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Let R be a commutative multiplicative hyperring. In this paper, we introduce and study the concepts of n-
hyperideal and δ-n-hyperideal of R which are generalization of n-ideals and δ-n-ideals of the in a commutative 
ring. An element a is called a nilpotent element of R if there exists a positive integer n suc h that 0 ∈ 𝑎𝑛 .  𝐴 
hyperideal I (𝐼 ≠ 𝑅) of R is called an n- hyperideal of R if for all 𝑎, 𝑏 ∈ 𝑅,   𝑎 ∗ 𝑏 ⊆ 𝐼 and  𝑎 is non-nilpotent 
element implies that 𝑏 ∈ 𝐼  [15]. Also, I is called a δ-n-hyperideal if for all a, 𝑏 ∈ 𝑅,  a∗ 𝑏 ⊆ 𝐼 then either 𝑎 is 
nilpotent or b∈ 𝛿(𝐼) , where δ is an expansion function over the set of all hyperideals of a multiplicative 
hyperring. In addition, we give the definition of zd-hyperideal. Some properties of n-hyperideals, δ-n-hyperideals 
and zd-hyperideals of the hyperring R are presented. Finally, the relations between these notions are 
investigated. 
 

Keywords: Multiplicative hyperring, n-hyperideal, δ-n-hyperideal. 

 
a  betulcosgun93@gmail.com  https://orcid.org/ 0000-0003-1389-259X 

 

b  uacar@mu.edu.tr  https://orcid.org/ 0000-0001-5762-9684 

 

Introduction 

The first publications on algebraic hyperstructures, as 
a natural generalization of classical algebra, are first 
encountered in 1934.  The group concept, the 
fundamental definition of algebraic structures, was first 
generalized to hypergroup theory by Marty [1].  After 
Marty's definition, many concepts of algebra, especially 
hypergroups, were generalized to hyperstructures. 
Subsequently, applications of hyperstructures theory to 
other branches of science are studied by many 
researchers. A detailed examination of this theory can be 
found at [2-4]. The concept of hyperring has been studied 
in different ways. The definition of hyperring, given by 
taking " + " hyperoperation and multiplication, was made 
by Krasner and is known by his name. A class of hyperrings 
is multiplicative hyperring which satisfies the axioms 
similar a ring, but product replaced by hyperproduct. The 
multiplicative hyperring defined by Rota in 1982 and its 
properties have been studied by many mathematicians [5-
9].  

In this paper, we consider the notions of n-ideal and δ-
n-ideal in commutative rings and extend these notions n-
hyperideals and δ-n-hyperideals to commutative 
multiplicative hyperrings. Furthermore, we characterize 
for the δ-n hyperideals of commutative multiplicative 
hyperring.  

First of all, let us to introduce some notions and results 
of algebraic hyperstructures theory, which we will need to 
development our paper. Let 𝐻 be a nonempty set and we 
mean the set of all nonempty subsets of 𝐻 𝑏𝑦  𝑃∗(𝐻) .  A 
map ∘∶ 𝐻 × 𝐻 → 𝑃∗(𝐻) is called a hyperoperation on H. 
Naturally, we can extend the hyperoperation ∘ to subsets 
of 𝐻, as follows:  

𝑋 ∘ 𝑌 = ⋃ 𝑥 ∘ 𝑦,           𝑋 ∘ ℎ =⋃𝑥 ∘ ℎ

𝑥∈𝑋𝑥∈𝑋,𝑦∈𝑌

,       ℎ ∘ Y

=⋃ℎ ∘ y

𝑦∈𝑌

 

where   ∅ ≠ 𝑋, 𝑌 ⊆ 𝐻 𝑎𝑛𝑑  ℎ ∈ 𝐻. 
R is called a multiplicative hyperring with operation + 

and hyperoperation  ∘    if 
(𝑅, + )   is an abelian group,  
(𝑅,∘) is a semihypergroup, i.e, (𝑥 ∘ 𝑦) ∘ 𝑧 = 𝑥 ∘ (𝑦 ∘

