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Abstract

We reconstruct the Multiplicative Hermite Equation from multiplicative Sturm-Liouville
equation. A new representation of eigenfunctions for the constructed problem are obtained
by the power series solution technique. While making these solutions, multiplicative
Hermite polynomials were used strongly. We get a generator for multiplicative Hermite
polynomials and construct integration representations for these polynomials. Finally, some
spectral properties of the multiplicative Hermite problem are examined in detail.

1. Introduction

Multiplicative calculus was introduced by Grossman and Katz [1, 2] in 1967 as an alternative to usual calculus. This type of
calculus is also known as non-Newtonian because of its difference from classical calculus of Newton and Leibniz. Multiplicative
calculus is a useful supplement to usual calculus in that it is tailored to situations involving exponential functions in the same
sense that the usual calculus is tailored to situations involving linear functions. Multiplicative calculus moves the roles of
subtraction and addition to division and multiplication. There are actually many reasons to study multiplicative analysis. It
improves the work of additive calculations indirectly. Problems that are difficult to solve in classical case can be solved with
incredible ease in here. Every property in Newtonian case can be defined in multiplicative analysis within certain rules.
Many events in nature change exponentially. For example: populations of countries, magnitude of an earthquake [3] are events
that behave in this manner. For this reason, using multiplicative analysis instead of usual analysis allows a better physical
evaluation of these type events. This calculus also gives better results than usual case in many fields such as finance, economics,
biology and demography. A very limited number of studies have been conducted on this analysis until the beginning of the
2000s. Recently, various studies have been carried out on it and quality and effective results have been obtained (see [4]- [13]).
A Sturm-Liouville equation is a second-order linear differential equation that allows us to find solutions that form an orthogonal
system. While many mathematicians have studied various properties of this equation, some special cases of it produce some
special equations [14]- [26]. One of these special equations is the Hermite equations. Hermite equations have many real world
practical applications [27]- [33]. We will only focus on the methods of solution and use in a mathematical sense. In solving
these equations explicit solutions cannot be found. That is solutions in terms of elementary functions cannot be found. In many
cases, it is easier to find a numerical or series solution. Determining the generating function and integral representation of the
multiplicative Hermite polynomials, which is one of the main aims of the present study, is very important in physical problems.
For example, in the classical case, one computes the bond energy of the atomic nucleus with the use of Eden-Goldstone integral
equation which contains Hermite polynomials on the integrals. In addition, the density of the probability distribution of the
coordinate in the ensemble of quantum harmonic oscillators is represented by generating function of Hermite polynomials [34].
Therefore, Hermite equation, which has a very important place in classical sense, and its solutions will be dealt with in a
multiplicative sense and will be examined in detail.
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In this study, apart from known analysis, Hermite equation will be established and its properties will be examined with methods
similar to classical case. The equation we solve in multiplicative case is actually a much more complex equation in classical
case, and solutions of the two equations coincide. Before moving on to basic results, let’s firstly express the concepts and
important theorems of multiplicative analysis that we will use in our study.

Definition 1.1. [4] Let f : A ⊂ R→ R be differentiable in usual case and f (x) > 0 for all x. If the below limit exists and
positive

f ∗(x) = lim
h→0

[
f (x+h)

f (x)

] 1
h
,

f ∗(x) is called multiplicative (or ∗) derivative of f at x.

Lemma 1.2. [4] Let f : A→ R be positive and usual differentiable at x. Then, there is following relation between classical
and ∗derivatives.

f ∗(x) = e(lno f )′(x).

Theorem 1.3. [4] Let f ,h be ∗differentiable and p be usual differentiable at x. The following expressions are provided for
∗derivative.
i. (c f )∗ (x) = f ∗(x), c ∈ R+,
ii. ( f g)∗ (x) = f ∗(x)g∗(x),
iii. ( f/g)∗ (x) = f ∗(x)/g∗(x),
iv.
(

f h
)∗
(x) = f ∗(x)h(x) f (x)h′(x),

v. ( f ◦h)∗ (x) = f ∗ (h(x))h′(x) ,

vi. ( f +g)∗ (x) = f ∗(x)
f (x)

f (x)+g(x) g∗(x)
g(x)

f (x)+g(x) .

