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Bertrand Curves and B-Lift Curves in Lorentzian 3-Space
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Abstract. In this article, based on Thorpe’s definition, we define a new curve called the B-lift curve in Lorentzian
3-space and examine the Frenet vectors of the B-lift curve. Furthermore, we examine the relationship between the
Frenet vectors of the Bertrand curve and the Frenet vectors of the natural lift curve. Finally, we give an example on
these results.
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1. Introduction

The Lorentzian space is a field that is extensively studied by those interested in theoretical physics and mathemat-
ics. This field increased its popularity in the 20th century when it was used in Einstein’s special and general relativity
theories and therefore it had an opportunity to develop. Today, it has become a structure used in every field of sci-
ence whether theoretical or applied. Lorentzian space is often compared to Euclidean space. The spacetime interval
corresponding to the geometric length in Lorentzian space is spacelike, timelike or lightlike (null).

The concept of curves is one of the fundemental topics of differential geometry. One of these curves is the natural
lift curve. Natural lift curve was introduced in Thorpe’s “Elementary Topics in Differential Geometry” book [11]. The
natural lift curve is defined as the curve drawn by the endpoints of the unit tangent vector at each point of a given
curve. Many mathematicians have studied on natural lift curves [2–6]. The Frenet vectors of the natural lift curve were
introduced by Çalışkan and Ergün with regard to the Frenet vectors of the main curve [5].

A space curve can be defined depending on the parameter and the Frenet operators of the curve can be characterized.
Some special curve definitions are given by establishing a relationship between Frenet vectors at the mutual points of
two curves in space. Bertrand curves are one of these curves.

The emergence of the Bertrand curve is due to the problem posed by Venant in 1845. Venant posed the problem of
whether there is another curve whose normals are linearly dependent on a surface produced on the principal normal of
a curve. Bertrand solved this problem in 1850. A basic study on the Bertrand curves was examined by Ekmekci and
İlarslan in 2018. They characterized the Bertrand curves in Lorentzian space [1].

In this study, we defined the B-Lift curve and obtained the Frenet vectors of this curve in the Lorentzian 3-space.
Besides, we introduce the equations of the Frenet vectors between the Bertrand curve and the B-Lift curve. Eventually,
we give an examples and draw our curves with Mathematica program.
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2. Preliminaries

The Lorentzian 3-space R3
1 is the real vector space R3 supplied by Lorentzian inner product defined as

< x, y >IL= −x1y1 + x2y2 + x3y3,

where x = (x1, x2, x3) , y = (y1, y2, y3) ∈ R3 [7].
Let x = (x1, x2, x3) be a vector in R3

1. Then, x is called spacelike if ⟨ x,x ⟩IL > 0 or x=0, timelike if ⟨ x,x ⟩IL < 0, and
lightlike (null) if ⟨ x,x ⟩IL = 0 and x,0 [7].

A curve γ : I ⊂ R→ R3 is spacelike, timelike or lightlike (null), if γ
′

(s) is spacelike, timelike or lightlike (null) at
any s ∈ I, respectively. Using the Lorentzian inner product, the norm of the vector x = (x1, x2, x3) is defined as [7]

∥x∥=
√
|⟨x, x⟩IL|.

If ∥x∥ =1, then the vector x is called unit vector. For the vectors x and y in R3
1, the Lorentzian vector product of the

vectors x and y is defined as [8]

x × y =

∣∣∣∣∣∣∣∣
e1 −e2 −e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣∣∣ .
Suppose that γ is a unit speed curve. The set {T (s),N(s), B(s)} is called Frenet frame given by tangent, principal

normal and binormal vectors, respectively. Now, we examine Frenet formulas depending on the Lorentzian character
of the curve [12]:

i) Let γ be unit speed spacelike curve with spacelike binormal. Then, T and B are spacelike vectors, N is a timelike
vector. In this condition, we have

N × B = −T, T × N = −B, B × T = −N.

Frenet formulas are following as

T
′

= κN,

N
′

= κT + τB,

B
′

= τN.

ii) Let γ be unit speed spacelike curve with timelike binormal. Then, T and N are spacelike vectors, B is a timelike
vector. In this case, we have

N × B = −T, T × N = B, B × T = −N.

Frenet formulas are as follows

T
′

= κN,

N
′

= −κT + τB,

B
′

= τN.

iii) Let γ be unit speed timelike curve. Then, N and B are spacelike vectors and T is a timelike vector. In that case,
we have

N × B = T, T × N = −B B × T = −N.

Frenet formulas are as follows

T
′

= κN,

N
′

= κT + τB,

B
′

= −τN.