𝑧), for all 𝑥, 𝑦, 𝑧 ∈ 𝑅, 
For all 𝑥, 𝑦, 𝑧 ∈ 𝑅,   we have 𝑥 ∘ (𝑦 + 𝑧) ⊆ (𝑥 ∘ 𝑦) +

(𝑥 ∘ 𝑧) and (𝑦 + 𝑧) ∘ 𝑥 ⊆ (𝑦 ∘ 𝑥) + (𝑧 ∘ 𝑥), 
For all 𝑥, 𝑦 ∈ 𝑅,  𝑥 ∘ (−𝑦) = (−𝑥) ∘ 𝑦 = −(𝑥 ∘ 𝑦). 
If in (iii) the equality holds, then R has a strongly 

distributive property. Also R is called commutative  if 𝑥 ∘
𝑦 = 𝑦 ∘ 𝑥 for all 𝑥, 𝑦 ∈ 𝑅 and an element 𝑒 ∈ 𝑅 is said to 
be a left  (resp. right) scalar identity if  𝑒 ∘ 𝑥 =
 𝑥 , (𝑟𝑒𝑠𝑝.   𝑥 ∘ 𝑒 = 𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑅 .   An element e is 
called scalar identity element if it is both left and right 
scalar identity element [10].  If 0 ∈ 𝑥 ∘ 𝑦 𝑎𝑛𝑑   𝑥 ≠ 0 , 
where  ∀ 𝑥, 𝑦 ∈ 𝑅, then 𝑦 = 0, then a commutative 
multiplicative hyperring R is called a strong hyperdomain 
[11].  

A nonempty subset I of a multiplicative hyperring R is 
a hyperideal if 

𝐼 − 𝐼 ⊆ 𝐼 
𝑥 ∘  𝑟 ∪ 𝑟 ∘ 𝑥   ⊆ 𝐼   for all 𝑥 ∈ 𝐼, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ 𝑅   
The set of all hyperideals of R is denoted by 𝐼(𝑅).  A 

hyperideal 𝐼(≠ 𝑅) of a multiplicative hyperring R is called 
prime hyperideal if for all 𝑎, 𝑏 ∈ 𝑅,  𝑎 ∘ 𝑏 ⊆
𝐼   implies that 𝑎  ∈  𝐼   𝑜𝑟   𝑏 ∈ 𝐼  [12].  An element a is 
called nilpotent element of R if there exists a positive 
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integer n such that 0 ∈ 𝑎𝑛   where for any positive integer 
𝑛 > 1, 𝑎𝑛 = 𝑎 ∘ 𝑎 ∘ …∘ 𝑎⏟        

𝑛−𝑡𝑖𝑚𝑒𝑠

   and  𝑎1 = {𝑎}  and we denoted 

the set of all nilpotent elements of R by nil(R) (for more 
details see[8]).  

Let  (𝑅, +,∘) and (𝑆, +′, ∗) be two commutative 
multiplicative hyperrings and 𝑔: 𝑅 → 𝑆 be a map. Then g 
is called a homomorphism (resp. good homomorphism) if 
g satisfies the following conditions for all 𝑎, 𝑏 ∈ 𝑅, 
𝑔(𝑎 + 𝑏) = 𝑔(𝑎)+′𝑔(𝑏), 
𝑔(𝑎 ∘ 𝑏) ⊆ 𝑔(𝑎) ∗ 𝑔(𝑏)  (resp. 𝑔(𝑎 ∘ 𝑏) = 𝑔(𝑎) ∗

𝑔(𝑏)) 
In [10], an expansion function over the set of all 

hyperideals of a multiplicative hyperring is defined as 
following:  

A function 𝛿: 𝐼(𝑅) → 𝐼(𝑅) that satisfies the following 
two conditions is called an expansion function of I(R) 
(1)  𝐼 ⊆ 𝛿(𝐼),  
(2) 𝐼𝑓 𝐼 ⊆ 𝐽, 𝑡ℎ𝑒𝑛  𝛿(𝐼) ⊆ 𝛿(𝐽),   𝑓𝑜𝑟 𝑎𝑙𝑙 𝐼, 𝐽 ∈ 𝐼(𝑅)  
In [13], G. Ulucak defined  δ-primary hyperideal  as 

follows;   A proper hyperideal I of R is called  δ-primary 
hyperideal of a multiplicative hyperring (𝑅,+,∘)   if for all 
𝑎, 𝑏 ∈ 𝑅 , 𝑎 ∘ 𝑏 ⊆ 𝐼 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡  𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 ∈ 𝐼   𝑜𝑟  𝑏 ∈
𝛿(𝐼), where δ is an expansion function of  I(R). 

 

n-Hyperideals of the Multiplicative Hyperring 
 
In this section, the definitions of n-ideal and δ-n-ideal 

given in [14] and [13], respectively, will be generalized to 
a commutative multiplicative hyperrings. Now we give a 
definition of n- hyperideal and some properties of this 
concept which is in [15]. For the safe of completeness, we 
will give the proofs of Theorem 2.1. and Theorem 2.2. 
Throughout this paper, unless otherwise stated, (𝑅,+,∗)  
will be taken as a commutative multiplicative hyperring. 

