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Highlights
* This paper focuses on filter convergent via ideal.
* An equivalent characterization of maximal ideal has been obtained.
* Preservations under homeomorphism of different generalized local functions were studied.
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1. INTRODUCTION

An ideal is a nonempty collection Z < 2% where Z isa nonempty set that satisfies hereditary property and

finite additivity property, where 2 is the collection of all subsets of Z . Notion of ideal on a topological
space has been incorporated by Kuratowski [1]. There are so many branches for which the study of ideals
is going on so far. One of the branches is the common representation of limit points. For representation of

limit points, the ideals Z ={0}, 7 = 2° . 7 =7, (collection of all finite subsets of Z), and Z =7,
(collection of all countable subsets of Z ) play vital role. For generalization of limit points, we consider an
ideal Z on a topological space (Z,n),and consider the local function (-)" : 2> — 2% which is defined in

[1] as for Xcz, xX(z.n)={zez:UnXxeZ foralUen(z)}, where
n(z) :{U en:ZeU}. In particular, X*({@},n)=C|(X) (‘CI denotes the closure operator),
X*(Zf ,77) is the collection of all @ -accumulation points of X, X*(Ic,n) is the collection of all

condensation points of X , and X*(ZZ ,77) =J. Recall that for a given subset Q of the topological space
(Z,n), apoint ze Z iscalled a @-accumulation (resp. condensation) point of Q if for every U € 7(z),
U nQ is infinite (resp. uncountable). In view of the last case, we consider only proper ideals (recall that
an ideal Z on a nonempty set Z is a proper ideal if Z ¢ Z') throughout this paper. A filter F on a
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nonempty set Z is a nonempty aggregate of subsets of Z having the properties: (i) & ¢ F ; (ii) K<L
and K € F implies Le F; (iii) K, Le F implies KnLe F.If T be aproper ideal on Z, then

F; :{A cZ:Z\Ae Z} is a filter on Z . This type of filter is known as associated filter or dual filter,

and such filters have been studied in [2-5]. Conversely, for a filter Fon Z, 7, ={E cZ:Z\Ee ]—"}

defines a proper ideal on Z . This ideal is called associated ideal or dual ideal. In this respect, filter
containing the empty set has been discussed in [6].

In this paper, we shall discuss the conversion between net and ideal as well as filter and ideal. Due to this
conversation, we can characterize the convergence of a net and a filter via ideal. This conversion will be
helpful to characterize the local function in terms of net and filter. The study of maximal ideal like the study
of maximal filter is also a part of the above conversation. Through this paper, we also consider
homeomaorphic image of various local functions.

2. FILTERS AND NETS

In this section, we shall study net [7,8], filter [7,8], and their convergence in terms of ideal. Characterization
of local function in terms of filter is also a part of this section.

At first, we shall discuss about the notion of directed set [8] from literature. A pair (D, >) of a nonempty

set D and a binary relation > on D is a directed set having three properties: (i) For all
mn, peD,m>n and n> pimply m> p; (ii) For all ne D, n>n; (iii) For all m,ne D, there
exists pe D suchthat p>m and p>n.

Lemma 2.1. Let J be a proper ideal on a nonempty set Z and D(J) ::{tx F:FeF,andte F}.
FortxH , sxLeD(J), we define

txH >sxL iff Hc L.

Then (D(j), 2) is a directed set.

Proof. We shall show only directive property. Suppose txH , sxLe D(J). Thus HLe F, and
hence is nonempty. Pick Zze H N L. Clearly then zx(H nL)e D(7) and zx(H nL)>txH and
Zzx(HNL)>sxL.

Note that if we have a proper ideal J on a nonempty set Z , then we always getanet S: D(J) = Z in
Z bytherule S(txH)=t.

On the other hand, if we start withanet S:D — Zin Z , where (D,Z) is a directed set, then one can
obtain a proper ideal on Z as follows:

Theorem 2.2. Let S: D — Z beanet, and forevery me D, let B, ::{S (n):neDand n> m}. Then
7 :{A: Ac Z\B, forsome me D} is a proper ideal on Z .

Proof. It obvious that & € Z . Now, let M = Nand N € Z, . Then N  Z\B_ forsome m e D . Hence
M c Z\B, . Consequently, M € Z, . Finally,let M, NeZ,. Then M cZ\B_, and N = Z\B, for
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somem, neD.As m, neD, there exists pe D suchthat p>m and p>n.Now, M UN c (Z\
B,)VU(Z\B))=Z\(B,"B )<= Z\B,. Hence M UNeZ;. Since for every meD, B  is

nonempty, we have Z ¢ Z . Hence Zg is a proper ideal on Z .

