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In three consecutive articles published in recent years, quite different estimates were made for the Lyapunov 
time of comet 1/P Halley, whose orbit is known to have high precision. In this work, we examined the Lyapunov 
time of the comet 1/P Halley using the MEGNO method and compared our results with previous studies. To 
investigate the effects of numerical overflows on the results that may have occurred during the calculations, we 
conducted tests with and without the renormalization procedure. We used various renormalization intervals to 
see their possible effects on the results and to avoid improper ones. We reached the maximum Lyapunov 
exponents at renormalization times for 2250 yr, 2265 yr, and 3000 yr. In both cases where renormalization is 
used and not used, the Lyapunov time is calculated as 119 yr and 190 yr, respectively. Besides, we performed 
orbital integrations for ∓ 10 kyr for comet 1/P Halley with the clone orbits produced by the MCCM method and 
compared the standard errors of the means of the orbital parameters with the Lyapunov times. We conclude 
that calculated different Lyapunov times correspond to different levels of the standard errors of the means.  
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Introduction 

For the first time in history, Edmund Halley [1] found 
that some historical comet observations belonged to the 
same object, as it is known today, comet 1/P Halley. Since 
that time, comet 1/P Halley is one of the most well-known 
objects of both popular and dynamical astronomy. It has 
been observed repeatedly by different civilizations since 
240 BC in its every visit. Edmund Halley calculated its orbit 
and predicted for the next apparition as late 1758 or the 
beginning of 1759 [2, 3]. It turned back with a perihelion 
passage in 1759 March 13.1. It was the first solar system 
object whose periodicity was discovered other than planets 
and their natural satellites. During its last apparition in 
1986, it was observed by seven spacecraft [4]. It is the first 
comet observed by spacecraft. Today, short-period comets 
with a period between 20 yr and 200 yr are also called 
Halley type comets (HTC). There are 14 numbered, 80 
unnumbered HTC listed (JPL’s SBDB [5-7]) as of 27/12/2021. 
Unnumbered comets were observed only in 1 apparition. 
Among the numbered HTCs, 1/P Halley is the second object 
with the smallest perihelion distance (0.586 au). 

Although comet 1/P Halley perhaps is the best known, 
long studied, and most observed comet, its orbit continues 
to attract attention in terms of dynamical astronomy. One 
of the most important reasons for this is that it is in a 
chaotic orbit, as it has been known since the work of [8]. 
The future trajectory of 1/P Halley cannot be determined 
with great accuracy, even if non-gravitational and 
relativistic effects are well known or can be calculated [9]. 
The measure of the dynamical predictability of a chaotic 
trajectory is given by the Lyapunov time calculated by 
taking the inverse of the maximum Lyapunov exponent. No 
matter how well the trajectory of the object is known and 

how advanced the computing tools at hand are, long term 
evolution of the orbit cannot be predicted for longer than 
Lyapunov time. Therefore, statistical methods should be 
preferred for trajectory calculations that go beyond 
Lyapunov time. 

The oldest estimate we can reach for the Lyapunov time 
of comet 1/P Halley is in [10] and is given as approximately 
34 yr, indicating the lower limit. Three consecutive 
publications [11-13] in recent years show that the dynamic 
study of 1/P Halley’s orbit still deserves attention. In these 
three articles, different Lyapunov time estimations were 
made varying between 70 yr and 562 yr. In [11], unlike 
previous studies, indirect numerical integration was used 
for the first time to calculate the Lyapunov exponent. A 
total of 30 simulations were run for 3000 yr. All planets 
except Mercury, all dwarf planets except Sedna and 5 dwarf 
planet candidates were included in the simulation. 
Integrated ghost particles were produced by applying ∓10−6 
perturbations to the position vectors. A total of 30 
simulations were run.  In [12], ghost particles were 
produced similar to [11], but initial perturbations were 
added to the velocity vectors in addition to the position 
vectors and 13 initial conditions were used together with 
the nominal orbit. However, the integration time was kept 
longer (10 kyr). As a result of the 3-body tests, it was stated 
that the influence of Mercury, Uranus and Neptune is 
negligible. In [13], first-order variational equations were 
used instead of the ghost particle approach in previous 
studies. In the simulations, test objects were integrated 
with the major planets and the Moon. Integration time was 
quite long compared to previous studies (2 x105yr). 
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Various methods, initial conditions, integration 
schemes and indicators were used in each of these 
studies. Naturally, their approaches are different. Besides, 
there are fine-tuning points during the application of 
these methods-e.g., renormalization that can lead to 
different results. However, calculated various Lyapunov 
exponents for the same object should give similar time 
scales regardless of method. So that would be the limit of 
dynamical computability of the orbit. The fundamental 
question is: how long can the dynamics of the movement 
be followed, and which one of the previous estimations 
for the Lyapunov time are the most accurate? 