Since multiplicative integration will emerge while obtaining Hermite polynomials for multiplicative Hermite equation, let’s
express fundamental properties of multiplicative integration.

Definition 1.4. [4] Let f be a positive, bounded function on [a,b] where −∞ < a < b < ∞. Then, the symbol
b∫
a

f (x)dx is

called multiplicative integral or ∗integral of f on [a,b]. By this definition, if f is positive and Riemann integrable on [a,b], then
it is ∗integrable on [a,b] and

b∫
a

f (x)dx = e

b∫
a
(lno f )(x)dx

.

Conversely, one can show that if f is Riemann integrable on [a,b], then

b∫
a

f (x)dx = ln
b∫

a

(
e f (x)

)dx
.

Theorem 1.5. [4] Let f ,g > 0 be bounded, ∗integrable and h > 0 be usual differentiable on [a,b]. Then, below expressions
hold:

i.
b∫
a

[
f (x)k

]dx
=

[
b∫
a

f (x)dx
]k

,

ii.
b∫
a
[ f (x)g(x)]dx =

b∫
a

f (x)dx
b∫
a

g(x)dx,

iii.
b∫
a

[
f (x)
g(x)

]dx
=

b∫
a

f (x)dx

b∫
a

g(x)dx
,

iv.
b∫
a

f (x)dx =
c∫

a
f (x)dx

b∫
c

f (x)dx,

v.
b∫
a

[
f ∗(x)g(x)

]dx
= f (b)g(b)

f (a)g(a)

{
b∫
a

[
f (x)g′(x)

]dx
}−1

,

where k ∈ R is a constant and c ∈ [a,b]. The expression v is known as ∗integration by parts formula.

In order to avoid any difficulties in expressing main parts of study, inner product function will be defined and inner product
space used throughout study will be given in multiplicative case.



34 Fundamental Journal of Mathematics and Applications

Definition 1.6. Let X be a non empty set and <,>∗: X×X → R+ be a function such that below axioms hold for ∀x,y,z ∈ X
i. < x,x >∗≥ 1,
ii. < x,x >∗= 1 if and only if x = 1,
iii. < x⊕ y,z >∗=< x,z >∗ ⊕< y,z >∗,
iv. < eα � x,y >∗= eα�< x,y >∗,α ∈ R,
v. < x,y >∗=< y,x >∗ .
Then, (X ,<,>∗) is called ∗inner product space and <,>∗ is ∗inner product on X .

Lemma 1.7. L∗2[a,b] =
{

f :
b∫
a
[ f (x)� f (x)]dx < ∞

}
is an ∗inner product space with

<,>∗: L∗2[a,b]×L∗2[a,b]→ R+, < f ,h >∗=

b∫
a

[ f (x)�h(x)]dx ,

where f ,h ∈ L∗2[a,b] are positive functions.

Proof. Proof can be easily demonstrated using properties of multiplicative inner product and definition of given space.

n−th order linear homogeneous multiplicative differential equation is denoted by(
y∗(n)

)(
y∗(n−1)

)an−1(x)
· · ·(y∗∗)a2(x) (y∗)a1(x) ya0(x) = 1, (1.1)

where y∗(n)(x) = e(ln◦ f )(n)(x) and an−1(x), · · · ,a2(x),a1(x),a0(x) are functions of x [35].

Definition 1.8. [35] Let x0 ∈ [a,b], N(x0) be a neighbourhood of x0 and f (x) be a real function defined on [a,b]. In this case
f (x) is said to multiplicative-analytic at x0 if f (x) can be expressed as a series of natural powers of (x− x0) for all x ∈ N(x0).
In other words, f (x) can be expressed as following:

f (x) =
∞

∏
n=0

(cn)
(x−x0)

n
,(cn ∈ R+).

There exists δ > 0 such that this series is convergent for all x satisfying |x− x0|< δ and divergent for |x− x0|> δ . δ is the
radius of convergence of the series.

Definition 1.9. [35] Let x0 ∈ [a,b] and functions ak(x) be multiplicative-analytic at x0 ∈ [a,b] for k = 0,1,2, ...,(n−1). In
this case, the point x0 ∈ [a,b] is said to be a multiplicative-ordinary point of (1.1). If a point x0 ∈ [a,b] is not a multiplicative-
ordinary point, then it is said to be multiplicative singular.