Theorem 2.3. Let (Z,7) be a topological space. Anet S: D — Z converges to z if and only if for each
U,en(z), Z\U, eZ;.

Proof. Suppose S: D — Z convergesto Z . Then for each U, e 7(z), 3 p € D suchthat S(n) eU,
forall n> p.ByTheorem2.2, B, cU,. Thus Z\U, c Z\B, and hence Z\U, € Z.

Conversely, let for each U, en(z), Z\U, € Z;. Then for some meD, Z\U, cZ\B,. Thus

{S(n) ‘neDand n> m}: B,, U, and hence S(n) €U, forall n>m. Therefore S convergesto z

Proposition 2.4. [8] Let (Z,7) be a topological space,and Ac Z, ze Z . Then z € CI(A) if and only
if there exists a netin A which convergesto z.

Theorem 2.5. Let (Z,7) be a topological space, and Ac Z . Then z, € CI(A) if and only if there is a
proper ideal Z on A such that forevery U, en(z,), A\U, €Z.

Proof. Suppose that z ,€CI(A). Then for all Uen(z), UnNA=. Consider

D={(x,U) e Axn(z,): xeU n A}. Define > on D by (x,U)>(y,V) if U <V . Then (D, >) is
a directed set. Obviously, S: D — A defined by S(x,U) =X isanetin A.Now, forevery (y,V)eD,

consider By, ={S(xU):(xU)eDand (xU)>(y,V)}. Then, by Theorem 22,

7 :{M ‘M < A\B,,,, forsome (y,V) e D} is a proper ideal on A. Furthermore, for
(x,U)=(y,V), S(x,U)=xeU <V . Thus S converges to z,, and hence by Theorem 2.3, for each
U, en(z,), A\U, €T;.

Converse part is obvious from Lemma 2.1 and Proposition 2.4.

Theorem 2.6. For a topological space (Z,7), afilter 7 on Z convergesto z, € Z if and only if for every
U, en(z,), Z\U, €Z,.

Proof. Suppose that F converges to z,. Then 7(z,) = F . Thus, forevery U, en(z,), Z\U, €Z,.

Conversely, suppose that forevery U, en(z,), Z\U, €Z,. Since the associated filter of the ideal Z,

is F,thenU, =Z\(Z\U, ) e F . Thus, n(z,) = F and consequently, F converges to Z,.
Proposition 2.7. [8] A topological space is Hausdorff iff no filter can converge to more than one point.

Proposition 2.8. [8] Let Z be a nonempty set and S < 2° . Then there exists a filter on Z having S as
a sub-base if and only if S has the finite intersection property.
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Theorem 2.9. A topological space (Z,7) is Hausdorff iff there is no proper ideal Z on Z having the
property: forall U, en(y) and forall V, ep(z)with y =z, Z\U eZ,Z\V,eT.

Proof. Firstly, suppose that (Z,7) is a Hausdorff space. Assume that Z be a proper ideal on Z having
the property: for all U, e n(y) and for all V, e n(z)with y =2z, Z\U ,eZ, Z\V, € T . Then for all

U, en(y),U, e F; andforall V, e n(z), V, € F; . Thus, n(y) < F; and 77(z) < F; . This shows that

JF, converges to both y and z which contradicts Proposition 2.7.

Conversely, suppose that the condition holds. Assume that (Z,7) is not a Hausdorff space. Then there
exists y, zeZ with y =z such that for all U en(y) and for all V, en(z), U, "V, #. Then
n(y)wn(z) has finite intersection property and by Proposition 2.8, there exists a filter F on Z
containing 77(y) Wn(z) . Consequently, Z is a proper ideal on Z such that for all U e#(y) and for

all V, en(z)with y=z, Z\U eZ,, Z\V, € Z,. Thisis a contradiction.

Theorem 2.10. Let (Z,7) be a topological space, and Z be anideal on Z . If X e A*(I,n) , then there
is a filter M on Z suchthat Ae M and M convergesto X.

Proof. Given that X e A*(I,n) . Then, forall W e n(x), W " Ag Z and hence W n A= . Put

M :{B DWNAWe n(x)}. It is obvious that M is a filter on Z . Now, AW M A and hence

A e M. Furthermore, for W e n(x), W 2W n A, and hence W € M . Therefore, M converges to
X.