In this study, we worked on the calculation of 
Lyapunov time for comet 1/P Halley using the MEGNO 
(the Mean Exponential Growth factor of Nearby Orbits) 
method and comparing the calculated Lyapunov times 
with orbital integrations. In Section 2, the numerical 
methods and initial conditions are given. In Section 3, 
Lyapunov time calculations and orbital integration results 
of clone orbits are discussed and presented. Section 4 
summarizes the comments and results. 
 

Materials and Methods 
 
In this work, we used the publicly available REBOUND 

integrator package [14] with first-order variational 
equations. We used MEGNO function included in the 
REBOUND integrator package to calculate Lyapunov time. 
Besides, we tested renormalization in the calculation of 
MEGNO (the detail is given in subsection 2.1). We chose 
high accuracy integrator IAS 15 based on the 15th-order 
Gauß-Radau quadrature as the integration method [15]. 
The integrals included dwarf planets Pluto and Ceres in 
addition to eight major planets. We ignored the masses 
for the test objects outside these bodies. Also, all kind of 
non-gravitational effects and relativistic corrections that 
can be important in comet dynamics are ignored as in 
previous papers [11-13]. 
The initial conditions for all small and big Solar system 
bodies have been obtained using the Jet Propulsion 
Laboratory’s Solar System Dynamics Group Small-Body 
Database (JPL’s SSDG SBDB) and JPL’s Horizons ephemeris 
system [16-18] for the epoch JD 2449400.5 (1994-Feb-
17.0) TDB (Barycentric Dynamical Time). 
Clone orbits were used to see the dynamically reliable 
computability time of the orbit. The orbital elements of 
the clone orbits were produced at the same precision level 
as the uncertainties of the orbit obtained from 
observations. For this, MCCM (Monte Carlo using 
Covariance Matrix) method [19-21] using the covariance 
matrix of orbital elements was used. 
 

MEGNO Technique 

MEGNO technique was first proposed in [22] and [23] 
publications. Since then it has been applied for various 
dynamic systems such as irregular satellites of Jupiter [24], 
double and binary asteroids [25, 26], planetary systems 
[27-29], and galaxy dynamics [30]. It has been discussed 
and compared with previously well-known LCE 

calculations [24, 31]. Compared to other methods, it has 
been seen that it gives good results with relatively short 
integration times [27, 31]. 
The MEGNO technique has been repeatedly presented 
with similar formulations in various sources. Here, we 
summarize the method using the notation in [25]. When a 
dynamic system in the form below is considered; 
 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡)), 𝑤𝑖𝑡ℎ𝑥 ∈ 𝑅6𝑛   (1) 

where the solution of the system is 𝜑(𝑡). For a defined 
tangent vector 𝛿𝜑(𝑡) along with 𝜑(𝑡), the evolution of this 

vector is given by; 

 

𝛿�̇� =
𝑑𝑓

𝑥
(𝜑(𝑡))𝛿𝜑(𝑡).     (2)  

 

Here, the MEGNO indicator is defined as; 

 

𝑌𝜑(𝑡) =
2

𝑡
∫

∥𝛿�̇�∥

‖𝛿𝑠∥

𝑡

𝑡0
𝑠𝑑𝑠,    (3) 

 

and the time-averaged mean value of the MEGNO is; 
 