Theorem 1.10. [35] Let p(x),q(x) be analytic functions such as

p(x) =
∞

∑
k=0

pk(x− x0)
k, (t ∈ [x0,x0 +δ1];δ1 > 0),

q(x) =
∞

∑
k=0

qk(x− x0)
k, (t ∈ [x0,x0 +δ2];δ2 > 0)

and let x0 be a multiplicative-ordinary point of the equation

y∗∗(y∗)p(x)yq(x) = 1 (1.2)

Then, there exists a solution to (1.2) as

y =
∞

∏
k=0

c(x−x0)
k

k

for t ∈ (x0,x0 +ρ) with ρ = min{δ1,δ2} and initial conditions y(x0) = c0 , y∗(x0) = c1.

The rest of this study is organized as follows: In the second section, we reconstruct multiplicative Hermite equation by
multiplicative Sturm-Liouville equation. A new asymptotic formula for eigenfunction of multiplicative Hermite equation is
established by series technique. Moreover, for multiplicative Hermite equation, a generator function is obtained and an integral
representation is constructed. In the last section, some spectral properties of multiplicative Hermite equation are examined.
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2. Multiplicative Hermite equation

Here, multiplicative Hermite equation will be established from multiplicative Sturm-Liouville equation by some algebraic
structures and Hermite polynomials of constructed problem will be obtained. That way, let’s express multiplicative algebraic
structures that we will encounter while establishing and solving multiplicative Hermite equation. Arithmetic operations created
with exponential functions are called multiplicative algebraic operations. Let’s show some properties of these operations with a
multiplicative arithmetic table for x,y ∈ R+ :

x	 y = x
y , x⊕ y = xy, x� y = xlny = ylnx.

These operations create some algebraic structures. If ⊕ : A×A→ A is an operation where A 6= φ and A ⊂ R+, algebraic
structure (A,⊕) is called multiplicative group. Similarly, (A,⊕,�) is a multiplicative ring. This situation gives us the
opportunity to use these processes easily and define different structures [36].
Let {

d∗

dx

(
ep(x)� d∗y

dx

)}
⊕
(

eq(x)� y
)
⊕
(

eλw(x)� y
)
= 1, (2.1)

be multiplicative Sturm-Liouville equation where p,q,w are real valued, continuous functions [37]. Here, if p,q,w are chosen
in a special way as p(x) = w(x) = e−x2

, q(x) = 0, the equation (2.1) transforms into

L [y] =
[
(y∗(x))e−x2

]∗
yλe−x2

= 1, x ∈ R

or

L [y] = y∗∗ (y∗)−2x yλ = 1, x ∈ R, (2.2)

where a,b ∈ R and, λ is a spectral parameter. If it is set λ = 2n, (2.2) is called multiplicative Hermite equation [35]. Here,
y(x,λ ) is solution of above equation which is called multiplicative Hermite polynomial. Although (2.2) has no multiplicative
singular points, it is multiplicative singular Sturm-Liouville equation because of the range for which x is defined. x = 0 is a
multiplicative ordinary point. In [35], the solutions on the neighborhood of this point are found as

y(x) = c0

∞

∏
k=1

(
c
(−1)k 2kn(n−2)...(n−2k+2)

(2k)!
0

)x2k

cx
1

∞

∏
k=1

(
c
(−1)k 2k(n−1)(n−3)...(n−2k+1)

(2k+1)!
1

)x2k+1

,

where c0 and c1 are arbitrary constants. The equation (2.2) will be considered together with the following condition:

lim
x→±∞

ee−x2
y(x,λ ) = 1. (2.3)

The equation (2.2) corresponds to following nonlinear differential equation in classical case. The spectral properties of
multiplicative Hermite equation coincide with properties of this nonlinear equation.[

y′′−2xy′+λy
]

y−
[(

y′
)2

+λy2 (1− lny)
]
= 0.

According to the cases where n is even and odd, let’s define H̃n(x) as follows

H̃n(x) =
[ n

2 ]

∏
k=0

e
(−1)k(n)!
k!(n−2k)! (2x)n−2k

. (2.4)

where [n
2

]
=

{ n
2 , i f n is even

n−1
2 , i f n is odd

.