The proof of the Theorem 2.10 can also be done by the fact that A (Z,7) = CI(A).

For converse of the Theorem 2.10, we have following:

Theorem 2.11. Let (Z,7n) be a topological space, and Ac Z . If a filter 7 on Z contains A and F
convergesto X Z , then x e A'(Z,,7).

Proof. Given that n(x)c Fand AeF . Then, for each W en(x), WnAeF and so X\
WnNA)eZ,. Therefore, WNAgZ, (because if WnNAeZ,, then (\NmA)u(X\
W mA)) €Z, impliess X €Z, and hence e F, a contradiction). Thus, for every W en(x),
W ~AgZ, andhence xe A(Z,,7).

Hence, we conclude that one can define the convergence of a filter in terms of associated ideal.

Let A and H be two filters on asetZ . Then H is called a sub-filter of N if N < H . If ‘H isasub-
filter of A" on Z , theniit is obvious that Z,. < Z,,.

Remark 2.12. Let (Z,7) be a topological space and F , H be two filters on Z . If H be a sub-filter of
F and F convergesto z € Z, then foreach U, en(z), Z\U, € 7,,.
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3. MAXIMAL IDEALS

In this section, we are considering Zorn’s Lemma [9] for discussing the maximal ideal. The study of
maximal ideal is likely to be similar with ultrafilter [8].

Theorem 3.1. Let Z be a nonempty set. Then the collection ®, of all proper ideals on Z forms a partial
ordered set with respect to <.

Proof. The proof is straightforward.

Theorem 3.2. Consider the partial ordered set (@Z , g) of Theorem 3.1, and let {7, : j € Q} be a chain
in (@Z,g) ,where Q is an index set. Then 7 = | 7; is an upper bound of the chain {7 : j € Q}.

jeQ
Proof. Since D e J; forall jeQ, it follows that D e J . Let Se€J and T = S. Then there exists
keQ suchthat S e J,,and hence T € J, . This impliesthat T € 7 . Now let S, T € J . Then there
exist k, | e Qsuchthat Se J, and T € J,. Since {J; : j € Q} is chain, either 7, = J, or J, < J,.
Suppose J, < J,.Then S, T € J, and hence SUT € J, . Therefore, SUT € J . Since no member
of ®, contains Z,we have 7 ¢ 7 = U T, Hence J is a proper ideal on Z, and asaresult, J € ®, .

jeQ

By construction, J is an upper bound of {7 : j € Q}.

In view of the Zorn's Lemma, we conclude that (G)Z ,g) has a maximal element, and we call it maximal

ideal. Here, we give a nice characterization of maximal ideal and the characterization is a modification of
a result of the ultrafilter form [8].

Theorem 3.3. Let Z be a nonempty set. Then for Z € ®, , the following arguments are equivalent:

1.7 is a maximal ideal;
2.forany Ac Z ,either AeZ or Z\AeZ;
3.forany A, BcZ, AnBeZ ifandonlyifeither AcZ or BeT.

Proof. 1= 2: If A¢Z,then A is not contained in any member of Z and hence A intersects every
member of F,. Thus, {A}u]—} has finite intersection property, and so it generates a filter (see
Proposition 2.8), say G . Then, 7, c Gand A€ G . Now, it is quite obvious that Z — Z. Since | isa
maximal ideal, we have Z, =7 . Now, AeGimplies Z\Ae Z,.Hence, Z\AeZl.

2 = 1: If possible suppose that Z is nota maximal ideal on Z . Then there exists an ideal Z, € ®, which
contains Z properly. Then Z \Z # <. Pick A€ Z \7T . Then A¢ 7 implies Z\ Ae T , by assumption.

Since AeZ,and Z\AeZ,, Z=AU(Z\A) eI, acontradiction as Z, was a proper ideal. Hence, 7
is a maximal ideal on Z .

2 = 3: Firstly, consider that AnB e Z but neither Ae Z nor B € Z . Then, by assumption, Z\Ae T
and Z\BeZ implying that (Z\A)u(Z\B)eZ. Thus, Z\(AnB)eZ. Since AnBeZ,

(AN B)U(Z \(AN B)) € Z showing that Z € Z. This is a contradiction. Hence, either Ae Z or
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B e 7 .Forconverse, ANB c A aswellas B, and either A€ Z or B € Z , we have from definition of
ideal that AnBeZ .

