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Introduction 

Modelling the prey-predator interaction of a simple 
ecosystem is one of the important applications of the 
nonlinear system of differential equations in 
mathematical biology and ecology. The dynamics of such 
a system are observed by using the population data which 
is obtained by the interaction between a pair of prey-
predator. The classical predator-prey system is known as 
Lotka-Volterra model which is first studied by Lotka [1] 
and Volterra [2]. For implementing more realistic 
assumptions in prey-predator model, a lot of 
modifications and extensions were introduced by several 
researchers [3-10]. 

As is well known, differential and difference equations 
are used in the theory of dynamical population models. 
Differential equations are used to describe continuous-
time models while the discrete-time models are described 
by difference equations. Recent works showed that, 
researchers are more interested in discrete-time models 
than continuous-time models since the dynamics of 
discrete time models can produce a richer set of patterns. 
Additionally, many studies have proposed that the 
mathematical model of population dynamics becomes 
more suitable and practical when discrete-time equations 
are used for modelling. Besides they have the basic 
characteristics of the corresponding continuous-time 
models, they also provide a significant decrease of 
numerical simulation duration. Moreover, the discrete 
time models are more suitable for populations with 
nonoverlapping generations. In fact, nonlinear continuous 
models are discretized since nonlinear systems generally 
do not have analytic solutions expressible in terms of a 
finite representation of elementary functions. Authors in 

[5-11] analyzed dynamical analysis of different types of 
discrete-time predator-prey systems.  

In [12], the discrete-time prey-predator model 
represented by the following nonlinear system of 
difference equations is studied: 

 
𝑥𝑛+1 = 𝜇𝑥𝑛(1 − 𝑥𝑛) − 𝑥𝑛𝑦𝑛   
      (1) 
𝑦𝑛+1 = 𝑦𝑛(1 − 𝛼) + 𝛽𝑥𝑛𝑦𝑛 
 
In (1), 𝑥𝑛 and 𝑦𝑛 represent prey and predator 

population densities in the 𝑛𝑡ℎ generation, respectively. 
The parameter 𝜇 is the intrinsic growth rate of the prey 
population with carrying ability one in the absence of 
predator. While 𝛼 reflects the predators death rate; 𝛽 
denotes the growth rate of predator in the presence of the 
prey. All the parameters 𝛼, 𝛽 and 𝜇 have positive values. 

 
In this study, system (1) is improved with Allee effect 

and immigration on prey species and the following 
nonlinear system of difference equations is held: 

 

𝑥𝑡+1 = 𝛿𝑥𝑡(1 − 𝑥𝑡) − 𝑥𝑡𝑦𝑡

𝑥𝑡

𝑥𝑡 + 𝑚
+ 𝑠 

      (2) 
𝑦𝑡+1 = 𝑦𝑡(1 − 𝛼) + 𝛽𝑥𝑡𝑦𝑡 
In (2), 𝛿 is the intrinsic growth rate of prey population 

𝑥𝑡, 𝛼 and 𝛽 are the death rate of predator and the growth 
rate of predator in the presence of the prey.  

The parameter 𝑠 > 0 represents the immigration 
parameter. Prey immigration is the number of individuals 
of the same species added to the prey population from 
another place in a certain period of time and it increases 
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the size of the population of prey. The immigration factor 
is an effect that makes the predator-prey population 
model more realistic [13-17]. So, many researchers 
studied the role of immigration and its impact on 
population dynamics. Detailed investigations relating to 
immigration may be found in the papers [18-22].  

The term  
 

𝑥𝑡

𝑥𝑡 + 𝑚
 

 
is called Allee effect where 𝑚 > 0 is Allee constant. 

Allee effects are encountered among many species such 
as mammals, plants, insects etc. It describes a positive 
correlation between the density of the population and the 
per capita growth rate. It means that, as the population 
gets smaller survivals of individuals and reproductive 
diversity decrease. In [23], it is pointed out that on 
different prey predator systems according to different 

mechanisms the impact of the Allee effects can vary, too. 
In [24] and [25], it is shown that a ratio dependent prey 
predator model including Allee effect removes the 
possibility of population cycles. In [26] and [27], a new 
population model and a Lotka-Volterra commensal 
symbiosis model with Allee effect are studied, 
respectively. Allee effect and the immigration parameter 
have an important role in increasing the realism of the 
population models, besides they help to gain a more 
accurate description of the model. 
This study is organized as follows: In Section 2, we discuss 
the existence and stability of fixed points of the system (2) 
and we give some numerical examples. In section 3, the 
existence of period-doubling bifurcation is shown with the 
help of bifurcation theory and center manifold theorem. 
The numerical simulation results are illustrated to confirm 
our analytical results and display the irregular dynamical 
behaviors of system (2). 
 