Definition 2.1. Let I be a hyperideal of (𝑅,+,∗) and 𝐼 ≠
𝑅. For all 𝑎, 𝑏 ∈ 𝑅,  if  𝑎 ∗ 𝑏 ⊆ 𝐼 and  𝑎 is non-nilpotent 
element implies that 𝑏 ∈ 𝐼   then I is called a n-hyperideal 
of R. 

Example 2.1. Let (ℤ4, +, .) be a ring and 𝐼 = {0̅, 2}̅ be 
an ideal of ℤ4. We define hyperoperation ∘ in ℤ4. For all 
�̅�, �̅� ∈ ℤ4,    �̅� ∘ �̅� = 𝑚𝑛̅̅ ̅̅ + 𝐼 

  
Then (ℤ4, +,∘) is a multiplicative hyperring and  𝐻 =

{0̅, 2̅} is a hyperideal of  ℤ4.  Since �̅�  ∘ �̅� ⊆ 𝐻 and �̅� is 
non-nilpotent implies that �̅� ∈ 𝐻, for all   �̅̅̅�, �̅� ∈ ℤ4. Then 
H is a n-hyperideal of ℤ4. 

Example 2.2.  Let  (ℤ,+,∗  ) be a multiplicative 
hyperring with respect to hyperopretion ∗   defined by   

   𝑎 ∗ 𝑏 = {𝑎. 𝑏, 2𝑎. 𝑏, 3𝑎. 𝑏, ….}, for all 𝑎, 𝑏 ∈ ℤ in [4].  
2ℤ is a hyperideal of ℤ but it is not n-hyperideal. Because 
4 ∗ 3 ⊆ 2ℤ and 4 is a non-nilpotent but 3 ∉ 2ℤ. 

Theorem 2.1.  Let  𝐾 = {𝐼𝑘 ∶ 𝑘 ∈ Ω }  be a nonempty 
family of n-hyperideals of a multiplicative hyperring (R, +, 
∗).  Then ⋂ 𝐼𝑘𝑘∈Ω  is a n-hyperideal of R and if K is a chain, 
then ⋃ 𝐼𝑘𝑘∈Ω  is a n-hyperideal of R. 

Proof.   ⋂ 𝐼𝑘𝑘∈Ω  is a n-hyperideal, it is clear from 
Definition 2.3. We will show that ⋃ 𝐼𝑘𝑘∈Ω  is a n-
hyperideal.  Let K be a chain. Since 𝐼𝑘 ⊆ 𝑅 and 𝐼𝑘 ≠ ∅  for 
𝑘 ∈ Ω.   ⋃ 𝐼𝑘𝑘∈Ω ⊆ 𝑅 and ⋃ 𝐼𝑘𝑘∈Ω ≠ ∅.  For all 𝑥, 𝑦 ∈
⋃ 𝐼𝑘𝑘∈Ω   and 𝑟 ∈ 𝑅, then there exist 𝑖, 𝑗 ∈ Ω such that  𝑥 ∈
𝐼𝑖 ,   𝑦 ∈ 𝐼𝑗. Suppose 𝐼𝑖 ⊆ 𝐼𝑗  then 𝑥 ∈ 𝐼𝑗 since 𝐼𝑗  is a 

hyperideal, 𝑥 − 𝑦 ∈ 𝐼𝑗    and   𝑥 ∗ 𝑟 ⋃𝑟 ∗ 𝑥 ⊆ 𝐼𝑗.   Hence  

𝑥 − 𝑦 ∈ ⋃ 𝐼𝑘𝑘∈Ω    𝑎𝑛𝑑 𝑥 ∗ 𝑟⋃𝑟 ∗ 𝑥 ⊆ ⋃ 𝐼𝑘𝑘∈Ω . Let    𝑥 ∗
𝑦 ⊆ ⋃ 𝐼𝑘𝑘∈Ω  and 𝑥 is non-nilpotent element for 𝑥, 𝑦 ∈ 𝑅. 
𝑥 ∗ 𝑦 ⊆ ⋃ 𝐼𝑘𝑘∈Ω ⇒ ∃𝑖 ∈ Ω, 𝑥 ∗ 𝑦 ⊆ 𝐼𝑖. Since 𝐼𝑖 is a n-
hyperideal and x is non-nilpotent, 𝑦 ∈ 𝐼𝑖.  Hence 𝑦 ∈
⋃ 𝐼𝑘𝑘∈Ω  and ⋃ 𝐼𝑘𝑘∈Ω  is a n-hyperideal of R. 

Theorem 2.2.  Let  𝑓: (R, +, o)→(S, +', ∗)   be a good 
homomorphism. Then  

If  𝐽 is a n-hyperideal of S, then 𝑓−1(𝐽) is a n-hyperideal 
of R. 

