On Fixed Point Results for Generalized Contractions in Non-Newtonian Metric Spaces

Demet Binbaşıoğlu 1,a,*
1 Department of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat, Türkiye.
*aCorresponding author

ABSTRACT

The work of non-Newtonian calculus was begun in 1972. This calculus provides a different area to the classical one. Non-Newtonian metric concept was defined in 2002 by Basar and Cakmak. Then Binbaşıoğlu et al. had given the metric spaces of non-Newtonian in 2016. Also, they started to study on the fixed-point theory by defining some topological properties in non-Newtonian metric spaces. In this work, we give some fixed-point theorems and results for self-mappings satisfying certain conditions in the non-Newtonian metric spaces.

Keywords: Fixed point, Non-Newtonian metric space, Contraction mapping, Generalized contraction mapping.

Introduction

There exist too many studies on fixed-point theory in different spaces [1-12]. Also, there are many applications of the theory and mappings that meet certain conditions of contraction and have been a crucial area of different research works.

The non-Newtonian calculus is alternative to what is customary. The non-Newtonian calculus in various fields including information technology, fractal geometry, economic growth, finance, wave theory, quantum physics, in medicine for examples tumor therapy, cancer-chemotherapy, in mathematics for examples functional analysis, differential equations, approximation theory, problems of decision making, and chaos theory has many applications. The non-Newtonian metric concept was defined in 2002 by Basar et al. and then Binbaşıoğlu et al. gave the metric spaces of non-Newtonian in 2016. Also, they started to study on the fixed-point theory in non-Newtonian metric spaces.

In this work, we present fixed-point theorems and results for self-mappings satisfying certain conditions in the non-Newtonian metric spaces.

Preliminaries

We mention that some basic knowledge related to structure of non-Newtonian calculus.

Definition

A generator is called as an injective function from ℝ to a subset of ℝ [6].

Remark

Every generator generates an arithmetic. An arithmetic is generated by a generator [6].
\[|a|_N \text{ denotes the } \beta - \text{absolute value for a number } a \in A \subset \mathbb{R}(N) \text{ defined by } \beta(|\beta^{-1}(a)|) \text{ and so } \]

\[\sqrt{a^{2N}} = |a|_N = \beta(|\beta^{-1}(a)|). \]

Thus,

\[|a|_N = \beta(|\beta^{-1}(a)|) = \begin{cases} a, & \beta(0) \prec a, \\ \beta(0), & \beta(0) = a, \\ \beta(0) \succ a. & \end{cases} \]

Let us take any \(c \in \mathbb{R}(N) \). If \(c \prec \beta(0) \), then \(c \) is called a positive non-Newtonian real number. If \(c \succ \beta(0) \), then \(c \) is called a non-Newtonian negative real number. If \(c = \beta(0) \), then \(c \) is called an unsigned non-Newtonian real number. Non-Newtonian positive and negative real numbers are denoted by \(\mathbb{R}^+(N) \) and \(\mathbb{R}^-(N) \) respectively [6].

Definition

Let us take \(X \neq \emptyset \) and suppose that \(d_N: X \times X \to \mathbb{R}^+(N) \) satisfies the following conditions for \(a, b, c \in X \):

\((\text{NM1}) d_N(a, b) = \beta(0) \) if \(a = b \),

\((\text{NM2}) d_N(a, b) = d_N(b, a) \),

\((\text{NM3}) d_N(a, b) \preceq d_N(a, c) \preceq d_N(b, c) \).

Then \(d_N \) is a non-Newtonian metric on \(X \). Also \((X, d_N) \) is a non-Newtonian metric space [6].

Example

Assume that \(d_N \) is defined as \(d_N(a, b) = |a \prec b|_N \) for all \(a, b \in \mathbb{R}(N) \), then \((\mathbb{R}(N), d_N) \) is a non-Newtonian metric space [6].

Main Results

Theorem

Let \(d_N \) be a non-Newtonian complete metric on \(X \) and \(c, d \) be positive integers. If a mapping \(K: X \to X \) satisfies

\[d_N(K^c a, K^d b) \preceq k \times d_N(a, b) \times d_N(a, K^c a) \times d_N(b, K^d b) \times d_N(a, K^c a) \times d_N(b, K^d b) \]

for all \(a, b \in X \), where \(k, l, m, n, p \) are non-Newtonian positive real numbers with \(k \preceq l \preceq m \preceq n \preceq p \preceq \beta(0) \), then \(K \) has a unique fixed-point.