 
The Existence and Stability of Fixed Points 

 
In this section, the existence of fixed points is studied and the stability properties for system (2) is investigated. With 

the help of a simple calculation, it can be shown that the following system 
 

𝛿𝑥(1 − 𝑥) − 𝑥𝑦
𝑥

𝑥 + 𝑚
+ 𝑠 = 𝑥                                                                                                                                          (3) 

 
 𝑦(1 − 𝛼) + 𝛽𝑥𝑦 =  𝑦  
 
has three fixed points: 
 

𝑃1 = (
𝛿 − 1 + √(𝛿 − 1)2 + 4𝛿𝑠

2𝛿
, 0) 

 

𝑃2 = (−
−𝛿 + 1 + √(𝛿 − 1)2 + 4𝛿𝑠

2𝛿
, 0) 

and  
 

𝑃3 = (𝑥∗, 𝑦∗) = (
𝛼

𝛽
 ,

(𝛼2𝛽 + 𝛼𝑚𝛽2 − 𝛼3 − 𝛼2𝑚𝛽)𝛿

𝛼2𝛽
+

𝑠𝛼𝛽2 + 𝑠𝑚𝛽3 − 𝛼2𝛽 − 𝛼𝑚𝛽2

𝛼2𝛽
)                   (4) 

 
𝑃3 is the unique positive coexistence fixed point of the system (2) where the parameters 𝛼, 𝛽, 𝛿, 𝑚, 𝑠  are all positive, 

𝛽 − 𝛼 < 0 and (𝑠𝛽 − 𝛼) > 0. We focus on the coexistence fixed point 𝑃3 when studying stability analysis of the system 
(2). 

It is well known that the local stability of the discrete-time system (2) is determined by calculating the eigenvalues of 
the Jacobian matrix which is evaluated at the coexistence fixed point 𝑃3. The Jacobian matrix of system (2) at 𝑃3  is given as 
follows: 

 

𝐽(𝑃3) = [
𝐽11 𝐽12

𝐽21 𝐽22
]                                                                                                                                                                 (5) 

 
where 

𝐽11 = −
𝛿𝛼3 − 𝛼2𝛽 + (𝛿𝑚 − 2𝑚 + 𝑠)𝛽2𝛼 + 2𝑠𝑚𝛽3

𝛽(𝛼 + 𝑚𝛽)𝛼
 

 

𝐽12 = −
𝛼2

𝛽(𝛼 + 𝑚𝛽)
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𝐽21 =
(𝛼(𝛼 + 𝑚𝛽)(𝛽 − 𝛼))𝛿 + 𝛽(𝑠𝛽 − 𝛼)(𝛼 + 𝑚𝛽)

𝛼2
 

 
𝐽22 = 1 
 
The matrix 𝐽(𝑃3) yields the characteristic equation: 
 

𝐹(𝜆) = 𝜆2 − 𝑡𝑟(𝐽(𝑃3))𝜆 + 𝑑𝑒𝑡(𝐽(𝑃3))                                                                                                                             (6) 

 
where  
 

 𝑡𝑟(𝐽(𝑃3)) =
𝛿𝛼3 − 2𝛼2𝛽 + (𝑠 − 3𝑚 + 𝛿𝑚)𝛽2𝛼

𝛽(𝛼 + 𝑚𝛽)𝛼
 +

2𝑠𝑚𝛽3

𝛽(𝛼 + 𝑚𝛽)𝛼
                                                                          (7) 

 
and 
 

𝑑𝑒𝑡(𝐽(𝑃3)) =
−𝛿𝛼3 + (−𝛽 − 𝛿 + 𝛿𝛽 − 𝛿𝑚𝛽)𝛼2

𝛽(𝛼 + 𝑚𝛽)
+

(𝛽 − 𝑚𝛽2 + 𝑠𝛽2 + 𝛿𝑚𝛽2)α

𝛽(𝛼 + 𝑚𝛽)

+
(−𝛿𝑚𝛽2 + 2𝑚𝛽2 − 𝑠𝛽2 + 𝑠𝑚𝛽3)𝛼 − 2𝑠𝑚𝛽3

𝛽(𝛼 + 𝑚𝛽)𝛼
                                                                            (8) 

 
Definition 2.1. Let 𝜆1 and 𝜆2 are the roots of the characteristic polynomial 𝐹(𝜆) = 𝜆2 + 𝐵𝜆 + 𝐶,  𝐵, 𝐶 ∈ ℝ. Then the 

fixed point 𝑃3  of the system (3) is called  
i) sink if |𝜆1| < 1 and |𝜆2| < 1, 
ii) source if |𝜆1| > 1 and |𝜆2| > 1, 
iii) saddle if |𝜆1| < 1 and |𝜆2| > 1 or |𝜆1| > 1 and |𝜆2| < 1. 
iv) non-hyperbolic if  |𝜆1| = 1 or |𝜆2| = 1. 
 
Definition 2.2. A fixed point is locally asymptotically stable if |𝜆1| < 1 and |𝜆2| < 1.  
With the help of the following lemma, the stability of the coexistence fixed point of the system (2) is investigated. 
 