Eigenfunctions H̃n(x) are n−th degree multiplicative Hermite polynomials. These numbers and polynomials play an important
role in various areas of mathematics and physics, including numerical theory, combinations, special functions, and differential
equations. Many interesting properties about them have been explored. For example, in mathematics and physics, the
Hermite polynomials are a classical orthogonal polynomial sequence. In probability, they appears as the Edgeworth series; in
combinatorics, they arise in the umbral calculus as an example of an Appell sequence; in numerical analysis, they play a role
in Gaussian quadrature; and in physics, they give rise to the eigenstates of the quantum harmonic oscillator. The polynomials
arise in signal processing as Hermitian wavelets for wavelet transform analysis.
Now, let’s obtain a generator function for multiplicative Hermite equation and find integral representations of multiplicative
Hermite polynomial:



36 Fundamental Journal of Mathematics and Applications

Lemma 2.1. The generator functions of multiplicative Hermite polynomials have the following representation:

H (x, t) = ee2xt−t2
=

∞

∏
n=0

{
H̃n (x)

} tn
n!
, (2.5)

where |x|< ∞, |t|< ∞ and H̃n (x) is defined as (2.4).

Proof. Consider the following function

H (x, t) = ee2xt−t2
= e

[
∞

∑
m=0

(2xt)m
m!

][
∞

∑
k=0

(−t2)k
k!

]
=

∞

∏
n=0

{
H̃n (x)

} tn
n!
.

If it is proven that H̃n (x) is the multiplicative Hermite polynomial (that is, it satisfies the equation (2.2)), the proof completes.
Firstly, ∗differentiating (2.5) with respect to x, we get

e2te2xt−t2
=

∞

∏
n=1

{
H̃∗n (x)

} tn
n!

or

∞

∏
n=0

{
H̃n (x)

} 2tn+1
n!

=
∞

∏
n=1

{
H̃∗n (x)

} tn
n!
.

From the last equality, if the exponents of t are compared, we obtain the recurrence relation

H̃∗n+1 (x) =
{

H̃n (x)
}2(n+1)

. (2.6)

Secondly, ∗differentiating (2.5) with respect to t, and then comparing the exponents of t, we have the other recurrence relation

H̃n+1 (x)
{

H̃n (x)
}−2x{

H̃n−1 (x)
}2n

= 1. (2.7)

Thirdly, ∗differentiating (2.7) with respect to x, we have

H̃∗n+1 (x)
{

H̃∗n (x)
}−2x{

H̃n (x)
}−2{

H̃∗n−1 (x)
}2n

= 1.

Using (2.6) in the last equation, we take

{
H̃n (x)

}2(n+1){
H̃∗n (x)

}−2x{
H̃n (x)

}−2
H̃∗∗n (x) = 1

or

H̃∗∗n (x)
{

H̃∗n (x)
}−2x{

H̃n (x)
}2n

= 1.

This last equality shows that H̃n (x) satisfies the equation (2.2).

The following lemma has been proved by [35] using a different technique. Here, the proof is made using generator functions.

Lemma 2.2. The multiplicative Rodrigues formula for H̃n(x) has the formula

H̃n(x) =

[
d∗(n)

dxn ee−x2
](−1)nex2

, n = 0,1,2, · · · . (2.8)
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Proof. From the formula (2.5), we obtain

ee(x2−(t−x)2)
=

∞

∏
n=0

{
H̃n (x)

} tn
n!

or

{
ee−(t−x)2

}ex2

=
{

H̃0 (x)
} 1

0!
{

H̃1 (x)
} t

1!
{

H̃2 (x)
} t2

2!
. . .
{

H̃n (x)
} tn

n!
{

H̃n+1 (x)
} tn+1

(n+1)!
. . . . (2.9)

By taking n−times ∗derivative of both side of (2.9) with respect to t, we get

{
∂ ∗(n)

∂ tn ee−(t−x)2
}ex2

= 1.1 . . .
{

H̃n (x)
} n!

n!
{

H̃n+1 (x)
} (n+1)!

(n+1)! t
. . . .