If   𝑓 is an isomorphism and 𝐼 is a n-hyperideal of R, 
then 𝑓(𝐼) is a n-hyperideal of S. 

Proof. i. Since 𝐽 is a hyperideal and 𝑓 homomorphism, 
𝑓−1(𝐽) = {𝑟 ∈ 𝑅: 𝑓(𝑟) ∈ 𝐽}  ≠ ∅  is a hyperideal of R. Let 
us show that 𝑓−1(𝐽)  is a n-hyperideal. Let 𝑟1𝑜𝑟2 ⊆ 𝑓

−1(𝐽) 
and 𝑟1  is a non-nilpotent element. Then for all n ∈ ℕ, 0 ∉
(r1)

n   so  0S = f(0) ∉ f(r1)
n,  thus 𝑓(𝑟1) is a non-nilpotent 

element in S. Since  𝑟1  𝑜 𝑟2 ⊆ 𝑓
−1(𝐽) and 𝑓 is a 

homomorphism, f(r1 o  r2) =  f(r1 ) ∗ f(r2 ) ⊆

 f(f−1(J)) ⊆ J. Therefore 𝑓(𝑟2) ∈ 𝐽  because 𝐽 is a n-

hyperideal and 𝑓(𝑟1) is a non-nilpotent element. Hence 
𝑟2 ∈ 𝑓

−1(𝐽) and so  𝑓−1(𝐽) is a n-hyperideal of R.  
ii. It is clear that  𝑓(𝐼) = {𝑓(𝑟): 𝑟 ∈ 𝐼} ⊆ 𝑆  is a 

hyperideal of S. Now, we will show that 𝑓(𝐼) is a n-
hyperideal. For all 𝑠1, 𝑠2 ∈ 𝑆 , 𝑠1 ∗ 𝑠2 ⊆ 𝑓(𝐼)  and 𝑠1 is non-
nilpotent. Since  𝑓 is an isomorphism,  𝑓(𝑟1) =
𝑠1  𝑎𝑛𝑑  𝑓(𝑟2) = 𝑠2,  for some   𝑟1, 𝑟2 ∈ 𝑅. Since 𝑠1 is non-
nilpotent, for all n ∈ ℕ, 0 ∉ f(r1)

n = f((r1)
n) and 0 ∉

(𝑟1)
𝑛, i.e, 𝑟1  is non-nilpotent. f(r1 o r2) ⊆  f(I) ⇒

r1 o r2 ⊆  I.  From the definition of n-hyperideal,  𝑟2 ∈ 𝐼.  
Hence 𝑠2 = 𝑓(𝑟2) ∈ 𝑆, thus 𝑓(𝐼) is a n-hyperideal of S. 

The set  𝑎𝑛𝑛(𝑥) = {𝑟 ∈ 𝑅: 0 ∈ 𝑟 ∗ 𝑥} is called the 
annihilator of 𝑥 in (R, +, ∗)  and 𝑥 is said to be a zerodivisor 
element of R if 𝑎𝑛𝑛(𝑥) ≠ 0.  The set of all zerodivisor 
elements of R denoted by 𝑧𝑑(𝑅). 

Definition 2.2. Let I be a proper hyperideal of (R, +, ∗). 
We say that I is a 𝑧𝑑-hyperideal, precisely when, 
whenever 𝑎, 𝑏 ∈ 𝑅 with  𝑎 ∗ 𝑏 ⊆ 𝐼 implies that 𝑎𝑛𝑛(𝑎) ≠
{0} 𝑜𝑟 𝑏 ∈ 𝐼.  

Example 2.3.  Let (ℤ6, +, . ) be a ring. We define the 

following hyperoperation ∗ on ℤ6: For all  𝑎, 𝑏 ∈ ℤ6,  

a ∗ b = { a.b, 2a. b, 3a. b, 4. a. b, 5a. b }. Then (ℤ6, +,∗) 

is a commutative multiplicative hyperring.   H = {0, 2, 4 }   
is a 𝑧𝑑-hyperideal of  ℤ6. 

Example 2.4.  Let (ℤ,+,∗  ) be a multiplicative 
hyperring w.r.t hyperoperation in Example 2.2.  Then 4ℤ 
is a hyperideal of ℤbut it is not 𝑧𝑑-hyperideal. Because 
4∗3⊆4ℤ but 𝑎𝑛𝑛(4) = 0 and 3∉4ℤ. 

o 0̅ 1̅ 2̅ 3̅ 

0̅ 𝐼 𝐼 𝐼 𝐼 

1̅ 𝐼 1̅ + 𝐼 𝐼 1̅ + 𝐼 

2̅ 𝐼 𝐼 𝐼 𝐼 

3̅ 𝐼 1̅ + 𝐼 𝐼 1̅ + 𝐼 
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Theorem 2.3.    Every n-hyperideal of R is a 𝑧𝑑-
hyperideal. 