Proof

Take \(a_0 \in X, t \geq \beta(0) \), we construct

\[a_{2t+1} = K^c a_{2t}, \]

\[a_{2t+2} = K^d a_{2t+1}. \]

Then

\[d_N(a_{2t+1}, a_{2t+2}) = d_N(K^c a_{2t}, K^d a_{2t+1}) \]

\[\preceq k \times d_N(a_{2t}, a_{2t+1}) \times d_N(a, K^c a) \times d_N(b, K^d b) \times d_N(a, K^c a) \times d_N(b, K^d b). \]
It implies that
\[
\varepsilon(\beta(1) \varepsilon n) \varepsilon d_N(a_{2t+1}, a_{2t+2}) \varepsilon (k \varepsilon l \varepsilon n) \varepsilon d_N(a_{2t}, a_{2t+1}).
\]
So
\[
d_N(a_{2t+1}, a_{2t+2}) \varepsilon \varepsilon r \varepsilon d_N(a_{2t}, a_{2t+1}), \text{ where } r = \frac{(k \varepsilon l \varepsilon n)}{\beta(1) \varepsilon l \varepsilon n}
\]
implies that
\[
d_N(a_{2t+2}, a_{2t+3}) \varepsilon s \varepsilon d_N(a_{2t+1}, a_{2t+2}),
\]
where \(s = \frac{(k \varepsilon m \varepsilon p)}{\beta(1) \varepsilon m \varepsilon n} \).

Therefore, we get for each \(t = 0, 1, 2, \ldots \)
\[
d_N(a_{2t+1}, a_{2t+2}) \varepsilon r \varepsilon d_N(a_{2t}, a_{2t+1})
\]
\[
\varepsilon r \varepsilon \varepsilon \varepsilon d_N(a_{2t-1}, a_{2t})
\]
\[
\varepsilon r \varepsilon \varepsilon \varepsilon d_N(a_{2t-2}, a_{2t-1})
\]
\[
\varepsilon \ldots \varepsilon \varepsilon \varepsilon d_N(a_0, a_1),
\]
\[
d_N(a_{2t+2}, a_{2t+3}) \varepsilon s \varepsilon d_N(a_{2t+1}, a_{2t+2})
\]
\[
\varepsilon \ldots \varepsilon \varepsilon \varepsilon d_N(a_0, a_1).
\]

So, for \(y < z \) we have
\[
d_N(a_{2y+1}, a_{2y+2}) \varepsilon d_N(a_{2y+1}, a_{2y+2})
\]
\[
\varepsilon d_N(a_{2y+2}, a_{2y+3}) \varepsilon \ldots \varepsilon d_N(a_{2z}, a_{2z+1})
\]
\[
\varepsilon [r \varepsilon \sum_{i=y+1}^{z} (r \varepsilon s)^{\nu N} \varepsilon d_N(a_0, a_1)]
\]
\[
\varepsilon [r \varepsilon \varepsilon \varepsilon \varepsilon \varepsilon d_N(a_0, a_1)]
\]
\[
\varepsilon \beta(1) \varepsilon r \varepsilon \varepsilon \varepsilon d_N(a_0, a_1).
\]

Then we deduced
\[
d_N(a_{2y}, a_{2y+1}) \varepsilon (\beta(1) \varepsilon r) \varepsilon \varepsilon \varepsilon (r \varepsilon s)^{\nu N} \varepsilon d_N(a_0, a_1),
\]
\[
d_N(a_{2y}, a_{2z}) \varepsilon (\beta(1) \varepsilon r) \varepsilon \varepsilon \varepsilon (r \varepsilon s)^{\nu N} \varepsilon d_N(a_0, a_1),
\]
\[
d_N(a_{2y+1}, a_{2z+1}) \varepsilon (\beta(1) \varepsilon r) \varepsilon \varepsilon \varepsilon (r \varepsilon s)^{\nu N} \varepsilon d_N(a_0, a_1).
\]

For \(0 < w < v \), \(d_N(a_w, a_v) \varepsilon q_w \), where
\[
q_w = (\beta(1) \varepsilon r) \varepsilon \varepsilon \varepsilon (r \varepsilon s)^{\nu N} \varepsilon d_N(a_0, a_1) \text{ with an integer part of } \frac{w}{z}.
\]

So \(\{a_w\} \) is non-Newtonian Cauchy. Since \((X, d_N) \) is non-Newtonian complete, there exists \(x \in X \) such that
\[
a_w \rightarrow x.
\]

For a non-Newtonian real number \(0 \varepsilon \beta(e) \), choose \(d_0 \in \mathbb{N} \) such that
Theorem

We suppose that for some a_{2t}, now we show that $d_N(a_{2t-1}, a_{2t}) < \frac{\beta(e)}{\beta(3)} A d_N(x, a_{2t-1}) < \frac{\beta(e)}{\beta(3)} A d_N(x, a_{2t})$ for all $t \geq d_q$, where

$$
A = \max\{\frac{\beta(1) + n}{\beta(1)} l, \frac{k + p}{\beta(1)} l, \frac{m}{\beta(1)} l, \frac{m}{\beta(1)} l, \frac{m}{\beta(1)} l\}.
$$

