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Introduction 

There exist too many studies on fixed-point theory in 
different spaces [1-12]. Also, there are many applications 
of the theory and mappings that meet certain conditions 
of contraction and have been a crucial area of different 
research works.  

The non-Newtonian calculus is alternative to what is 
customary. The non-Newtonian calculus in various fields 
including information technology, fractal geometry, 
economic growth, finance, wave theory, quantum physics, 
in medicine for examples tumor therapy, cancer-
chemotherapy, in mathematics for examples functional 
analysis, differential equations, approximation theory, 
problems of decision making, and chaos theory has many 
applications. The non-Newtonian metric concept was 
defined in 2002 by Basar et al. and then Binbaşıoğlu et al. 
gave the metric spaces of non-Newtonian in 2016. Also, 
they started to study on the fixed-point theory in non-
Newtonian metric spaces.  

In this work, we present fixed-point theorems and 
results for self-mappings satisfying certain conditions in 
the non-Newtonian metric spaces. 

Preliminaries 

We mention that some basic knowledge related to 
structure of non-Newtonian calculus. 

Definition 
A generator is called as an injective function from ℝ to 

a subset of ℝ [6].  

Remark 
Every generator generates an arithmetic. An arithmetic 

is generated by a generator [6]. 

Remark 
Let us take the function 𝛽: ℝ → ℝ , 𝑎 → 𝛽(𝑎) = 𝑒 =

𝑏.  If 𝛽 =  exp, then the function generates the 
geometrical arithmetics [6]. 

Remark 
Assume that the function 𝛽 is a generator, i.e., if 𝛽 =

𝐼, then 𝛽 generates the usual arithmetic, where 𝐼 is an 
identity mapping [6].  

Definition 
The 𝛽-integers are produced as follows; 

 𝛽-zero, 𝛽-one and similarly all 𝛽-integers are denoted as, 
…, 𝛽(−1), 𝛽(0), 𝛽(1), .... 

Let us take any generator 𝛽 with range A. Then for 
 𝑎, 𝑏 ∈ ℝ,  the operations 𝛽-addition, 𝛽-substraction, 𝛽-
multiplication, 𝛽-division and 𝛽-order are defined as 
follows,  

𝑎  .  𝑏 = 𝛽{𝛽 (𝑎) + 𝛽 (𝑏)},  
𝑎  .  𝑏 = 𝛽{𝛽 (𝑎) − 𝛽 (𝑏 )}, 
𝑎 ×

 .  𝑏 = 𝛽{𝛽 (𝑎) × 𝛽 (𝑏)}, 
𝑎 ∕

 .  𝑏 = 𝛽{𝛽 (𝑎) ÷ 𝛽 (𝑏)}, 
𝑎  .  𝑏 = 𝛽(𝑎) < 𝛽(𝑏). 

The set ℝ(𝑁) = {𝛽(𝑎): 𝑎 ∈ ℝ},  is non-Newtonian real 
numbers set. 
For 𝑎 ∈  𝐴 ⊂ ℝ(𝑁), the 𝛽-square is described as 𝑎 ×

 . 𝑎 

and denoted with 𝑎 . The notation √𝑎  denotes 
𝑘 = 𝛽{ 𝛽 (𝑎)}. The 𝛽 −square is equal to 𝑎 and which 
means 𝑘 = 𝑎. 
During this work, 𝑎  denotes the concept of 𝑝th non-
Newtonian exponent. 
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|𝑎|  denotes the 𝛽 −absolute value for a number 𝑎 ∈
 𝐴 ⊂  ℝ(𝑁) defined by 𝛽(|𝛽 (𝑎)|) and so 

√𝑎 = |𝑎| = 𝛽(|𝛽 (𝑎)|). 

Thus, 

|𝑎| = 𝛽(|𝛽 (𝑎)|) =

𝑎, 𝛽(0) .  𝑎,
𝛽(0), 𝛽(0) =  𝑎,

𝛽(0) . 𝑎, 𝛽(0) .  𝑎.
 

Let us take any  𝑐 ∈  ℝ(𝑁). If 𝑐   . 𝛽(0), then 𝑐 is called 
a positive non-Newtonian real number. If 𝑐   . 𝛽(0), then 𝑐 
is called a non-Newtonian negative real number. If 𝑐 =
𝛽(0), then 𝑐 is called an unsigned non-Newtonian real 
number. Non-Newtonian positive and negative real 
numbers are denoted by ℝ (𝑁) and ℝ (𝑁) respectively 
[6]. 