Proof.   Let I be n-hyperideal of R. Assume that  𝑟 ∗ 𝑠 ⊆
𝐼 and 𝑎𝑛𝑛(𝑟) = 0  for 𝑟, 𝑠 ∈ 𝑅. Then 0 ∉ 𝑟𝑛  for all 𝑛 ∈ ℕ. 
Since I is a n-hyperideal of R and 𝑟 is non-nilpotent 
element in R, 𝑠 ∈ 𝐼.  Hence, I is a 𝑧𝑑-hyperideal of R. 

Example 2.5 shows that the converse of the Theorem 
2.3 is not true. 

Example 2.5. Consider the commutative multiplicative 

hyperring ℤ6 in Example 2.3. 𝐻 = {0} is a 𝑧𝑑-hyperideal of 

ℤ6 but H is not n-hyperideal. 
Proposition 2.1.  If R is a strong hyperdomain, then {0} 

is a n-hyperideal of R. 
Proof.  Let 𝑎 ∗ 𝑏 ⊆ 0 and 𝑎 is a non nilpotent element 

for 𝑎, 𝑏 ∈ 𝑅. Then 𝑎 ∗ 𝑏 ⊆ 0 and 0 ∉ 𝑎𝑛 for all 𝑛 ∈ ℕ and 
so 𝑎 ≠ 0. Since R is a strong hyperdomain and  0 ∈ 𝑎 ∗
𝑏,    𝑏 = 0. Therefore 𝑏 ∈ 0 and so {0} is a n-hyperideal. 

 In [12], Dasgupta defined the radical of the arbitrary 
hyperideal I as the intersection of all prime hyperideals 

containing I and denoted by 𝑅𝑎𝑑(𝐼) = √𝐼.  He also 
showed that 𝐷 ⊆ 𝑅ad(𝐼) by defining a set 𝐷 = {𝑟 ∈
𝑅 :  𝑟𝑛   ⊆ 𝐼 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛  ∈ ℕ } for an arbitrary hyperideal 
I. We will denote this set D by 𝐷(𝐼) for any hyperideal I. 

In [16], Anbarloei showed that for a ∈  R, (I: a) =
{r ∈ R: r ∗ a ⊆  I}  is a hyperideal of R. The following 
proposition prove that n-hyperideal can be 
characterization with (𝐼: 𝑎). 

Proposition 2.2. Let I be a proper hyperideal of R.  I is a 
n-hyperideal of R if and only if 𝐼 = (𝐼: 𝑎) for every 𝑎 ∉
𝐷(0). 

Proof.  Suppose I is a n-hyperideal of R. Then 𝑥 ∗
𝑎 ⊆ 𝐼, for all 𝑥 ∈ 𝐼.  Therefore 𝑥 ∈ (𝐼: 𝑎) and so 𝐼 ⊆ (𝐼: 𝑎). 
Let 𝑢 ∈ (𝐼: 𝑎) and 𝑎 ∉ 𝐷(0). Then    𝑎 ∗ 𝑢 ⊆ 𝐼.  By 
Definition 2.1, 𝑢 ∈ 𝐼. Thus (𝐼: 𝑎) ⊆ 𝐼 and so 𝐼 = (𝐼: 𝑎). 
Conversely, let 𝐼 = (𝐼: 𝑎), for every 𝑎 ∉ 𝐷(0). Suppose 
𝑎 ∗ 𝑢 ⊆ 𝐼 for all  𝑎, 𝑢 ∈ 𝑅, 𝑎 is a non-nilpotent. Then 𝑢 ∈
(𝐼: 𝑎) = 𝐼 and so I is a n-hyperideal. 

Proposition 2.3.  Let N be a proper hyperideal of (R, +,∗
) with identity 1. Then N is a n-hyperideal if and only if 

for 𝑈, 𝑉 ∈ 𝐼(𝑅),   𝑈 ∗ 𝑉 ⊆ 𝑁, with  𝑈 ∩ (R − 𝐷(0)) ≠

∅  implies 𝑉 ⊆  N. 

Proof.  Suppose that  𝑈 ∗ 𝑉 ⊆ 𝑁 with   𝑈 ∩ (R −

𝐷(0)) ≠ ∅ for hyperideals 𝑈 and 𝑉 of R. Since 𝑈 ∩

 (R − 𝐷(0)) ≠ ∅, there exists 𝑥 ∈ 𝑈 such that 𝑥 ∉ 𝐷(0). 