Lemma 2.1 ( [10]). Assume that x and y are linearly independent spacelike vectors which span a spacelike vector
subspace in R3

1. In that case, we get the following inequality:

|⟨x, y⟩IL|≤ ∥x∥·∥y∥.



Bertrand Curves and B-Lift Curves in Lorentzian 3-Space 26

Hence, we can write

⟨x, y⟩IL = ∥x∥·∥y∥cosφ,

where φ is a Lorentzian spacelike angle amongst x and y.

Lemma 2.2 ( [10]). Let x and y be linearly independent spacelike vectors which span a timelike vector subspace in
R3

1. Then we have

|⟨x, y⟩IL|> ∥x∥·∥y∥.

Hence, we can write

|⟨x, y⟩IL|= ∥x∥·∥y∥coshφ,

where φ is a Lorentzian timelike angle amongst x and y.

Lemma 2.3 ( [10]). Suppose that x is a spacelike vector and y is a timelike vector in R3
1. In this situation, we can write

|⟨x, y⟩IL|= ∥x∥·∥y∥sinhφ,

where φ is a Lorentzian timelike angle amongst x and y.

Lemma 2.4 ( [10]). Imagine that x and y are timelike vectors in R3
1. In that case, we can write

⟨x, y⟩IL = ∥x∥·∥y∥coshφ,

where φ is a Lorentzian timelike angle amongst x and y.

Definition 2.5 ( [1]). Assume that γ= (γ(s); T (s), N(s), B(s)) and γ∗= (γ∗(s∗); T ∗(s∗), N∗(s∗), B∗(s∗)) are regular curves
in R3

1. γ(s) and γ∗(s∗) are called the Bertrand curve if N(s) and N∗(s∗) are linearly independent. In that case, (γ, γ∗) is
called Bertrand mate.

Proposition 2.6 ( [9]). Let (γ, γ∗) be a timelike-spacelike Bertrand mate. We know the following equations amongst
the Frenet frame {T ∗, N∗, B∗} of the curve γ∗ and the Frenet frame {T, N, B} of the curve γ : T ∗

N∗

B∗

 =
 sinhθ 0 coshθ

0 1 0
−coshθ 0 −sinhθ


 T

N
B

.
Proposition 2.7 ( [9]). Let (γ, γ∗) be a timelike Bertrand couple. We know the following equation: T ∗

N∗

B∗

 =
 coshθ 0 sinhθ

0 1 0
−sinhθ 0 coshθ


 T

N
B

.
Proposition 2.8 ( [9]). Let γ and γ∗ be spacelike curves with spacelike binormal. We know the following equation
among the Frenet frame {T ∗, N∗, B∗} of the curve γ∗ and the Frenet frame {T, N, B} of the curve γ : T ∗

N∗

B∗

 =
 cosθ 0 sinθ

0 1 0
sinθ 0 −cosθ


 T

N
B

.
Proposition 2.9 ( [9]). Let γ be a spacelike curve with timelike binormal. Then, the Bertrand curve of the curve γ is
the spacelike curve and B∗ is a timelike vector. We know the following equation among the Frenet frame {T ∗, N∗, B∗}
of the curve γ∗ and the Frenet frame {T, N, B} of the curve γ : T ∗

N∗

B∗

 =
 coshθ 0 sinhθ

0 1 0
sinhθ 0 −coshθ


 T

N
B

.
Proposition 2.10 ( [9]). Assume that γ is a spacelike curve and B is a timelike vector. Then, the Bertrand curve of the
curve γ is the timelike curve. We know the following equation among the Frenet frame {T ∗, N∗, B∗} of the curve γ∗ and
the Frenet frame {T, N, B} of the curve γ : T ∗

N∗

B∗

 =
 sinhθ 0 coshθ

0 1 0
coshθ 0 −sinhθ


 T

N
B

.
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3. Bertrand Curves and B-Lift Curves in Lorentzian 3-Space

Definition 3.1. Let γ : I → P be a unit speed curve, then γB : I → T P is called the B-Lift curve and ensures the
following equation:

γB(s) = (γ(s), B(s)) = B(s)|γ(s),

where B is the binormal vector of the curve γ.