Definition 
Let us take 𝑋 ≠ ∅ and suppose that 𝑑 : 𝑋 × 𝑋 →
ℝ (𝑁) satisfies the following conditions for 𝑎, 𝑏, 𝑐 ∈
 X; 

(NM1) 𝑑 (𝑎, 𝑏) = 𝛽(0) iff 𝑎 = 𝑏, 
(NM2) 𝑑 (𝑎, 𝑏) = 𝑑 (𝑏, 𝑎), 
(NM3) 𝑑 (𝑎, 𝑏) . 𝑑 (𝑎, 𝑐)  . 𝑑 (𝑐, 𝑏). 

Then 𝑑  is a non-Newtonian metric on 𝑋.  Also (𝑋, 𝑑 ) is a 
non-Newtonian metric space [6]. 

Example 
Assume that d  is defined as 𝑑 (𝑎, 𝑏) = |𝑎  . 𝑏|  for 
all 𝑎, 𝑏 ∈  ℝ(𝑁), then  (ℝ(𝑁), 𝑑 ) is a non-Newtonian 
metric space [6]. 

Definition 
A sequence (𝑎 ) in a non-Newtonian metric space 𝑋 =
(𝑋, 𝑑 ) is non-Newtonian convergent if taken any 
𝑛 = 𝑛 (𝜀) ∈  N, 𝑎 ∈  𝑋 there exists 𝜀   . 𝛽(0) such 
that for all 𝑛 > 𝑛 , 𝑑 (𝑎 , 𝑎)  . 𝜀 and it is shown with 

lim
→

𝑎 = 𝑎 or 𝑎 → 𝑎, 𝑛 → ∞ [5]. 

Definition  
A sequence (𝑎 ) in a non-Newtonian metric space 𝑋 =
(𝑋, 𝑑 ) is non-Newtonian Cauchy if taken any 𝑛 =
𝑛 (𝜀) ∈  N, 𝑎 ∈  𝑋 there exists 𝜀   . 𝛽(0) such that for all 
𝑚, 𝑛 > 𝑛 , 𝑑 (𝑎 , 𝑎 )  . 𝜀. The non-Newtonian metric 
space (𝑋, 𝑑 ) is non-Newtonian complete if every non-
Newtonian Cauchy sequence is non-Newtonian 
convergent [5]. 

Remark 
Let 𝑘, 𝑙, 𝑚, 𝑛, 𝑝 be non-Newtonian positive real 

numbers with 𝑘  . 𝑙  . 𝑚  . 𝑛  . 𝑝  . 𝛽(1),  𝑙 = 𝑚, 𝑛 = 𝑝. 

If 𝑟 =(𝑘  . 𝑙  . 𝑛) ×
 . (𝛽(1)  . 𝑚 . 𝑛)  and 

𝑠 = (𝑘  . 𝑚  . 𝑝) ×
 . (𝛽(1)  . 𝑙 . 𝑝) , then  𝑟 ×

 . 𝑠  . 𝛽(1). 
If 𝑙 = 𝑚 then 

𝑟 ×
 . 𝑠 =

  .   .

( )  .  .  ×
.   .   .

( )  .  . =   .   .

( )  .  .  ×
 .   .   .

( )  .  .  . 𝛽(1), 

and if 𝑛 = 𝑝 then  

𝑟 ×
 . 𝑠 =

𝑘  . 𝑚  . 𝑛

𝛽(1)  . 𝑚 . 𝑛
 ×
 .

𝑘  . 𝑚  . 𝑝

𝛽(1)  . 𝑙 . 𝑝

=
𝑘  . 𝑙  . 𝑝

𝛽(1)  . 𝑚 . 𝑛
 ×
 .

𝑘  . 𝑚  . 𝑛

𝛽(1)  . 𝑙 . 𝑝
 . 𝛽(1). 