𝑌𝜑(𝑡) =
1

𝑡
∫ 𝑌𝜑
𝑡

𝑡0
(𝑠)𝑑𝑠.    (4) 

If the orbit is chaotic, the two quantities 𝑌𝜑  and 𝑌𝜑 

increase linearly in time and goes to infinity. If the orbit is 

quasi-periodic, 𝑌𝜑 converges to 2, and if the orbit is stable 

and periodic, it converges to 0. In addition, a linear least-

squares fit 𝑌𝜑 gives half of the Lyapunov exponent (𝛾) 

where the Lyapunov time (𝑇𝛾) is 𝑇𝛾 = 1 𝛾⁄ . 

In many cases, since 𝛿 diverges exponentially during 
integration, the norm of the variational vector grows too 
much in a short time, causing a numerical overflow. To 
avoid this situation, it is recommended that the variational 
vector is renormalized at certain time intervals according 
to Eq.5 as in [27]. However, there are no specific criteria 
for determining the length of renormalization intervals. It 
was shown in [24] that in some cases the choice of 
renormalization time does not affect the calculation of 
maximum Lyapunov exponent. However, this may not be 
the case in all situations as shown in [32]. It should be 
decided by performing tests at different renormalization 
ranges. 

𝛾 = 𝑙𝑖𝑚
𝑘→+∞

1

𝑘𝜏
∑ 𝑙𝑛

‖𝛿(𝑘𝜏)‖

‖𝛿0(𝑘𝜏)‖

𝑘
𝑖=1    (5) 

 

Results and Discussion 
 

Lyapunov Time Calculations 
In the calculation of the MEGNO indicator, it is 

suggested to take 103 to 104 times the period of the 
largest or outmost planet in the system in [27, 32] as the 
integration time, which gives the characteristics of the 
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system. Considering Jupiter, the largest planet, this time 
can be taken in the range of 1.2 × 104 yr to 1.2 × 105 yr 
for the solar system. In our case, the frequency of 
interaction of the planets with the targeted body mainly 
depends on the comet’s period, not the major planet 
Jupiter. Considering the orbital period of comet 1/P 
Halley, integration time should go up to 7.5 × 105 yr as far 
as possible. It is stated in various papers that the required 
minimum integration time for the MEGNO technique to 
estimate the maximum Lyapunov exponent is 10 − 102  
times shorter than any classical method [27, 31]. 
In [13] the integration time was taken as 2 × 105 yr, and 
first-order variational equations were preferred to 
calculate Lyapunov exponents. Lyapunov times 
corresponding to the calculated positive Lyapunov 
exponents range from 385 yr to 702 yr. However, it was 
considered an estimation for the Lyapunov time taking the 
average value of the maximum and minimum Lyapunov 
exponents and obtained averaged Lyapunov time as 562 
yr. In [12], Lyapunov time was estimated with an 
integration time of 10 kyr using ghost particles produced 
by applying ∓10−6 and ∓4.4x10−8 perturbations to the 
position and velocity vectors, respectively. Lyapunov time 
obtained by these approaches is 300 yr. A similar 
approach was used in [11], but for a quite short (3000 yr) 
integration time. In this case, they obtained the Lyapunov 
time as the interval of 70-100 years. 
Renormalization is highly recommended not only for the 
MEGNO method but also Lyapunov exponent calculations 
for various techniques. Interestingly non of the three 
papers [11-13] which calculated Lyapunov time for comet 
1/P Halley mentioned whether the renormalization is 
used or not. In cases where short integration times are 
used, it may be reasonable not to use renormalization. 
However, short integration time also has other drawbacks 
as mentioned earlier, therefore it is not recommended in 
Lyapunov calculations for classical approaches. 