Lemma 2.1. [28] Assume 𝐹(𝜆) = 𝜆2 + 𝐵𝜆 + 𝐶, where B and C are two real constants and let 𝐹(1) > 0. Suppose that 

𝜆1 and 𝜆2 are two roots of 𝐹(𝜆) = 0. Then the following statements hold: 
i) |𝜆1| < 1 and |𝜆2| < 1 if and only if 𝐹(−1) > 0 and 𝐶 < 1, 
ii) |𝜆1| > 1 and |𝜆2| > 1 if and only if 𝐹(−1) > 0 and 𝐶 > 1, 
iii) |𝜆1| > 1 and |𝜆2| < 1 if and only if 𝐹(−1) < 0, 
iv) 𝜆1 and 𝜆2 are a pair of conjugate complex roots and  |𝜆1| = |𝜆2| = 1 if and only if 
 𝐵2 −  4𝐶 < 0 and 𝐶 = 1. 
 
By using Lemma 2.1, we determine stability conditions for the fixed point 𝑃3  of the system (2). 
 

𝐹(1) =
𝑠𝛽2 + 𝛽𝛿𝛼 − 𝛽𝛼 − 𝛿𝛼2

𝛽
> 0                                                                                                                                (9) 

 

If conditions  𝛿 < 𝛿3, 𝛽 < 𝛼 and 𝑠 >
𝛼

𝛽
 hold where 

𝛿3 =
(𝑠𝛽 − 𝛼)𝛽

𝛼(−𝛽 + 𝛼)
  

 

𝐹(−1) = (
−𝛼3 + (−2 + 𝛽 − 𝑚𝛽)𝛼2

𝛽(𝛼 + 𝑚𝛽)
+

𝑚β(𝛼 − 2)

(𝛼 + 𝑚𝛽)
) 𝛿 +

4𝛼2 + 6𝛼𝑚β − 4𝑠𝑚𝛽2

(𝛼 + 𝑚𝛽)𝛼

+
−2𝑠𝛼β + 𝑠𝛼2β + 𝑠𝛼𝛽2𝑚 − 𝛼2(𝛼 + 𝑚𝛽)

(𝛼 + 𝑚𝛽)𝛼
                                                                                   (10) 

 
We define 𝛿1 as a root of 𝐹(−1) = 0 where 
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𝛿1 =
(−𝛼2 + (4 + 𝑠𝛽 − 𝑚𝛽)α)𝛽

(𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 − 𝛼𝑚𝛽2 + 2𝑚𝛽2)
 +

((6𝑚𝛽 − 2𝑠𝛽 + 𝑠𝑚𝛽2)𝛼 − 4𝑠𝑚𝛽2)𝛽

𝛼(𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 − 𝛼𝑚𝛽2 + 2𝑚𝛽2)
              (11)  

 
Let 𝐾 is the coefficient of  𝛿 in 𝐹(−1) where 
 

𝐾 =
−𝛼3 + (−2 + 𝛽 − 𝑚𝛽)𝛼2

𝛽(𝛼 + 𝑚𝛽)
+

𝑚β(𝛼 − 2)

(𝛼 + 𝑚𝛽)
  

 

𝐹(0) = (
−𝛼3 + (−1 + 𝛽 − 𝑚𝛽)𝛼2

𝛽(𝛼 + 𝑚𝛽)
+

𝑚β(𝛼 − 1)

(𝛼 + 𝑚𝛽)
) 𝛿 +

−2𝑠𝑚𝛽2 + 2𝛼𝑚β − 𝑠𝛼β

(𝛼 + 𝑚𝛽)𝛼

+
α + 𝑠αβ + 𝑠𝛽2𝑚 − 𝛼2 − αβ𝑚

(𝛼 + 𝑚𝛽)
                                                                                                       (12) 

 
Let us 𝛿2 is the root of  𝐹(0) − 1 = 0 where  
 

𝛿2 =
(−𝛼2 + (𝑠𝛽 − 𝑚𝛽)α)𝛽

(𝛼3 + (1 − 𝛽 + 𝑚𝛽)𝛼2 − 𝛼𝑚𝛽2 + 𝑚𝛽2)
+

((𝑚𝛽 − 𝑠𝛽 + 𝑠𝑚𝛽2)𝛼 − 2𝑠𝑚𝛽2)𝛽

𝛼(𝛼3 + (1 − 𝛽 + 𝑚𝛽)𝛼2 − 𝛼𝑚𝛽2 + 𝑚𝛽2)
                    (13) 

 
We assume that 𝑆 is the coefficient of 𝛿 in  𝐹(0) − 1  where 
 

𝑆 =
−𝛼3 + (−1 + 𝛽 − 𝑚𝛽)𝛼2

𝛽(𝛼 + 𝑚𝛽)
+

𝑚(𝛼 − 1)

(𝛼 + 𝑚𝛽)
                                                                                                                (14) 

 
When the sign table according to 𝛿 is examined, we conclude the following results: 
 