Then 𝑥 ∗ 𝑉 ⊆ 𝑁 and so  𝑉 ⊆ (𝑁: 𝑥). Therefore, 𝑉 ⊆ 𝑁  by 
Proposition 2.2. Conversely, 𝑢 ∗ 𝑣 ⊆ 𝑁 and 𝑢 is non-
nilpotent element for all 𝑢, 𝑣 ∈ 𝑅. Then 𝑢 ∉ 𝐷(0).  Let 
𝑈 =< 𝑢 >  and 𝑉 =< 𝑣 >. Then U ∗  V =< u >∗ < v >

⊆ < u ∗ v > ⊆  N  and U ∩ (R− D(0)) ≠ ∅. Therefore 

𝑉 ⊆ 𝑁 and so 𝑏 ∈ 𝑁. Thus, N is a n-hyperideal of R. 
Theorem 2.4. Let K be a hyperideal of (R, +,∗)  with K ∩

 (R − D(0)) ≠ ∅. The following statements are hold: 

If 𝐽1, 𝐽2 are n-hyperideals of R with    J1 ∗  K =  J2 ∗  K, 
then 𝐽1 = 𝐽2. 

If 𝐽 ∗ 𝐾   is a n-hyperideal of R, then 𝐽 ∗ 𝐾 = 𝐽. 
Proof. i. Since 𝐽1 is a hyperideal, 𝐽1 ∗ 𝐾 = 𝐽2 ∗ 𝐾 ⊆ 𝐽1. 

Then 𝐽2 ⊆ 𝐽1, by Proposition 2.3. Because 𝐽1 is a n-

hyperideal,  𝐽2 ∗ 𝐾 ⊆ 𝐽1 and K ∩ (R − D(0)) ≠ ∅.  

Similarly,  𝐽1 ⊆ 𝐽2. Thus, 𝐽1 = 𝐽2.  
ii.  Let 𝐽 ∗ 𝐾 be a n-hyperideal of R. Then 𝐽 ∗ 𝐾 is a 

hyperideal and so 𝐽 ∗ (𝐽 ∗ 𝐾) ⊆ 𝐽 ∗ 𝐾. Since 𝐽 ∗ 𝐾 is a n-

hyperideal and K ∩ (R − 𝐷(0)) ≠ ∅,    𝐽 ⊆ 𝐽 ∗ 𝐾. 

Therefore   𝐽 = 𝐽 ∗ 𝐾. 
 
In Theorem 2.5, another characterization will be given 

for prime hyperideals to be n-hyperideal. 
Theorem 2.5.  Let (R, +, ∗) be a commutative 

multiplicative hyperring with scalar identity (1) and 𝑄 be a 
prime hyperideal of R with  𝑄   ∩ 𝐷(0) ≠ ∅   Then  𝑄 is an 
n-hyperideal if and only if 𝑄 = 𝐷(0). 

Proof. 𝐷(0) ⊆ 𝑄  is trivial. Now, we assume that 𝑄 ⊈
𝐷(0).  Then there exist 𝑎 ∈ 𝑄  such that 0 ∉ 𝑎𝑛 ,   for all 
𝑛 ∈ ℕ  and so 𝑎 is non-nilpotent. Since Q is a n-hyperideal 
and a = a ∗ 1 ⊆  Q , 1 ∈  Q  and   a ∗  1 ⊆  Q ,  for all 𝑎 ∈
𝑅.  Hence, 𝑎 ∈ 𝑄  and R= Q, which is a contradiction. Thus, 
Q = 𝐷(0). 

Conversely, suppose that  𝑄 = 𝐷(0). Let for  𝑥, 𝑦 ∈
𝑅, 𝑥 ∗ 𝑦 ⊆ 𝑄  and 𝑥 is a non-nilpotent. Then 𝑥 ∉ 𝑄 =
𝐷(0) and 𝑦 ∈ 𝑄 because Q is a prime hyperideal. Hence, 
Q is a n-hyperideal of R. 

Example 2.6. Let (ℤ, +,∗  ) be a multiplicative hyperring 
in Example2.2.  2ℤ is a prime hyperideal of ℤ but it is not 
n-hyperideal of ℤ. 

Example 2.7. Consider the multiplicative hyperring (ℤ, 
+,∗) in Example2.2, H= 2ℤ is a prime hyperideal of  ℤ and 
𝑆 = {2,4,6} ⊆ ℤ. Then   (𝐻: 𝑆) = {𝑥 ∈ 𝑍: 𝑥 ∗ 𝑆 ⊆ 𝐻} =
ℤ  is a n-hyperideal but H is not n-hyperideal, because 4 ∗
3 ⊆ 𝐻 and 4 is a non-nilpotent element but  3 ∉ 𝐻. 