Main Results 

Theorem  
Let 𝑑  be a non-Newtonian complete metric on 𝑋 and 𝑐, 𝑑 be positive integers. If a mapping 𝐾: 𝑋 → 𝑋 satisfies 

𝑑 (𝐾 𝑎, 𝐾 𝑏)  . 𝑘 ×
 . 𝑑 (𝑎, 𝑏)  . 𝑙 ×

 . 𝑑 (𝑎, 𝐾 𝑎) 
 . 𝑚 ×

 . 𝑑 (𝑏, 𝐾 𝑏)  . 𝑛 ×
 . 𝑑 (𝑎, 𝐾 𝑏)  . 𝑝 ×

 . 𝑑 (𝑏, 𝐾 𝑎) 

for all 𝑎, 𝑏 ∈  𝑋, where 𝑘, 𝑙, 𝑚, 𝑛, 𝑝 are non-Newtonian positive real numbers with 𝑘  . 𝑙  . 𝑚  . 𝑛  . 𝑝  . 𝛽(1),  𝑙 = 𝑚, 𝑛 = 𝑝, 
then 𝐾 has a unique fixed-point. 

Proof  
Take 𝑎 ∈ 𝑋, 𝑡 ≥ 𝛽(0), we construct 

𝑎 = 𝐾 𝑎 , 
𝑎 = 𝐾 𝑎 . 

Then 

𝑑 (𝑎 , 𝑎 ) = 𝑑 (𝐾 𝑎 , 𝐾 𝑎 ) 
 . 𝑘 ×

 . 𝑑 (𝑎 , 𝑎 )  . 𝑙 ×
 . 𝑑 (𝑎 , 𝐾 𝑎 )  . 𝑚 ×

 . 𝑑 (𝑎 , 𝐾 𝑎 ) 
. 𝑛 ×

 . 𝑑 (𝑎 , 𝐾 𝑎 )  . 𝑝(𝑎 , 𝐾 𝑎 ) 
 . (𝑘  . 𝑙) ×

 . 𝑑 (𝑎 , 𝑎 )  . 𝑚 ×
 . 𝑑 (𝑎 , 𝑎 )  . 𝑛 ×

 . 𝑑 (𝑎 , 𝑎 ) 
. (𝑘  . 𝑙  . 𝑛) ×

 . 𝑑 (𝑎 , 𝑎 )  . (𝑚  . 𝑛) ×
 . 𝑑 (𝑎 , 𝑎 ). 
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It implies that 
 

  . (𝛽(1)  . 𝑚  . 𝑛) ×
 . 𝑑 (𝑎 , 𝑎 )  . (𝑘  . 𝑙  . 𝑛) ×

 . 𝑑 (𝑎 , 𝑎 ). 
So 

 
𝑑 (𝑎 , 𝑎 )  . 𝑟 ×

 . 𝑑 (𝑎 , 𝑎 ), where 𝑟 =
(   .   . )

( )  .   .
.  

 
𝑑 (𝑎 , 𝑎 ) = 𝑑 (𝐾 𝑎 , 𝐾 𝑎 ) 

  . 𝑘 ×
 . 𝑑 (𝑎 , 𝑎 )  . 𝑙 ×

 . 𝑑 (𝑎 , 𝐾 𝑎 )  . 𝑚 ×
 . 𝑑 (𝑎 , 𝐾 𝑎 ) 

  . 𝑛 ×
 . 𝑑 (𝑎 , 𝐾 𝑎 )  . 𝑝(𝑎 , 𝐾 𝑎 ) 

  . 𝑘 ×
 . 𝑑 (𝑎 , 𝑎 )  . 𝑙 ×

 . 𝑑 (𝑎 , 𝑎 )  . 𝑚 ×
 . 𝑑 (𝑎 , 𝑎 ) 

  . 𝑛 ×
 . 𝑑 (𝑎 , 𝑎 )  . 𝑝 ×

 . 𝑑 (𝑎 , 𝑎 ) 
  . (𝑘  . 𝑚  . 𝑝) ×

 . 𝑑 (𝑎 , 𝑎 )  . (𝑙  . 𝑝) ×
 . 𝑑 (𝑎 , 𝑎 ), 

 
implies that 

 𝑑 (𝑎 , 𝑎 )  . 𝑠 ×
 . 𝑑 (𝑎 , 𝑎 ), 

 
where 𝑠 =

(   .   . )

( )  .   .
. 

 
Therefore, we get for each 𝑡 = 0,1,2, . .. 
 