Theorem 2.1. Assume that 𝛿 < 𝛿3, 𝛼 > 𝛽 and  𝑠 >
𝛼

𝛽
 . Then for the coexistence fixed point 𝑃3 of the system (2) the 

following hold true: 
i) 𝑃3 is a sink if the following condition holds  
 𝐾 < 0, 𝑆 < 0 and 𝛿2 < 𝛿 < 𝑚𝑖𝑛{𝛿1, 𝛿3} 
ii) 𝑃3 is a source if the following condition holds 
𝐾 < 0, 𝑆 < 0 and 𝛿 < 𝑚𝑖𝑛{𝛿1, 𝛿2, 𝛿3} 
iii) 𝑃3 is a saddle if the following condition holds 
𝐾 < 0, 𝑆 < 0 and 𝛿1 < 𝛿 < 𝛿3 
iv) Assume that 𝜆1 and 𝜆2 are roots of 𝐹(𝜆) then 𝜆1 = −1 and |𝜆2| ≠ 1 if and only if  
𝐾 < 0, 𝑆 < 0, 𝛿 = 𝛿1 and  
 

 𝛿2 ≠
𝑄

𝑃
,
𝑄

𝑃
+

2𝛼𝛽(𝑚𝛽 + 𝛼)

𝑃
 

where 
𝑄 = (−2𝑠𝑚𝛽 − 𝑠𝛼𝛽 + 𝑠𝛼2𝛽 + 𝛼𝑠𝑚𝛽2 − 𝛼3 − 𝛼2𝑚𝛽 + 𝛼𝑚𝛽)𝛽 

 
𝑃 = (𝑚𝛽2 + 𝛼2(1 − 𝛽) − 𝛼𝑚𝛽(𝛽 − 𝛼) + 𝛼2(1 + 𝛼𝑚𝛽))𝛼. 
 
Example 2.1. Taking parameters 𝛼 = 0.8, 𝛽 = 0.6, 𝑚 = 0.2, 𝛿 = 0.3, 𝑠 = 1.8 and initial condition (𝑥0, 𝑦0) = (1.3, 1), 

the coexistence fixed point of the system (2) is obtained as 𝑃3 = (1.333333333, 0287500000). Using these parameter 
values, we can get below values: 

𝛿1 = 0.5230142566,  𝛿2 = −0.7167597768 , 𝛿3 = 1.050000000, K= −2.846376811<0, S= −1.556521739 <
0. Characteristic polynomial of the system (2) at fixed point  𝑃3 is obtained as 𝐹(𝜆) = 𝜆2 − 0.2173913044𝜆 −
0.5826086952 and the roots of the characteristic polynomial are 𝜆1 = 0.8796842643 and 𝜆2 = −0.6622929599 that 
verify |𝜆1| < 1 and |𝜆2| < 1. Also, the fixed point 𝑃3 = (1.333333333, 0287500000) of the system (2) is local 
asymptotically stable for 0 <  𝛿 < 0.5230142566  which shows the correctness of the Theorem 2.1. From Figure 1,  (a)-
(b) fixed point 𝑃3  of the system (2) is local asymptotically stable that graphs represent 𝑥𝑡 and 𝑦𝑡 populations.  If the 
parameter 𝛿 = 0.8 is selected, the fixed point (1.333333333,0.09583333333)  of the system (2) is unstable. For this 
situation, phase portrait of the prey and predator densities are exhibited in Figure 1 (c)-(d). 
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(a) 

 
(b) 

 

(c) 

 
(d) 

 

Figure 1. (a)-(b) A stable fixed point of the system (2) for 𝛼 = 0.8, 𝛽 = 0.6, 𝑚 = 0.2, 𝛿 = 0.3, 𝑠 = 1.8 and initial 

condition (𝑥0, 𝑦0) = (1.3, 1).  (c)-(d) An unstable fixed point (1.333333333,0.09583333333)  of the system (2) for 

𝛼 = 0.8, 𝛽 = 0.6, 𝑚 = 0.2, 𝛿 = 0.8, 𝑠 = 1.8 and initial condition (𝑥0, 𝑦0) = (1.3, 1). 

 

Period-Doubling Bifurcation 
 
When it comes to case of dynamical systems, various types of bifurcation can occur as a result of changing stability of 

a fixed point, in other words, when a particular parameter exceeds its critical value. Depending on the bifurcation, various 
dynamical properties of the system under consideration can be studied. In this section, we investigate the parametric 
conditions for existence and directions of period-doubling bifurcation for the unique positive fixed point of system (2). 
When a discrete dynamical system goes through a period-doubling bifurcation, a small change in a parameter value in the 
system’s equations causes a new behavior with twice the period of the original system undergoes. 