3= 2:Sinceforany Ac Z, An(Z\A) = e Z, by assumption we have, either Aec Zor Z\Ae T .

Corollary 3.4. Let Z be a nonempty set. Then for 7 € ®,, J is a maximal ideal if and only if F, is
an ultrafilter (for ultrafilter see [2,7,8]).

4. HOMEOMORPHISMS

Before entering to the main study of this section, we recollect some necessary requirements from literature
which will be helpful for our subsequent investigations.

Definition 4.1. A subset Q of a topological space (Z , 17) is said to be

(i) semi-open [10] if Q — ClI (Int(Q)) ;

(ii) preopen [11,12] if Q  Int(CI(Q));

(iii) /3 -open [13] or semi-preopen [14] if Q = CI(Int(C1(Q))) ;
(iv) b -open [15] if Q Int(CI(Q)) uCI(Int(Q))

where ‘Int’ stands for the interior operator in (Z : 77) :

We denote the collection of all semi-open (resp., pre-open, A3 -open and b -open) sets containing z € Z as
SO(Z,z) (resp.,PO(Z,2),p0(Z,z) and BO(Z,z)). Complement of a semi-open set is addressed as
semi-closed, and intersection of all semi-closed sets containing Q is called semi-closure of Q and is
denoted as sCI(Q) .

Let (Z,n) be a topological space, and Z be an ideal on Z . Utilizing the local function (-)":2* — 2°,

the set operators ¥, v, A, A, Vq, V,:2% — 2% are respectively defined as: for Q ¢ Z,

e ¥(Q(Z,7)(simply ¥(Q))=Z\(Z\Q)" [16];

e v(Q(z.7)(simply v(Q)) = (Q\Q" [5];

e AQ(Z.7)(simply AQ)) =¥(Q\Q 5]

e AQ)(z.7)(simply A@Q)) =Q\Q" [5];

e V1 (@Q(Z.7)(simply V3 (Q)) = v(Q) N AQ) [17;
e V,@Q)(z.7)(simply V5 (Q)) = v(Q) NA(Q) [17].

For more operators, see [18] and [19].

Some researchers have generalized the concept of local function (-)":2% — 2% in aspect of different
generalized open sets. We now enlist some generalized local functions below: for X < Z,

. X*S(I,n) :{ZGZ:UZmX ¢ I for everyU, eSO(Z,z)} [20];
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X(z,n)={zez:U,nX ¢ Tforeveryu, e PO(z,2) } [20];
e X*(z.7)={zez:U,nX gTforeveryu, cB0(z,2)} [201;
. yC(X)(I,n) :{z eZ:Cl(U,)n X ¢ Zfor everyU, en(z)} [21];
. VSC(X)(IJ]) :{z eZ:sCl(U,)n X ¢ T for everyU, en(z)} [20].

Lemma 4.2. [4] Let f:Z—>Y be a bijective function. For a proper ideal Z on Z,
f(2) ={f(l): I eI} is a proper ideal on Y .

Lemma 4.3. [4] Let f:X —>Y be a surjective function. For a proper ideal J on Y,
f () :{f’l(J):J ej} is a proper ideal on X .

Proposition 4.4. [22] Let (Z,n) and (Y,a) be two topological spaces, and Z be an ideal on Z . If
f:Z —Y beahomeomorphism, then

1 f[8°(z.9)]=[t®)] (t(@).0):
2. tlv@(z.n)]=vli ®]((2).0).

Theorem 4.5. Let (Z,n) and (Y,a) be two topological spaces and Z be anidealon Z . If f:Z =Y
be a homeomorphism, then for X < Z , the following properties hold:

[V, 00(z.n)]=v. [F 0](f(2).0):
[V, O(z.0)]=V, [ 00l((@).0):
t[x(z.n)]=[t 0l (t@).0):
t[x=(z.0)]=[t0]*(f@).0);

tx 2 (z.0)]=[t o0l (f(@).0):
tixe(z.0)]=[t 0l (f(@).0);
t[r.00(Z.0)]=7Lf COI(F(D).0):
tlCO(@.n)]=rLf 00I(f@).0).

