), 961-970.

https://doi.org/10.2140/pjm.1965.15.961

13. Vaidyanathaswamy, R., Set Topology, Chelsea Publishing Co., New York, 1960.


	1. Introduction
	2. Preliminaries
	3. 0=x"01200=x"011B-Operator
	4. 0=x"011B-Compatible Ideal
	5. 0=x"01200=x"011B-C sets
	6. Conclusion
	References