In references [29-38], similar type of bifurcation analyses for discrete-time dynamical systems are studied. 
We discuss period-doubling bifurcation of unique positive fixed point 𝑃3  of the system (2) by using bifurcation theory and 
the center manifold theorem and taking 𝛿 as a bifurcation parameter. We suppose the condition 

 
(−𝛿𝛼3 + 2𝛼2𝛽 + (3𝑚 − 𝑠 − 𝛿𝑚)𝛽2𝛼 − 2𝑠𝑚𝛽3)2

> [−4𝛿𝛼4 + (−4𝛽 − 4𝛿 + 4𝛿𝛽 − 4𝛿𝑚𝛽)𝛼3 + (4𝛽 − 4𝑚𝛽2 + 4𝑠𝛽2 + 4𝛿𝑚𝛽2)𝛼2

+ (−4𝛿𝑚𝛽2 + 8𝑚𝛽2 − 4𝑠𝛽2 + 4𝑠𝑚𝛽3)𝛼 − 8𝑠𝑚𝛽3](𝛽(𝛼 + 𝑚𝛽)𝛼)                                     (15) 
 
holds.  
Then, 𝜆1 and 𝜆2 be distinct real roots of (6). Also, we assume that 
 

𝛿 =
(−𝛼2 + (4 + 𝑠𝛽 − 𝑚𝛽)α)𝛽

(𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 − 𝛼𝑚𝛽2 + 2𝑚𝛽2)
+

((6𝑚𝛽 − 2𝑠𝛽 + 𝑠𝑚𝛽2)𝛼 − 4𝑠𝑚𝛽2)𝛽

𝛼(𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 − 𝛼𝑚𝛽2 + 2𝑚𝛽2)
              (16) 
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Then, the roots of equation (6) are 𝜆1 = −1 and  
 

𝜆2 = −
−4𝛼3 + (−4𝑚𝛽 + 2𝑠𝛽 + 3𝛽 − 2)𝛼2

𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 + (2 − 𝛼)𝑚𝛽2
                                                                                                            (17) 

 
Furthermore, |𝜆2| ≠ 1 under the following conditions: 
 

−
−4𝛼3 + (−4𝑚𝛽 + 2𝑠𝛽 + 3𝛽 − 2)𝛼2

𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 + (2 − 𝛼)𝑚𝛽2
+

(3𝑚𝛽2 + 2𝑠𝑚𝛽2 − 𝑠𝛽2)𝛼 − 𝛽3𝑠𝑚 − 2𝑚𝛽2

𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 + (2 − 𝛼)𝑚𝛽2
≠ ±1                   (18) 

 
𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 + (2 − 𝛼)𝑚𝛽2 ≠ 0    
 
Let us consider period-doubling set as follows 
 
Ω𝑃𝐷𝐵 = {(𝛼, 𝛽, 𝛿, 𝑠, 𝑚) ∈ ℝ+

5 : 𝐾, 𝑆 < 0 , (16), (17)𝑎𝑛𝑑(18) 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑}. 
 
For the aim of discussing the period-doubling bifurcation for the system (2) at its unique positive coexistence fixed point  

𝑃3 , we take 𝛿 as bifurcation parameter. Then, variation of parameters 𝛼, 𝛽, 𝛿, 𝑚 and 𝑠 in small neighborhood of Ω𝑃𝐷𝐵 gives 
emergence of period-doubling bifurcation. Furthermore, we set 

 

𝛿𝐹 =
(−𝛼2 + (4 + 𝑠𝛽 − 𝑚𝛽)α)𝛽

(𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 − 𝛼𝑚𝛽2 + 2𝑚𝛽2)
+

((6𝑚𝛽 − 2𝑠𝛽 + 𝑠𝑚𝛽2)𝛼 − 4𝑠𝑚𝛽2)𝛽

𝛼(𝛼3 + (2 − 𝛽 + 𝑚𝛽)𝛼2 − 𝛼𝑚𝛽2 + 2𝑚𝛽2)
              (19)  

 
Then, for (𝛼, 𝛽, 𝛿𝐹 , 𝑚, 𝑠) ∈ Ω𝑃𝐷𝐵, system (2) can be expressed by the following two-dimensional map: 
 

(𝑋
𝑌

) → (
𝛿𝐹𝑋(1 − 𝑋) − 𝑋𝑌

𝑋

𝑋 + 𝑚
+ 𝑠

𝑌(1 − 𝛼) + 𝛽𝑋𝑌
)                                                                                                                       (20) 

 

Let us assume that 𝛿̅ be a small bifurcation parameter such that |𝛿̅| ≪ 1, then corresponding perturbed map for (20) 

is given by: 
 

(𝑋
𝑌

) → (
(𝛿𝐹 + 𝛿̅)𝑋(1 − 𝑋) − 𝑋𝑌

𝑋

𝑋 + 𝑚
+ 𝑠

𝑌(1 − 𝛼) + 𝛽𝑋𝑌
)                                                                                                           (21) 

 
Then, map (21) has unique fixed point 

  

(�̅�, �̅�) = (
𝛼

𝛽
 ,

(𝛼2𝛽 + 𝛼𝑚𝛽2 − 𝛼3 − 𝛼2𝑚𝛽)(𝛿𝐹 + 𝛿̅)