𝑑 (𝑎 , 𝑎 )  . 𝑟 ×
 . 𝑑 (𝑎 , 𝑎 ) 

  . 𝑟 ×
 . 𝑠 ×

 . 𝑑 (𝑎 , 𝑎 ) 
  . 𝑟 ×

 . (𝑟 ×
 . 𝑠) ×

 . 𝑑 (𝑎 , 𝑎 ) 
  . . . .   . 𝑟 ×

 . (𝑟 ×
 . 𝑠)  ×

 . 𝑑 (𝑎 , 𝑎 ), 
𝑑 (𝑎 , 𝑎 )  . 𝑠 ×

 . 𝑑 (𝑎 , 𝑎 ) 
  . . . .   . (𝑟 ×

 . 𝑠)(   . )  ×
 . 𝑑 (𝑎 , 𝑎 ). 

 
So, for 𝑦 < 𝑧 we have 
 

𝑑 𝑎 , 𝑎   . 𝑑 𝑎 , 𝑎  
  . 𝑑 𝑎 , 𝑎   . . . .   . 𝑑 (𝑎 , 𝑎 ) 

  . [𝑟 ×
 . (𝑟 ×

 . 𝑠)   .
 

(𝑟 ×
 . 𝑠) ] ×

 . 𝑑 (𝑎 , 𝑎 ) 

  . [
𝑟 ×

 . (𝑟 ×
 . 𝑠)

𝛽(1)  . 𝑟 ×
 . 𝑠

  .
(𝑟 ×

 . 𝑠)( )

𝛽(1)  . 𝑟 ×
 . 𝑠

] ×
 . 𝑑 (𝑎 , 𝑎 ) 

  . (𝛽(1)  . 𝑟) ×
 . [

(𝑟 ×
 . 𝑠)

𝛽(1)  . 𝑟 ×
 . 𝑠

] ×
 . 𝑑 (𝑎 , 𝑎 ). 

 
Then we deduced 
 

𝑑 𝑎 , 𝑎   . (𝛽(1)  . 𝑟) ×
 . [

(𝑟 ×
 . 𝑠)

𝛽(1)  . 𝑟 ×
 . 𝑠

] ×
 . 𝑑 (𝑎 , 𝑎 ), 

𝑑 𝑎 , 𝑎   . (𝛽(1)  . 𝑟) ×
 . [

(𝑟 ×
 . 𝑠)

𝛽(1)  . 𝑟 ×
 . 𝑠

] ×
 . 𝑑 (𝑎 , 𝑎 ), 

𝑑 𝑎 , 𝑎   . (𝛽(1)  . 𝑟) ×
 . [

(𝑟 ×
 . 𝑠)

𝛽(1)  . 𝑟 ×
 . 𝑠

] ×
 . 𝑑 (𝑎 , 𝑎 ). 

For 0 < 𝑤 < 𝑣, 𝑑 (𝑎 , 𝑎 )  . 𝑞 , where 
 

𝑞 = (𝛽(1)  . 𝑟) ×
 . [

(  ×
 . )

( )  .  ×
 . ] ×

 . 𝑑 (𝑎 , 𝑎 ) with an integer part of  .  

 
So {𝑎 } is non-Newtonian Cauchy. Since (𝑋, 𝑑 ) is non-Newtonian complete, there exists 𝑥 ∈ 𝑋 such that  
 

𝑎 →  𝑥.  
 
For a non-Newtonian real number 0  . 𝛽(𝑒), choose 𝑑 ∈ ℕ such that   
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 𝑑 (𝑥, 𝑎 )  .

( )

( ) ×
 . , 𝑑 (𝑎 , 𝑎 )  .

( )

( ) ×
 . , 𝑑 (𝑥, 𝑎 )  .

( )

( ) ×
 . ,  

 
for all 𝑡 ≥ 𝑑 , where  
 

 𝐴 =  𝑚𝑎𝑥{
( )  .

( )  .   .
,

  .

( )  .   .
,

( )  .   .
}.  