Using different renormalization times during the 
calculation of the maximum Lyapunov exponent from the 
MEGNO indicator has been examined in various 
publications [24, 32], and it has been shown that the 
renormalization period does not change the results in 
some cases. On the other hand, depending on the initial 
conditions, it is possible to get incorrect results with 
improper applications [27]. 
Here, Lyapunov time is calculated in two different ways 
using the linear characteristic of the MEGNO indicator, 
with and without renormalization. Randomly generated 
100 variational particle sets were used for each test. In the 
absence of renormalization, the integrations were 
allowed to continue until they produced numerical 
overflows. Various trials were conducted here with 
different renormalization intervals ranging from 75 yr to 
3000 yr. 
Figure 1 shows the 𝑙𝑜𝑔(𝛾)-𝑙𝑜𝑔(𝑦𝑟) graph for two 
methods with and without renormalization. In both 
graphs, maximum Lyapunov exponents are at the same 
level. However, without renormalization, numerical 
overflows are produced in shorter periods for variational 

particles as predicted in [24, 27, 32]. Therefore, it is 
necessary to keep the integration times at levels of 104 yr 
even shorter. 
We calculated the Lyapunov time as 190 yr by using the 
linearly increasing characteristic of the MEGNO parameter 
in the integrations that continued until the numerical 
overflow. When we take the integration time as 1 × 104 
yr, 2 × 104 yr, and 3 × 104 yr to avoid numerical 
overflows, we obtained the Lyapunov times as 96 yr, 121 
yr and 164 yr, respectively. 
 

 
 

Figure 1. Lyapunov exponents obtained from MEGNO 
calculations with (panel b) and without (panel a) 
renormalization 

 
Since we can keep the integration time longer when 

renormalization is applied, we tried to obtain the 
maximum convergent Lyapunov exponent. We reached 
the minimum and quite similar (119 yr, 124 yr, and 123 yr 
respectively) Lyapunov times with renormalization 
intervals of 2250 yr, 2265 yr, and 3000 yr. 

 

N-Body Simulations for Comet 1/P Halley with 
Clon Orbits 

It is well-known that long-term simulations made only 
for the nominal orbits are not very reliable in chaotic 
regions. Trajectories with very close initial conditions can 
follow very different paths in a simulation of longer 
duration than Lyapunov time. Therefore, using clone 
orbits in long-term dynamic analysis of orbits is a more 
reliable approach for long simulation times. 
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The easiest and most general approach to generate 
clone orbits is to distribute the orbital elements or 
position and velocity components with small dispersion. 
Even though the clone orbits obtained in this way are very 
close to the nominal one, they will not be compatible with 
the uncertainties of the nominal orbital elements. Such 
clones have similar but independent orbits near the 
nominal one. Thus, they may not reflect the change of 
orbital elements well over time [21]. 

For these reasons, in this study, clone orbits produced 
by the MCCM method were used. Thus, all clones 
produced have the same sensitivity level as the orbital 

parameters obtained from the observations. In other 
words, they are not only in the close vicinity of the 
nominal orbit but also dispersed in the same sensitivity 
range. Thus, the initial parameters will be as accurate as 
of the nominal orbital elements. This is a better approach 
than classical methods to follow the change of clone orbits 
in time and compare them with the nominal orbit. 
Besides, the divergence time of the parameters due to 

chaotic motion can give us a norm for the Lyapunov time. 

 

  

Figure 2. Dynamical evolutions of the average of the orbital elements for 1000 clones, and nominal 
orbit for ∓10 kyr. The green curves with error bars show the average of clones, and the blue 
curve shows the nominal orbit. The nominal orbit of the comet for the epoch JD 2449400.5 (1994-
Feb-17.0) is used for initial conditions. 

 

In Figure 2, comet 1/P Halley’s nominal orbital 
elements are given comparatively with the averages of the 
clone orbits. The clone orbits in the approximately ∓1500 
yr range are in great coherence with the nominal orbit. In 
this range, all clone orbits provide almost the same orbit 
shape, size and orientation. When we look at the error 
bars of the average of clone orbits, a larger error range is 
seen in future simulations than in the past. This situation 
can be interpreted as an indication that the comet’s orbit 
has evolved into a more chaotic orbit in time. 