𝛼2𝛽
+

𝑠𝛼𝛽2 + 𝑠𝑚𝛽3 − 𝛼2𝛽 − 𝛼𝑚𝛽2

𝛼2𝛽
) 

 
For translating the fixed point to the origin, the transformations   𝑥 = 𝑋 − �̅� ,  𝑦 = 𝑌 − �̅�  is done at point 
(𝑥, 𝑦) = (0,0), then we get the following map: 
 

(
𝑥
𝑦) → (

𝑎11 𝑎12

𝑎21 𝑎22
) (

𝑥
𝑦) + (

𝑔1(𝑥, 𝑦, 𝛿̅)

𝑔2(𝑥, 𝑦, 𝛿̅)
)                                                                                                                        (22) 

 
where  
 

𝑔1(𝑥, 𝑦, 𝛿̅) = 𝑎13𝑥2 + 𝑎14𝑥𝑦 + 𝑏1𝑥3 + 𝑏2𝑥2𝑦 + 𝑑1𝑥𝛿̅ + 𝑑2𝑥2𝛿̅ + 𝑂 ((|𝑥| + |𝑦| + |𝛿̅|)
4
) 

 

𝑔2(𝑥, 𝑦, 𝛿̅) = 𝑎24𝑥𝑦 + 𝑂 ((|𝑥| + |𝑦| + |𝛿̅|)
4

) 

 
where 
 

𝑎13 = −
(𝛿𝐹 + 𝛿̅)𝛼4 + (2𝑚𝛿𝐹 + 2𝑚𝛿̅)𝛽𝛼3

(𝛼 + 𝛽𝑚)2𝛼2
+ +

𝑚2𝛼2𝛿̅𝛽2

(𝛼 + 𝛽𝑚)2𝛼2
+

(𝑚2𝛿𝐹 − 𝑚2)𝛽3𝛼 + 𝑚2𝑠𝛽4

(𝛼 + 𝛽𝑚)2𝛼2
                   (23) 
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𝑎14 =
(𝛼 + 2𝛽𝑚)𝛼

(𝛼 + 𝛽𝑚)2
                                        

 

𝑏1 =
𝑚2𝛽3(−𝛿𝐹𝛼2 + (−𝛽 + 𝛽𝛿𝐹)𝛼 + 𝛽2𝑠)

𝛼2(𝛼 + 𝛽𝑚)3
    

 

𝑏2 = −
𝛽3𝑚2𝑦

(𝛼 + 𝛽𝑚)3
 

 

𝑑1 = −
(𝛽𝛼𝑚(−𝛽 + 2𝛼) − 𝛼2(𝛽 + 2𝛼))

𝛽𝛼(𝛼 + 𝛽𝑚)
      

 

𝑑2 = −
2𝛽𝛼3𝑚 + 𝛼4 + 𝛼2𝛽2𝑚2

(𝛼 + 𝛽𝑚)2𝛼2
 

 
𝑎24 = 𝛽 
For converting the coefficient matrix 
 

 𝐴 = (
𝑎11 𝑎12

𝑎21 𝑎22
)  

in map (22) into normal form, the following translation is used 
 

(
𝑥
𝑦) = 𝑇 (

𝑢
𝑣

)                                                                                                                                                                          (24)  

 
where  
 

𝑇 = (
𝑎12 𝑎12

−1 − 𝑎11 𝜆2 − 𝑎11
)                                                                                                                                              (25) 

 
be an invertible matrix. From (22) and (24), we obtain 
 

(
𝑢
𝑣

) = (
−1 0
0 𝜆2

) (
𝑢
𝑣

) + (
𝑔3(𝑥, 𝑦, 𝛿̅)

𝑔4(𝑥, 𝑦, 𝛿̅ )
)                                                                                                                          (26) 

 
where 
 

𝑔3(𝑢, 𝑣, 𝛿̅) = −
(−𝜆2 + 𝑎11)(𝑎13 + 𝑑2𝛿)̅̅ ̅

𝑎12(𝜆2 + 1)
𝑥2 −

(−𝜆2 + 𝑎11)𝑎14 + 𝑎12𝑎24

𝑎12(𝜆2 + 1)
𝑥𝑦 −

(−𝜆2 + 𝑎11)𝑏1

𝑎12(𝜆2 + 1)
𝑥3

−
(−𝜆2 + 𝑎11)𝑏2

𝑎12(𝜆2 + 1)
𝑥2𝑦 −

(−𝜆2 + 𝑎11)𝑑1𝛿̅

𝑎12(𝜆2 + 1)
𝑥 + O ((|𝑢| + |𝑣| + |𝛿̅|)

4
) 

 

𝑔4(𝑢, 𝑣, 𝛿̅) =
(1 + 𝑎11)(𝑎13 + 𝑑2𝛿̅)