© N o g ~ w N PP

Proof. 1. We have T (V4 (X)(Z,1)) = f((v(X) A A(X))Z. 7)) = f (V(X)(Z. 7))

At (A0O@m) = HPCNXNT. ) o F (NN ) =[F(FOOT M)
F(x*@m)]nLF (200 @m)v 0] =[w(F O)(F (@), o)

(F X)) (F(T), )] A[¥(F X))(F (@), o)\ F(X)] by Proposition 4.4)=[(¥(f (X))
(F )@ ][ (OO OO (2),0)] =

(v (F O (@),0)) A (A OONF (), 0)) = (W(F XD AAFXN)(F (), 0) =V (FO)(F(
1),0).
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2. Similar to 1.

3. Assume that x e Z with f(x)e f[X*p(I,n)] . This implies that X ¢ X*p(I,n) . Thus, there
exists U, PO(X , x) suchthat U, N X €7 and hence f(U, N X)e f(Z). Therefore,

f(U,)N f(X)e f(T).Wenowshowthat f(U,)ePO(Y, f(x)) ie. fU,)c Int(cl(fu,))).
since U, < Int(c1U,)), fU,) < f(int(ciu,))) = nt(f(c1u,))) = int(c1(f U,))) . Thus,
fU)e PO(Y, f (x)) ,and hence f(X) g[f (X)]*p(f (I),G) . Therefore,

i (z.n)]=lr ool (f@.0).

For reverse inclusion, assume that t € Z with f(t) ¢ [f (X )]*p (f (2), 0) . Then there exists

U, ePO(Y, f(t)) suchthat U, , ~ f(X) e f(Z). Thus,

f‘l(Ufm N f(X)) = f‘l(Uf(t))m X €T . Moreover, f‘l(U f(t)) € PO(Z,t). Hence,

teg X" (Z,7) implies f(t) ¢ {[X"?(Z,7)]. Therefore, t[x"*(z,7)]<[t )] (f(Z).0).

Proofs of rests are similar to that of 3.

Proposition 4.6. [22] Let (Z,n) and (T,r) be two topological spaces, and J be anidealon T . If
f:Z —>T beahomeomorphism, thenfor BC T,

1128 (7.)]=[F @] (f*().n):
2.t [we)(7.2)]= [ ®)](t*).n) .

Theorem 4.7. Let (Z,n) and (T,r) be two topological spaces, and J be anideal on T . If
f:Z —>T beahomeomorphism, then for B = T , the following properties hold:

[V, 8)(7.0)]=v. [ ®](f *).m):
[V, B)(7.0)]=V.[ 2 ®)](t*(2).7);
t2[s7 (7. )= ®]"(*(7).n):
8= (7.0)]=[t*®]*(t*)n):
t7[87(7.9)]=[t® ] (1 *).n);
2B (7.0)]=[t*®](f*().n);
t2b.@(7.9)]=rl 2 ®](f2().n):;
2l @)(7.)]=rl @] ().7).

© N o g k~ w N

Proof. Proof is straightforward and thus omitted.

Theorem 4.8. Let (Z,n) and (T,r) be two topological spaces, and S:D — Z beanet. If f:Z >T
be a homeomorphism, then
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1. f(Zs) isanidealon T ;
2.foreach U, en(z), Z\U,eZ  iff T\ f(U,) e f(Z;).

Proof. 1. Obvious from Lemma 4.2.

2. Forward part is obvious from the definition of f(Z;), and converse part is followed from Lemma 4.3.

Theorem 4.9. Let (Z,n) and (T,T) be two topological spaces, and F beafilteron Z . If f:Z —>T
be a homeomorphism, then

1. f(Z,) isanidealon T ;
2.foreach U, en(z), Z\U,eZ, iff T\fU,)e f(Z;).

Proof. 1. Obvious from Lemma 4.2.
2. Forward part is obvious from the definition of f(Z,) and converse part is followed from Lemma 4.3.
Theorem 4.10. Let Z and Y be two non-empty sets, and ®, be the collection of all proper ideals on Z.

Let f:Z —Y be a bijective function. Then for the partial order set (@Z,g), (f (@Z),g) is a partial
ordered set, where f(©,) :{f (Z): T e ®Z}.

Proof. Obvious from Lemma 4.2 and Theorem 3.1.

Theorem 4.11. Let Z and T be two non-empty sets,and f :Z — T be a bijective function. If
{jj 2] eQ} be a chain in (@Z,g) , then

1'{f(jj): ] EQ}isachain in (f(@z),g);
2. f(Ujj) =J f(7,) is an upper bound of the chain {f(jj): j EQ};

jeQ jeQ

3. (f (®Z),g) has a maximal element.
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