Proposition 3.2. Let γ be a timelike curve. Then, γB is a spacelike curve with spacelike or timelike binormal.
i) Assume that γB is a spacelike curve and BB is timelike vector. We know the following equations among the Frenet

frame {TB, NB, BB} of the curve γB and the Frenet frame {T, N, B} of the curve γ :
a) If W is spacelike vector, we get TB

NB

BB

 =
 0 −1 0
−coshφ 0 −sinhφ
sinhφ 0 −coshφ


 T

N
B

.
b) If W is timelike vector, we get  TB

NB

BB

 =
 0 −1 0
−sinhφ 0 −coshφ
coshφ 0 sinhφ


 T

N
B

.
ii) Assume that γB is a spacelike curve and BB is spacelike vector. We know the following equations among the

Frenet frame {TB, NB, BB} of the curve γB and the Frenet frame {T, N, B} of the curve γ :
a) If W is spacelike vector, we know TB

NB

BB

 =
 0 −1 0

coshφ 0 sinhφ
sinhφ 0 −coshφ


 T

N
B

.
b) If W is timelike vector, we know TB

NB

BB

 =
 0 −1 0

sinhφ 0 coshφ
coshφ 0 sinhφ


 T

N
B

.
Proposition 3.3. Suppose that γ is a spacelike curve and B is a spacelike vector. Then, γB is a timelike curve. We
know the following equation among the Frenet frame {TB, NB, BB} of the curve γB and the Frenet frame {T, N, B} of
the curve γ :  TB

NB

BB

 =
 0 −1 0

cosφ 0 sinφ
sinφ 0 −cosφ


 T

N
B

.
Proposition 3.4. Assume that γ is a spacelike curve and B is timelike vector. Then, γB is a spacelike curve and BB is
timelike or spacelike vector.

i) Let γB be a spacelike curve with timelike binormal. We know the following equations among the Frenet frame
{TB, NB, BB} of the curve γB and the Frenet frame {T, N, B} of the curve γ :

a) If W is spacelike vector, we have TB

NB

BB

 =
 0 −1 0
−sinhφ 0 coshφ
coshφ 0 −sinhφ


 T

N
B

.
b) If W is timelike vector, we have TB

NB

BB

 =
 0 −1 0
−coshφ 0 sinhφ
sinhφ 0 −coshφ


 T

N
B

.
ii) Let γB be a spacelike curve with spacelike binormal. We know the following equations among the Frenet frame

{TB, NB, BB} of the curve γB and the Frenet frame {T, N, B} of the curve γ :
a) If W is spacelike vector, we have
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NB

BB

 =
 0 −1 0

sinhφ 0 −coshφ
coshφ 0 −sinhφ


 T

N
B

.
b) If W is timelike vector, we have TB

NB

BB

 =
 0 −1 0

coshφ 0 sinhφ
sinhφ 0 −coshφ


 T

N
B

.
Proposition 3.5. Imagine that γ is a spacelike curve and B is a spacelike vector. In that case, γB is a timelike curve,
γ∗ is a spacelike curve and B∗ is a spacelike vector. We know the following equations:

T ∗ = cos(θ − φ)NB − sin(θ − φ)BB,

N∗ = TB,

B∗ = sin(θ + φ)NB − cos(θ + φ)BB.

Proposition 3.6. Let γ be a spacelike curve with timelike binormal. Then, γB and γ∗ are spacelike curve with timelike
binormal.

a) If W Darboux vector is spacelike, we get

T ∗ = sinh(θ + φ)NB + cosh(θ + φ)BB,

N∗ = TB,

B∗ = cosh(θ + φ)NB + sinh(θ + φ)BB.

b) If W Darboux vector is timelike, we get

T ∗ = −cosh(θ + φ)NB − sinh(θ + φ)BB,

N∗ = TB,

B∗ = −sinh(θ + φ)NB − cosh(θ + φ)BB.

Proposition 3.7. Assume that γ is a spacelike curve and B is a timelike vector. In that case, γB is a spacelike curve
with timelike binormal and γ∗ is a spacelike curve with spacelike binormal.

a) If W Darboux vector is spacelike, we get

T ∗ = sinh(θ + φ)NB − cosh(θ + φ)BB,

N∗ = TB,

B∗ = cosh(θ + φ)NB − sinh(θ + φ)BB.

b) If W Darboux vector is timelike, we get

T ∗ = −cosh(θ + φ)NB + sinh(θ + φ)BB,

N∗ = TB,

B∗ = −sinh(θ + φ)NB + cosh(θ + φ)BB.