 
Now,  

𝑑 (𝑥, 𝐾 𝑎)  . 𝑑 (𝑥, 𝑎 )  . 𝑑 (𝑎 , 𝐾 𝑥) 
  . 𝑑 (𝑥, 𝑎 )  . 𝑑 (𝐾 𝑎 , 𝐾 𝑥) 

  . 𝑑 (𝑥, 𝑎 )  . 𝑘 ×
 . 𝑑 (𝑥, 𝑎 )  . 𝑙 ×

 . 𝑑 (𝑥, 𝐾 𝑥)  . 𝑚 ×
 . 𝑑 (𝑎 , 𝐾 𝑎 ) 

  . 𝑛 ×
 . 𝑑 (𝑥, 𝐾 𝑎 )  . 𝑝 ×

 . 𝑑 (𝑎 , 𝐾 𝑥) 
  . 𝑑 (𝑥, 𝑎 )  . 𝑘 ×

 . 𝑑 (𝑥, 𝑎 )  . 𝑙 ×
 . 𝑑 (𝑥, 𝐾 𝑥)  . 𝑚 ×

 . 𝑑 (𝑎 , 𝑎 ) 
  . 𝑛 ×

 . 𝑑 (𝑥, 𝑎 )  . 𝑝 ×
 . 𝑑 (𝑎 , 𝑥)  . 𝑝 ×

 . 𝑑 (𝑥, 𝐾 𝑥) 
  . (𝛽(1)  . 𝑛) ×

 . 𝑑 (𝑥, 𝑎 )  . (𝑘  . 𝑝) ×
 . 𝑑 (𝑥, 𝑎 ) 

  . 𝑚 ×
 . 𝑑 (𝑎 , 𝑎 )  . (𝑙  . 𝑝) ×

 . 𝑑 (𝑥, 𝐾 𝑥). 
𝑑 (𝑥, 𝐾 𝑥)  . 𝐴 ×

 . 𝑑 (𝑥, 𝑎 )  . 𝐴 ×
 . 𝑑 (𝑥, 𝑎 )  . 𝐴 ×

 . 𝑑 (𝑎 , 𝑎 ) 

  .
𝛽(𝑒)

𝛽(3)
  .

𝛽(𝑒)

𝛽(3)
  .

𝛽(𝑒)

𝛽(3)
= 𝛽(𝑒). 

 
Therefore 
 

𝑑 (𝑥, 𝐾 𝑥)  .
( )

( )
  for every 𝑦 ∈ ℕ. From ( )

( )
  . 𝑑 (𝑥, 𝐾 𝑥)  . 𝛽(0) we have 𝑑 (𝑥, 𝐾 𝑥) = 𝛽(0). This implies that 

𝑥 = 𝐾 𝑥.  
 

By using the inequality, 
 
 

𝑑 (𝑥, 𝐾 𝑥)  . 𝑑 (𝑥, 𝑎 )  . 𝑑 (𝑎 , 𝐾 𝑥), 
now we show that 𝑥 = 𝐾 𝑥.  
 

𝑑 (𝐾𝑥, 𝑥) = 𝑑 (𝐾𝐾 𝑥, 𝐾 𝑥) = 𝑑 (𝐾 𝐾𝑥, 𝐾 𝑥) 
  . 𝑘 ×

 . 𝑑 (𝐾𝑥, 𝑥)  . 𝑙 ×
 . 𝑑 (𝐾𝑥, 𝐾 𝐾𝑥) 

  . 𝑚 ×
 . 𝑑 (𝑥, 𝐾 𝑥)  . 𝑛 ×

 . 𝑑 (𝐾𝑥, 𝐾 𝑥)  . 𝑝 ×
 . 𝑑 (𝑥, 𝐾 𝐾𝑥) 

  . 𝑘 ×
 . 𝑑 (𝐾𝑥, 𝑥)  . 𝑙 ×

 . 𝑑 (𝐾𝑥, 𝐾𝑥) 
  . 𝑚 ×

 . 𝑑 (𝑥, 𝑥)  . 𝑛 ×
 . 𝑑 (𝐾𝑥, 𝑥)  . 𝑝 ×

 . 𝑑 (𝑥, 𝐾𝑥) 
=(𝑘  . 𝑛  . 𝑝) ×

 . 𝑑 (𝐾𝑥, 𝑥). 
 