Then,

H̃n (x) =

{
∂ ∗(n)

∂ tn ee−(t−x)2
}ex2

∣∣∣∣∣∣∣
t=0

for t = 0. After some basic calculations, taking the relation

{
∂ ∗(n)

∂ tn ee−(t−x)2
}∣∣∣∣∣

t=0

=

{
d∗(n)

dxn ee−x2
}(−1)n

,

we prove (2.8).

Lemma 2.3. The integral representation of multiplicative Hermite polynomials is as follows:

H̃n (x) =


∞∫
−∞

{
e(x+is)ne−s2

}ds


2n
√

π

.

Proof. Consider the integral representation of ee−x2
as:

ee−x2
=


∞∫
−∞

(
ee−s(s+2ix)2

)ds


1√
π

. (2.10)

Taking the n-th ∗derivative of (2.10) with respect to x, we have

d∗(n)
dxn

(
ee−x2

)
=

{
∞∫
−∞

(
e(−i2s)ne−s(s+2ix)

)ds
} 1√

π

=

{
∞∫
−∞

(
e(is)

ne−(s+ix)2
)ds
}(−1)n 2n

√
π

e−x2

=

{
∞∫
−∞

(
e(x+is)ne−s2

)ds
}(−1)n 2n

√
π

e−x2

.

(2.11)

By considering the (−1)n ex2
power of both sides for (2.11), we get

{
d∗(n)

dxn

(
ee−x2

)}(−1)nex2

=


∞∫
−∞

(
e(x+is)ne−s2

)ds


2n
√

π

.

From (2.8), proof is completed.
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Now, let’s express some special cases of multiplicative Hermite polynomials, which have an important place in applications.

Remark 2.4. [35] By (2.4), some multiplicative Hermite polynomials are as follows:

H̃0(x) = e,

H̃1(x) = e2x,

H̃2(x) = e4x2−2,

H̃3(x) = e8x3−12x,

H̃4(x) = e16x4−48x2+12,

H̃5(x) = e32x5−160x3+120x

...

Remark 2.5. Multiplicative Hermite polynomials provide the following properties:
i. H̃n(x) = eHn(x),

ii. H̃n(−x) = [H̃n(x)](−1)n
, H̃∗n (−x) =

[
H̃∗n (x)

](−1)n+1

,

iii. H̃2n(0) = e(−1)n (2n)!
n! , H̃2n+1(0) = 1,

iv. H̃∗2n(0) = 1, H̃∗2n+1(0) = e(−1)n (2n+2)!
(n+1)! ,

for n = 0,1,2, . . . .

Proof. From multiplicative Rodrigues formula, the proofs of these features can be easily made similar to the classical
situation.

3. Some spectral properties of multiplicative Hermite problem

In this section, we consider the problem (2.2)-(2.3). As will be remembered from the previous section, general solution of the
equation (2.2) is represented (2.4).
Now, let’s express some spectral properties of multiplicative Hermite polynomial. The following lemma has been proved
by [35] with different perspective. Here, the proof is made using multiplicative Sturm-Liouville equation.

Lemma 3.1. The multiplicative Hermite polynomials H̃n(x) and H̃m(x) are orthogonal according to the weight function ee−x2

on (−∞,∞) for m 6= n. Furthermore,

∞∫
−∞

[
ee−x2

� H̃n(x)� H̃m(x)
]dx

=

{
1, i f m 6= n

e2nn!
√

π , i f m = n
.

Proof. Let’s do the proof separately for two cases.
i. Let m 6= n. Since multiplicative Hermite polynomials H̃n(x) and H̃m(x) are solutions of the equation (2.2), we can write[(

H̃∗n (x)
)e−x2]∗{

H̃n(x)
}2ne−x2

= 1, (3.1)

[(
H̃∗m(x)

)e−x2]∗{
H̃m(x)

}2me−x2

= 1. (3.2)

Let us take ln H̃m(x) and ln H̃n(x)−th powers of (3.1) and (3.2) respectively. Then, if we use multiplicative integration to both
sides on (−∞,∞) after the obtained relations are divided by side, we get ∞∫

−∞

{(
H̃ ln H̃m

n

)e−x2}dx
2(m−n)

=

∞∫
−∞

[
d∗

dx

(
W
(

H̃m, H̃n

))e−x2]dx

,

where W
(

H̃m, H̃n

)
=
(

H̃m� H̃∗n
)
	
(

H̃∗m� H̃n

)
. Since m 6= n and the conditions (2.3), it gives

∞∫
−∞

{(
H̃n(x)� H̃m(x)

)e−x2}dx

= 1. (3.3)
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So, the proof for m 6= n is completed.

ii. Let m = n. After taking n→ n−1 in the equation (2.7), circle multiplying the equation (2.7) by ee−x2
� H̃n (x), we have{

ee−x2
� H̃n (x)� H̃n (x)

}{
H̃n (x)� H̃n−1 (x)

}−2xe−x2{
H̃n (x)� H̃n−2 (x)

}2(n−1)e−x2

= 1.