 

δ – n- Hyperideal of Multiplicative Hyperring 
 
In this section, we will introduce the definition of δ-n-

hyperideal over the multiplicative hyperring with scaler 
identity and we will give a characterization of δ-n-
hyperideal. Throughout this section, all hyperideals will be 
taken as 𝒞-hyperideal. 𝒞- hyperideals of a multiplicative 
hyperring defined by Das Gupta in [12] as follows, let 
(𝑅, +,∗) be a multiplicative hyperring and J ∈  𝐼(𝑅).  J is 
said to be 𝒞- ideal  if for any A ∈ 𝒞,𝐴 ∩  𝐽 ≠ ∅ ⇒  𝐴 ⊆
 𝐽 , where  𝒞 = {𝑟1 ∗ 𝑟2 ∗ 𝑟3 ∗ …∗ 𝑟𝑛 ∶   𝑟𝑖   ∈ 𝑅,  n∈ ℕ}.  

In the following definition, we are using definition of 
radical I, to state once again if I is 𝒞- ideal, then Rad(I)=D(I) 
in [12]. 

Definition 3.1. Let J∈  𝐼(𝑅),  𝐽 ≠ 𝑅  and 
𝛿: 𝐼(𝑅) → 𝐼(𝑅)  be an expansion function. We say that J is 
a δ-n-hyperideal of R if for all  𝑥, 𝑦 ∈ 𝑅,  𝑥 ∗ 𝑦 ⊆ 𝐽 then 

either 𝑥 ∈ √0 or 𝑦 ∈ 𝛿(𝐽).  
Example 3.1.   Let (ℤ8, +, . ) be a ring and 𝐼 =

{0, 4} be an ideal of ℤ8.  We define hyperoperation in ℤ8: 

For all 𝑎, 𝑏 ∈ ℤ8 ,  𝑎 ∗ 𝑏 = 𝑎. 𝑏 + 𝐼. Then ( ℤ8, +,∗) is a 
multiplicative hyperring. Let 𝛿: 𝐼(ℤ8) → 𝐼(ℤ8) be a 
function such that 𝛿(𝐻) = 𝐻, for all H hyperideal of ℤ8.  

Therefore, δ is an expansion function. 𝐻 = {0, 2, 4, 6}  is a 

δ-n-hyperideal. 
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Example 3.2. Consider the multiplicative hyperring (ℤ, 
+, *) in Example2.2.  Let δ: I(ℤ)→I(ℤ) be a function such 
that 𝛿(𝐻) = 𝐻 for all H hyperideal. Then δ is an expansion 
function. H= 2ℤ is hyperideal of multiplicative hyperring ℤ 

but H is not δ-n-hyperideal. Indeed, 4 ∗ 3 ⊆ 𝐻 but 4 ∉ √0 
and 3 ∉ 𝛿(𝐻). 

Proposition 3.1. Let R be multiplicative hyperring with 
scaler identity and δ be an expansion of hyperideals of R 
and J a proper hyperideal of R with 𝛿(𝐽) ≠ 𝑅. If J is a δ-n-

hyperideal of R, then 𝐽 ⊆ √0. 

Proof. Suppose that 𝐽 ⊈ √0. Then there exists element 

𝑎 ∈ (𝐽-√0). Since 𝑎 ∈ 1 ∗ 𝑎 ⊆Jand 𝑎 ∉ √0, 1 ∈ δ(𝐽). 

Then for all 𝑟 ∈ 𝑅,   𝑟 ∈ 1 ∗ 𝑟 ⊆ δ(𝐽) and so 𝛿(𝐽) ≠ 𝑅, a 

contradiction. Thus 𝐽 ⊆ √0. 
Theorem 3.1.  Let J be a hyperideal of (𝑅,+,∗).  If 𝐽 =

√0, then J is a δ-n-hyperideal if and only if J is a δ-primary 
hyperideal. 

Proof.  Suppose that J is a δ-n-hyperideal and 𝑥, 𝑦 ∈
𝑅, 𝑥 ∗ 𝑦 ⊆ 𝐽 and 𝑥 ∉  𝐽. Then 𝑥 is not nilpotent and so 𝑦 ∈
𝛿(𝐽) because J is a δ-n-hyperideal. Hence, J is a δ-primary 
hyperideal. Conversely, J is a δ-primary hyperideal,  𝑥, 𝑦 ∈

𝑅, 𝑥 ∗ 𝑦 ⊆ 𝐽 and 𝑥 ∉ √0. Then 𝑥 ∉ 𝐽 and  𝑦 ∈ 𝛿(𝐽) since J 
is a δ- primary hyperideal. Hence, J is a δ-n-hyperideal of 
R. 