𝑎12(𝜆2 + 1)
𝑥2 +

(1 + 𝑎11)𝑎14 − 𝑎12𝑎24

𝑎12(𝜆2 + 1)
𝑥𝑦 +

(1 + 𝑎11)𝑏1

𝑎12(𝜆2 + 1)
𝑥3 +

(1 + 𝑎11)𝑏2

𝑎12(𝜆2 + 1)
𝑥2𝑦

+
(1 + 𝑎11)𝑑1𝛿̅

𝑎12(𝜆2 + 1)
𝑥 + O ((|𝑢| + |𝑣| + |𝛿̅|)

4
) 

 
𝑥 = 𝑎12(𝑢 + 𝑣),   
 
𝑦 = −(1 + 𝑎11)𝑢 + (𝜆2 − 𝑎11)𝑣. 
In order to apply the center manifold theorem, we assume that 𝑊𝑐(0,0,0) be the center manifold of (26) evaluated at 

(0,0) in a small neighborhood of 𝛿̅ = 0. We know  
𝑊𝑐(0) = {(𝑥, 𝑦) ∈ 𝑅𝑐 × 𝑅𝑠|𝑦 = ℎ(𝑥), |𝑥| < 𝛿, ℎ(0) = 0, ℎ′(0) = 0}  
 
then 𝑊𝑐(0,0,0) can be approximated as follows: 
 

𝑊𝑐(0,0,0) = {(𝛼, 𝛽, 𝛿̅) ∈ 𝑹3: 𝑣 = ℎ(𝑢) = 𝑚1𝑢2 + 𝑚2𝑢𝛿̅ + 𝑚3𝛿̅2}, 
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where 
 

𝑚1 = (
𝑎12𝑎14

𝜆2
2 − 1

) 𝑎11
2 + 𝑎12𝑎11 (

𝑎12(𝑎24 − 𝑎13) + 2𝑎14

𝜆2
2 − 1

) + 𝑎12 (
𝑎14 + 𝑎12(𝑎24 − 𝑎13)

𝜆2
2 − 1

) 

 

𝑚2 = −
(𝑎11 + 1)𝑑1

(𝜆2 + 1)2
 

 
𝑚3 = 0 
 
Therefore, the map is restricted to the center manifold 𝑊𝑐(0,0,0) is given by 
 

𝐹: 𝑢 ⟶ −𝑢 + 𝑘1𝑢2 + 𝑘2𝑢𝛿̅ + 𝑘3𝑢2𝛿̅2 + 𝑘4𝑢𝛿̅2 + 𝑘5𝑢3 + 𝑂 ((|𝑢| + |𝛿̅|)
4

)                                                     (27) 

 
where  
 

𝑘1 = −
(𝑎11 − 𝜆2)𝑎12𝑎13

𝜆2 + 1
 + (−

(𝑎11 − 𝜆2)𝑎14

𝑎12(𝜆2 + 1)
−

𝑎24

𝜆2 + 1
) (−1 − 𝑎11)𝑎12 

 

𝑘2 = −
(𝑎11 − 𝜆2)𝑑1

𝜆2 + 1
 

 

𝑘3 =
(−

(−𝜆2 + 𝑎11)𝑎14

𝑎12(𝜆2 + 1) −
𝑎24

𝜆2 + 1
) (1 + 𝑎11)2𝑑1𝑎12

(𝜆2 + 1)2

− (
(−

(−𝜆2 + 𝑎11)𝑎14

𝑎12(𝜆2 + 1) −
𝑎24

𝜆2 + 1
)

(𝜆2 + 1)2
) (

(𝜆2 − 𝑎11)(1 + 𝑎11)𝑑1𝑎12

(𝜆2 + 1)2
)

−

(−𝜆2 + 𝑎11)𝑑1 (
𝑎12𝑎14

−1 + 𝜆2
2) 𝑎11

2

𝜆2 + 1
−

(−𝜆2 + 𝑎11)𝑑1𝑎12
2 (

(𝑎24 − 𝑎13) + 2𝑎14

−1 + 𝜆2
2 ) 𝑎11

𝜆2 + 1

−

(−𝜆2 + 𝑎11)𝑑1𝑎12 (
𝑎14 + 𝑎12(𝑎24 − 𝑎13)

−1 + 𝜆2
2 )

𝜆2 + 1
+

2(−𝜆2 + 𝑎11)𝑎12𝑎13(1 + 𝑎11)𝑑1

(𝜆2 + 1)3

−
(−𝜆2 + 𝑎11)𝑎12𝑑2

𝜆2 + 1
 

 

𝑘4 =
(−𝜆2 + 𝑎11)𝑑1

2(1 + 𝑎11)

(𝜆2 + 1)3
 

 

𝑘5 = (−
(−𝜆2+𝑎11)𝑎14

𝑎12(𝜆2+1)
−

𝑎24

𝜆2+1
) (−1 − 𝑎11)𝑎12 ((

𝑎12𝑎14

−1+𝜆2
2 ) 𝑎11

2 + 𝑎12 (
2𝑎14+𝑎12(𝑎24−𝑎13)