So 𝑥 is a fixed-point of 𝐾.  
We suppose that for some 𝑥∗, there exists another point 𝑥∗ ∈ 𝑋 such that 𝑥∗ = 𝐾𝑥∗. Thus, we have 
 

                                                                  𝑑 (𝑥, 𝑥∗) = 𝑑 (𝐾 𝑥, 𝐾 𝑥∗) 
  . 𝑘 ×

 . 𝑑 (𝑥, 𝑥∗)  . 𝑙 ×
 . 𝑑 (𝑥, 𝐾 𝑥) 

  . 𝑚 ×
 . 𝑑 (𝑥∗, 𝐾 𝑥∗)  . 𝑛 ×

 . 𝑑 (𝑥, 𝐾 𝑥∗)  . 𝑝 ×
 . 𝑑 (𝑥∗, 𝐾 𝑥) 

  . 𝑘 ×
 . 𝑑 (𝑥, 𝑥∗)  . 𝑙 ×

 . 𝑑 (𝑥, 𝑥) 
  . 𝑚 ×

 . 𝑑 (𝑥∗, 𝑥∗)  . 𝑛 ×
 . 𝑑 (𝑥, 𝑥∗)  . 𝑝 ×

 . 𝑑 (𝑥, 𝑥∗) 
                                                                     . (𝑘  . 𝑛  . 𝑝) ×

 . 𝑑 (𝑥, 𝑥∗).  
 
Consequently, 𝑥∗ is equal to 𝑥. 

 
Theorem  

Let 𝑑  be non-Newtonian complete metric on 𝑋. If  𝐾:𝑋 → 𝑋 satisfies  
 

𝑑 (𝐾𝑎, 𝐾𝑏)  . 𝑘 ×
 . 𝑑 (𝑎, 𝑏)  . 𝑙 ×

 . 𝑑 (𝑎, 𝐾𝑎) 
  . 𝑚 ×

 . 𝑑 (𝑏, 𝐾𝑏)  . 𝑛 ×
 . 𝑑 (𝑎, 𝐾𝑏)  . 𝑝 ×

 . 𝑑 (𝑏, 𝐾𝑎) 
 

for all 𝑎, 𝑏 ∈  𝑋, where 𝑘, 𝑙, 𝑚, 𝑛, 𝑝 are non-Newtonian positive real numbers with 𝑘  . 𝑙  . 𝑚  . 𝑛  . 𝑝  . 𝛽(1), then K has a 
unique fixed-point. 
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Proof  
Since 𝑑  is a non-Newtonian metric, the above inequality implies that  
 

 
𝑑 (𝐾𝑎, 𝐾𝑏)  . 𝑘 ×

 . 𝑑 (𝐾𝑎, 𝐾𝑏) 

  .
𝑙  . 𝑚

𝛽(2)
 ×
 . [𝑑 (𝑎, 𝐾𝑎)  . 𝑑 (𝑏, 𝐾𝑏)]  .

𝑛  . 𝑝

𝛽(2)
 ×
 . [𝑑 (𝑎, 𝐾𝑏)  . 𝑑 (𝑏, 𝐾𝑎)]. 

 
If we substitute 𝐾 = 𝐾 = 𝐾 in the above theorem, we get the required result.  
 
Corollary  

Let (𝑋, 𝑑 ) be a non-Newtonian complete metric space and 𝑣, 𝑤 be positive integers. If a self-mapping 𝐾 on 𝑋 
satisfies  

 
𝑑 (𝐾 𝑎, 𝐾 𝑏)  . 𝑘 ×

 . 𝑑 (𝑎, 𝑏)  . 𝑙 ×
 . 𝑑 (𝑎, 𝐾 𝑎) 

  . 𝑚 ×
 . 𝑑 (𝑏, 𝐾 𝑏)  . 𝑛 ×

 . 𝑑 (𝑎, 𝐾 𝑏)  . 𝑝 ×
 . 𝑑 (𝑏, 𝐾 𝑎) 

 
for all 𝑎, 𝑏 ∈  𝑋, where 𝑘, 𝑙, 𝑚, 𝑛, 𝑝 be non-Newtonian positive real numbers with 𝑘  . 𝑙  . 𝑚  . 𝑛  . 𝑝  . 𝛽(1), 𝑙 = 𝑚, 𝑛 = 𝑝, 
then 𝐾 has a unique fixed-point. 
 
Conclusion 

 
In this paper, we use the concept of non-Newtonian metric space and present some new fixed-point theorems. We 

expect that our research results can offer a mathematical basis. In the future research, we will explore so concrete 
applications of the obtained results, here. 
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