Figure 3 shows the change of basic orbital elements of 
all clones to time in the ∓2000 yr interval. Similar to Figure 
2, all orbital elements support the same orbital shape and 
orientation with very small changes over the range of 
about -1000 yr to +1300 yr. However, similar to what is 
mentioned in [11], the time it takes for the differences 

between orbital elements to start to be greater than their 
initial sensitivity ranges is 108 yr. This definition also gives 
us an approximation for the Lyapunov time.  
Our primary motivation here is to see footprints of the 
forward Lyapunov time in the orbital dynamics of clones. 
Figure 4 portrays the standard deviations of the mean of 
the clone orbital elements for the time interval 0-2000 yr. 
The y axis (standard deviations) is in log scaled so that any 
sudden increase in dispersions can be noticed easily. By 
definition, the required time where the nearby orbits 
begin to diverge exponentially is Lyapunov time. That time 
limit is 108 yr in Figure 4. 

After the exponential increase at 108 yr, there is no 
sudden growth till 1300 yr even though the standard 
deviation for 1000 clones remains in the same band. 
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Figure 3. Dynamical evolutions of the orbital parameters ( a, e, i, Ω, ω , and Tp (time of perihelion passage) of 
1000 clones of comet 1/P Halley for ∓2000 yr. 

 
For almost all orbital elements, the separations that start 

after about 1300 yr become more evident around 1400 yr, 
and standard deviations start to increase exponentially one 
more time. Nevertheless, all clones retain more or less the 
same trajectory shape between 108 yr and 1400 yr. Although 
various Lyapunov times can be obtained using different 
methods for this range, no distinctly different results are seen 
in terms of dispersion range. 

For the 108 yr to 1400 yr range, it seems that it will be 
easier and much more clear to do a detailed examination on 
Tp (time of perihelion passage). In Figure 4f, the smallest 

dispersions for each time interval belongs to the value 
calculated at the perihelion of the comet. The standard 
deviations calculated at the aphelion are much higher. 
However, it should be noted here that the dispersions 
formed during the calculation of Tp when the body is at 
perihelion are more determinant and distinct. For this 
reason, the standard deviations of Tp close to the perihelion 
are taken as a basis in these analyses. Here, the standard 
deviation calculated at perihelions between 109 yr and 289 
yr is less than 1 day, between 290 yr and 589 yr is less than 5 
days. Between 590 yr and 1027 yr, it is still less than 20 days. 
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Standard deviations start to increase exponentially after 
1396 yr. 

 

 
Conclusion 

In this study, we calculated the Lyapunov time for 
comet 1/P Halley using the MEGNO indicator. Estimated 
Lyapunov times with and without renormalization are 119 
yr and 190 yr, respectively. This result showed us the 
effect of renormalization in calculating the Lyapunov time 
for a high eccentric orbit. Depending on the different  
integration levels (1 × 104 yr, 2 × 104 yr, and 3 × 104 yr), 
varying results were also obtained, such as 96 yr, 121 yr 
and 164 yr respectively. Besides, to see the reflection of 
Lyapunov time in dynamic analysis, we performed orbital  
integrations for ∓10 kyr interval of the 1000 clone orbits 
produced using the MCCM method. We compared the  

means of the orbital elements of the clones and the time-
dependent variations of their standard deviations with the 
Lyapunov times in the literature. 
These results lead us to conclude that when we calculate 
different Lyapunov times at different levels, that can give 
us different scales: if our measure is at the initial precision 
range, Lyapunov time should not be more than 108 yr 
(such as 70-100 yr in [11]), for a standard deviation of less 
than one day at Tp, it should not be more than 289 yr (such 
as 300 yr in [12]), and for a standard deviation of fewer 
than five days on Tp , it should not be more than 589 yr 
(such as 562 yr in [13]). Moreover, for a measure where 

 
Figure 4.  Standard deviations for the mean of the orbital elements ( a, e, i, Ω, ω and Tp (time of perihelion passage) 

of the clones for comet 1/P Halley. 
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the shape and orientation of the orbit are still similar, and 
for a standard deviation of up to 20 days at Tp is 
acceptable, approximately 1300 yr can be taken as the 
limit for dynamical studies. It seems that Lyapunov times 
obtained from different methods using various 
assumptions can correspond to different levels in the 
dynamical analysis of the body. 
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