−1+𝜆2
2 ) 𝑎11 +

𝑎12 (
𝑎12(𝑎24−𝑎13)+𝑎14

−1+𝜆2
2 )) + (−

(−𝜆2+𝑎11)𝑎14

𝑎12(𝜆2+1)
−

𝑎24

𝜆2+1
) (𝜆2 − 𝑎11) (𝑎12 (

𝑎14

−1+𝜆2
2) 𝑎11

2 + 𝑎12 (
2𝑎14+𝑎12(𝑎24−𝑎13)

−1+𝜆2
2 ) 𝑎11 +

𝑎12 (
𝑎14+𝑎12(𝑎24−𝑎13)

−1+𝜆2
2 )) 𝑎12 −

(−𝜆2+𝑎11)𝑎12𝑏2(−1−𝑎11)

𝜆2+1
−

(−𝜆2+𝑎11)𝑎12
2 𝑏1

𝜆2+1
−

2(−𝜆2+𝑎11)𝑎12𝑎13(𝑎12(
𝑎14

−1+𝜆2
2)𝑎11

2 )

𝜆2+1
−

2(−𝜆2+𝑎11)𝑎11𝑎12
2 𝑎13

𝜆2+1

(
2𝑎14+𝑎12(𝑎24−𝑎13)

−1+𝜆2
2 )

𝜆2+1
−

𝑎12(
𝑎14+𝑎12(𝑎24−𝑎13)

−1+𝜆2
2 )

𝜆2+1
.  

Next, the following two nonzero real numbers are defined: 
 

𝑛1 = (
𝜕2𝑔3

𝜕𝑢𝜕𝛿̅
+

1

2

𝜕𝐹

𝜕𝛿̅

𝜕2𝐹

𝜕𝑢2
)

(0,0)

=
(1 + 𝑎11)𝑑1

𝜆2 + 1
; 

 

𝑛2 = (
1

6

𝜕3𝐹

𝜕𝑢3
+ (

1

2

𝜕2𝐹

𝜕𝑢2
)

2

)

(0,0)

= 𝑘5 + 𝑘1
2 ≠ 0 
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As a result of the above analysis, the following theorem gives the parametric conditions for existence and direction of 

period-doubling bifurcation for the system (2) at its positive coexistence fixed point 𝑃3 [39]. 
Theorem 3.1.  Suppose that 𝑛1 ≠ 0 and 𝑛2 ≠ 0 then system (2) goes through period-doubling bifurcation at the unique 

positive fixed point 𝑃3  when parameter 𝛿 varies in small neighborhood of 𝛿𝐹. Moreover, if 𝑛2 > 0 , then the period-two 
orbits that bifurcate from positive fixed point 𝑃3 are stable, and if 𝑛2 < 0, then these orbits are unstable. 

Example 3.1. Taking parameters  𝛼 = 0.9, 𝛽 = 0.6, 𝑚 = 0.2, 𝑠 = 3 the coexistence fixed point of the system (2) is 
(𝑥∗, 𝑦∗) = (1.5, 1.020300088). The critical value of period-doubling bifurcation point is obtained as 𝛿𝐹 =
0.1994704325. By taking these parameters the characteristic polynomial of the system is obtained as 𝐹(𝜆) = 𝜆2 +
0.405119152 𝜆 − 0.5948808467 and the roots of the characteristic polynomial is 𝜆1 = −1 and 𝜆2 = 0.5348808472 
that verifies the theoretical knowledge. 

 

  

Figure 2. Bifurcation diagrams for 𝑥𝑡 and 𝑦𝑡 for the system (2) for values of  𝛼 = 0.9, 𝛽 = 0.6, 𝑚 = 0.2, 𝑠 = 3 and initial 
condition (𝑥0, 𝑦0) = (1.45, 1.01) 

 

Conclusion 
 

Allee effect and immigration have an important role in 
increasing the realism of the prey-predator model. So, we 
have considered a discrete-time prey-predator model with 
both Allee effect and immigration in this paper. We have 
investigated the complex dynamical behaviors of the 
system (2). Firstly, we have obtained existence conditions 
of the fixed points of the system (2). We have focused on 
coexistence fixed point due to biological meaning for 
showing complex dynamics of the system (2). We have 
analyzed topological classifications of the coexistence fixed 
point of the system (2). Later, we have obtained the 
required conditions on the parameters for period-doubling 
bifurcation of the system (2) by choosing 𝛿 as a bifurcation 
parameter.  For period-doubling bifurcation analyses, we 
have used center manifold theorem and normal form 
theory [40]. Finally, we have given numerical simulations to 
support obtained theoretical finding. In Figure1, we have 
observed that the coexistence fixed point of the system (2) 
is local asymptotically stable on some conditions 
demonstrated in Theorem 2.1 (i). Also, in Figure 2, we have 
shown that the stability of the fixed point 𝑃3 of the system 
(2) changes from stable to unstable when the bifurcation  
parameter  𝛿, crosses a critical value 𝛿𝐹. Thus, the period-
doubling bifurcation arises from the fixed point 𝑃3 . 
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