Then, if we use (3.3) after ∗integrating to both sides of the last equation on (−∞,∞), we get

∞∫
−∞

{(
H̃n (x)� H̃n (x)

)e−x2}dx ∞∫
−∞

{(
H̃n (x)� H̃n−1 (x)

)−2xe−x2}dx

= 1. (3.4)

On the other hand, let’s circle multiply the equation (2.7) by ee−x2
� H̃n−1 (x), then, if we use (3.3) after ∗integrating both sides

of this equation on (−∞,∞), we have

∞∫
−∞

{(
H̃n−1 (x)� H̃n−1 (x)

)2ne−x2}dx ∞∫
−∞

{(
H̃n (x)� H̃n−1 (x)

)−2xe−x2}dx

= 1. (3.5)

Considering (3.4) and (3.5) together, the following recurrence relation is obtained:

∞∫
−∞

{(
H̃n (x)� H̃n (x)

)e−x2}dx

=

∞∫
−∞

{(
H̃n−1 (x)� H̃n−1 (x)

)2ne−x2}dx

After taking n = 1,2,3, . . . and using
∞∫
−∞

{
ee−x2

}dx

= e
√

π , gives

∞∫
−∞

{(
H̃n(x)� H̃n(x)

)e−x2}dx

= e2nn!
√

π .

It completes the proof.

Lemma 3.2. ∗eigenvalues of the problem (2.2)-(2.3) are all real.

Proof. Let λ be a complex eigenvalue for y(x,λ ). Then, λ is eigenvalue corresponding to y(x,λ ). By (3.3),
∞∫
−∞

{(
ylny
)e−x2}dx


λ−λ

= 1.

By the notion of multiplicative integration, 
∞∫
−∞

e−x2 |lny|2 dx


λ−λ

= 0.

Since y must be a non-trivial solution, i.e. y 6= 1, and
∞∫
−∞

e−x2 |lny|2 dx > 0, we get λ = λ . This completes the proof.

Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in
which physical observables such as position, momentum, angular momentum and spin are represented by self-adjoint operators.
Because of this importance, we examine the self-adjointness of the multiplicative Hermite operator.

Lemma 3.3. Multiplicative Hermite operator L on (2.2) is self-adjoint in L∗2(R).

Proof. Assume that u and v are positive multiplicative Hermite polynomials on R and u,v ∈C∗(2) where C∗(2) is the set of all
functions whose second order multiplicative derivatives are continuous. By the definition of multiplicative Hermite operator
and multiplicative derivative, we get

(Lv)lnu

(Lu)lnv =
d∗

dx

[
(W (u,v))e−x2

]
. (3.6)
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By ∗integrating both sides of (3.6) on R,

∞∫
−∞

[
(Lv)lnu

(Lu)lnv

]dx

=
lim

x→−∞
(W (u,v))e−x2

lim
x→∞

(W (u,v))e−x2

and using the properties of limit, we acquire

< Lu,v >∗=< u,Lv >∗

This indicates that the given multiplicative Hermite operator is self-adjoint on L∗2(R).

4. Conclusion

Hermite’s differential equation is frequently encountered in physics and engineering. It arises in numerous problems,
particularly in boundary value problems for spheres. Because Hermite polynomials with these equations and their solutions
have such an important place, we carried these concepts to multiplicative analysis. First, we set up Hermite equation in
multiplicative analysis. Then, we obtained multiplicative Hermite polynomials for different situations using multiplicative
series methods. Finally, we examined some spectral properties of these multiplicative polynomials. In fact, these investigations
coincide with spectral properties of a much more complex nonlinear equation in classical case.
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