Now,

$$
\begin{align*}
& d_N(x, K^w a) < d_N(x, a_{2t}) + d_N(a_{2t}, K^w x) < \\
& < d_N(x, a_{2t}) + k \cdot d_N(x, a_{2t-1}) + l \cdot d_N(a_{2t-1}, K^w a_{2t-1}) + m \cdot d_N(a_{2t-1}, K^w a_{2t-1}) \\
& < d_N(x, a_{2t}) + k \cdot d_N(x, K^w a_{2t-1}) + l \cdot d_N(a_{2t-1}, x) + m \cdot d_N(a_{2t-1}, a_{2t}) \\
& < d_N(x, K^w x) + k \cdot d_N(x, a_{2t}) + l \cdot d_N(a_{2t-1}, x) + m \cdot d_N(a_{2t-1}, a_{2t}) \\
& \leq d_N(x, K^w x) + A \cdot d_N(x, a_{2t}) + A \cdot d_N(a_{2t-1}, a_{2t}) \\
& \leq \frac{\beta(e)}{\beta(3)} + \frac{\beta(e)}{\beta(3)} + \frac{\beta(e)}{\beta(3)} = \beta(e).
\end{align*}
$$

Therefore

$$
d_N(x, K^w x) < \frac{\beta(e)}{\beta(y)} d_N(x, K^w x),
$$

for every $y \in \mathbb{N}$. From $\frac{\beta(e)}{\beta(y)} d_N(x, K^w x) < \beta(0)$ we have $d_N(x, K^w x) = \beta(0)$. This implies that $x = K^w x$.

By using the inequality,

$$
d_N(x, K^w x) < d_N(x, a_{2t+1}) + d_N(a_{2t+1}, K^w x),
$$

now we show that $x = K^w x$.

So x is a fixed-point of K.

We suppose that for some x^*, there exists another point $x^* \in X$ such that $x^* = Kx^*$. Thus, we have

$$
\begin{align*}
& d_N(x, x^*) = d_N(K^w x, K^w x) = d_N(K^w x, K^w x) \\
& < k \cdot d_N(K^w x, x^*) + l \cdot d_N(K^w x, x^*) \\
& < k \cdot d_N(K^w x, x^*) + l \cdot d_N(K^w x, x^*) + m \cdot d_N(k^w x, x^*) + n \cdot d_N(k^w x, x^*) \\
& \leq (k + n + p) \cdot d_N(K^w x, x^*).
\end{align*}
$$

Consequently, x^* is equal to x.

Theorem

Let d_N be non-Newtonian complete metric on X. If $K : X \to X$ satisfies

$$
\begin{align*}
d_N(Ka, Kb) & < k \cdot d_N(a, b) + l \cdot d_N(a, Ka) \\
& < k \cdot d_N(a, b) + l \cdot d_N(a, Ka) \\
& < k \cdot d_N(a, b) + l \cdot d_N(a, Kb) + m \cdot d_N(a, Kb) + p \cdot d_N(b, Ka)
\end{align*}
$$

for all $a, b \in X$, where k, l, m, n, p are non-Newtonian positive real numbers with $k \cdot l \cdot m \cdot n \cdot p \cdot \beta(1)$, then K has a unique fixed-point.
Proof
Since d_N is a non-Newtonian metric, the above inequality implies that

$$d_N(Ka,Kb) \leq k d_N(a,b) + \frac{l + m}{\beta(2)} d_N(a,Ka) + \frac{n + p}{\beta(2)} d_N(b,Kb).$$

If we substitute $K^v = K^w = K$ in the above theorem, we get the required result.

Corollary
Let (X, d_N) be a non-Newtonian complete metric space and v, w be positive integers. If a self-mapping K on X satisfies

$$d_N(K^v a, K^w b) \leq k d_N(a,b) + l d_N(a,K^v a) + m d_N(b,K^w b) + n d_N(a,K^w b) + p d_N(b,K^v a)$$

for all $a, b \in X$, where k, l, m, n, p be non-Newtonian positive real numbers with $k \leq l \leq m \leq n \leq p \beta(1)$, $l = m = n = p$, then K has a unique fixed-point.

Conclusion

In this paper, we use the concept of non-Newtonian metric space and present some new fixed-point theorems. We expect that our research results can offer a mathematical basis. In the future research, we will explore so concrete applications of the obtained results, here.

Acknowledgements

The author wishes to thank the referee for valuable suggestions and comments which improved the paper considerably.

Conflicts of Interest

The author states that did not has conflict of interests.

References