Proposition 3.2.   Let δ be an expansion of hyperideals 
of R. Then the following are hold 

i.  Let J be a δ-primary hyperideal of R with δ(𝐽) ≠ 𝑅. 

Then J is a δ-n-hyperideal of R if and only if  𝐽 ⊆ √0. 
ii. Let J be a prime hyperideal of R with δ(𝐽) ≠ 𝑅. Then 

J is a δ-n-hyperideal of R if and only if J= √0. 
Proof.   i. It is clear by Proposition 3.1. and Theorem 

3.1.   

ii.Since J is prime hyperideal, √0 ⊆ J. From Proposition 

3.1,  𝐽 ⊆ √0 and so 𝐽 = √0. Conversely, since J is a prime 
hyperideal, J is a δ- primary hyperideal by [13]. From 
Theorem 3.1, J is a δ-n-hyperideal of R. 

 
Theorem 3.2.  For a proper hyperideal I of R and an 

expansion of fuction δ, the following statements are 
equivalent: 

I is a δ-n-hyperideal of R. 

(𝐼: 𝑎) ⊆ √0  for all a ∈ R − δ(I). 
If 𝑎 ∘ 𝐽 ⊆ 𝐼 for some a ∈ R and an hyperideal J of R, 

then 𝑎 ∈ √0 or J ⊆ δ(I). 
If 𝐽 ∘ 𝐾 ⊆ 𝐼  for some hyperideals J and K of R implies 

J  ∩ (R −  √0)  = ∅ or K ⊆ δ(I). 

Proof. (𝑖) ⇒ (𝑖𝑖) Assume that any 𝑥 ∈ (𝐼: 𝑎), then 𝑥 ∘

𝑎 ⊆ 𝐼. Since I is a δ-n-ideal of R and 𝑎 ∉ δ(𝐼), 𝑥 ∈ √0. 

Thus, (𝐼: 𝑎) ⊆ √0. 
(𝑖𝑖)  ⇒ (𝑖𝑖𝑖) Suppose that if 𝑎 ∘ 𝐽 ⊆ 𝐼 and 𝐽 ⊈ δ(𝐼). 

For any 𝑗 ∈ 𝐽, 𝑎 ∘ 𝑗 ⊆ 𝐼 and so 𝐽 ⊆ (𝑎: 𝐼) ⊆ √0. Since 𝐽 ⊈

δ(𝐼), there exist 𝑗 ∈ 𝐽 but 𝑗 ∉ δ(𝐼) and so 𝑎 ∈ √0 by (ii). 
(𝑖𝑖𝑖)  ⇒ (𝑖𝑣) Let 𝐽 ∘ 𝐾 ⊆ 𝐼 and suppose J  ∩ (R −

 √0)  ≠ ∅. Then there is an element 𝑗 ∈ 𝐽 − √0. For any 

𝑘 ∈ 𝐾, 𝐽 ∘ 𝑘 ⊆ 𝐼. Then for 𝑗 ∈ 𝐽 − √0, 𝑗 ∘ 𝑘 ⊆ 𝐼. From 
(iii), 𝑘 ∈ δ(𝐼) and so K ⊆ δ(I). 

(𝑖𝑣) ⇒ (𝑖) Let 𝑥 ∘ 𝑦 ⊆ 𝐼 for some 𝑥, 𝑦 ∈ 𝑅 𝑎𝑛𝑑  𝐽 =

(𝑥), 𝐾 = (𝑦). Then 𝐽 ∘ 𝐾 ⊆ 𝐼 . If J  ∩ (R −  √0)  ≠ ∅, 

then 𝑥 ∈ √0. If 𝐾 ⊈ δ(𝐼), then 𝑦 ∉ δ(𝐼) and so 𝐾 ⊈ 𝐼, a 

contraction. Then, 𝑥 ∈ √0 by our assumption. Thus, I is a 
δ-n-hyperideal of R. 

Example 3.3. Consider the commutative multiplicative 

hyperring ( ℤ6,+,*) in Example 2.3.   𝐻 = {0, 2, 4}, 𝐾 =

{0, 3}, 0 and  ℤ6 are hyperideals of multiplicative 

hyperring  ℤ6.  𝛿: 𝐼( ℤ6) → 𝐼( ℤ6) be a function such that 

𝛿(𝑋) = {
 ℤ6 ,  𝑋 = 𝐻,ℤ6
𝐾   , 𝑋 = 𝐾, {0}

 

Therefore, δ is an expansion function. {0} is a δ-n-
hyperideal but it is not δ-primary hyperideal o𝑓  ℤ6.   
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