Proposition 3.8. Suppose that γ is a spacelike curve and B is a timelike vector. Then, γB is a spacelike curve, BB is
timelike vector and γ∗ is a timelike curve.

a) If W Darboux vector is spacelike, we get

T ∗ = cosh(θ + φ)NB + sinh(θ + φ)BB,

N∗ = TB,

B∗ = sinh(θ + φ)NB + cosh(θ + φ)BB.

b) If W Darboux vector is timelike, we get

T ∗ = −sinh(θ + φ)NB − cosh(θ + φ)BB,

N∗ = TB,

B∗ = −cosh(θ + φ)NB − sinh(θ + φ)BB.
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Proposition 3.9. Imagine that γ is a spacelike curve and B is a timelike vector. Then, γB is a spacelike curve, BB is a
spacelike vector and γ∗ is a timelike curve.

a) If W Darboux vector is spacelike, we get

T ∗ = −cosh(θ + φ)NB + sinh(θ + φ)BB,

N∗ = TB,

B∗ = −sinh(θ + φ)NB + cosh(θ + φ)BB.

b) If W Darboux vector is timelike, we get

T ∗ = sinh(θ + φ)NB − cosh(θ + φ)BB,

N∗ = TB,

B∗ = cosh(θ + φ)NB − sinh(θ + φ)BB.

Proposition 3.10. Assume that γ is a timelike curve. Then, γB is a spacelike curve, BB is a timelike vector and γ∗ is a
timelike curve.

a) If W Darboux vector is spacelike, we get

T ∗ = −cosh(θ − φ)NB + sinh(θ − φ)BB,

N∗ = −TB,

B∗ = −sinh(θ − φ)NB + cosh(θ − φ)BB.

b) If W Darboux vector is timelike, we get

T ∗ = −sinh(θ − φ)NB + cosh(θ − φ)BB,

N∗ = −TB,

B∗ = −cosh(θ − φ)NB + sinh(θ − φ)BB.

Proposition 3.11. Assume that γ is a timelike curve. Then, γB is a spacelike curve, BB is a spacelike vector and γ∗ is
a timelike curve.

a) If W Darboux vector is spacelike, we get

T ∗ = cosh(θ − φ)NB + sinh(θ − φ)BB,

N∗ = −TB,

B∗ = sinh(θ − φ)NB + cosh(θ − φ)BB.

b) If W Darboux vector is timelike, we get

T ∗ = sinh(θ − φ)NB + cosh(θ − φ)BB,

N∗ = −TB,

B∗ = cosh(θ − φ)NB + sinh(θ − φ)BB.

Proposition 3.12. Imagine that γ is a timelike curve. Then, γB is a spacelike curve, BB is timelike vector and γ∗ is a
spacelike curve.

a) If W Darboux vector is spacelike, we get

T ∗ = −sinh(θ − φ)NB + cosh(θ − φ)BB,

N∗ = −TB,

B∗ = −cosh(θ − φ)NB + sinh(θ − φ)BB.

b) If W Darboux vector is timelike, we get

T ∗ = −cosh(θ − φ)NB + sinh(θ − φ)BB,

N∗ = −TB,

B∗ = −sinh(θ − φ)NB + cosh(θ − φ)BB.
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Proposition 3.13. Suppose that γ is a timelike curve. Then, γB is a spacelike curve, BB is a spacelike vector and γ∗ is
a spacelike curve.

a) If W Darboux vector is spacelike, we get

T ∗ = sinh(θ − φ)NB + cosh(θ − φ)BB,

N∗ = −TB,

B∗ = cosh(θ − φ)NB + sinh(θ − φ)BB.

b) If W Darboux vector is timelike, we get

T ∗ = cosh(θ − φ)NB + sinh(θ − φ)BB,

N∗ = −TB,

B∗ = sinh(θ − φ)NB + cosh(θ − φ)BB.

Corollary 3.14. Let γB be a B-Lift curve of γ and γ∗ be a Bertrand mate of γ, then the set {TB,N∗} is linearly
independent.

Example 3.15. Let γ be a unit speed spacelike circular helix curve that is given by γ(s) =
(

4
3 s, 5

3 coss, 5
3 sins

)
.

Figure 1. Circular helix γ(s)

After some calculations the Frenet vectors of the curve γ are as follows:

T (s) =

(
4
3
,−

5
3

sins,
5
3

coss
)
,

N(s) = (0, coss,−sins) ,

B(s) =

(
5
3
,

4
3

sins,
4
3

coss
)
.

Since γB(s) = B(s), we have γB(s) =
(

5
3 ,

4
3 sins, 4

3 coss
)
.

Figure 2. The curve γB(s)
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Bertrand couple of the curve γ(s) is given as

γ∗(s) = γ(s) + λ · N(s), λ ∈ R

=

(
4
3

s,
5
3

coss,
5
3

sins
)
+ λ · (0, coss, sins)

For λ=−2
3 , we have γ∗(s)=

(
4
3 s, coss, sins

)
.

Figure 3. The curve γ∗(s)
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