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Abstract
In this paper two kinds of dynamic Hardy-Copson type inequalities are derived via di-
amond alpha integrals. The first kind consists of twelve new integral inequalities which
can be considered as mixed type in the sense that these inequalities contain delta, nabla
and diamond alpha integrals together. The second kind involves another twelve new in-
equalities, which are composed of only diamond alpha integrals, unifying delta and nabla
Hardy-Copson type inequalities. Our approach is quite new due to the fact that it uses
time scale calculus rather than algebra. Therefore both kinds of our results unify some
of the known delta and nabla Hardy-Copson type inequalities into one diamond alpha
Hardy-Copson type inequalities and offer new Hardy-Copson type inequalities even for
the special cases.
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1. Introduction
The theory of inequalities containing series or integrals has been given a great impor-

tance due to their effective usage in differential equations and their applications after the
appearance of the celebrated discrete and continuous inequalities of Hardy. In 1920, when
Hardy [28] tried to find a simple and elementary proof of Hilbert’s inequality [42]
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and pioneering continuous inequality for a nonnegative function ψ and for a real constant
ζ > 1, as ∫ ∞

0

(1
t

∫ t

0
ψ(s)ds

)ζ

dt ≤
(

ζ

ζ − 1

)ζ ∫ ∞

0
ψζ(t)dt, (1.2)

where
∫ ∞

0
ψζ(t)dt < ∞. In fact, Hardy only stated inequality (1.2) in [28] but did not

prove it. After that in 1925, the proof of inequality (1.2), which depends on the calculus
of variations, was shown by Hardy in [29].

The constant
(

ζ
ζ−1

)ζ
that appears in the above inequalities also has been found as the

best possible one, since if it is replaced by a smaller constant then inequalities (1.1) and
(1.2) are not fulfilled anymore for the involved sequences and functions, respectively.

Then Hardy et al. [30, Theroem 330] developed inequality (1.2) and derived the follow-
ing integral inequality for a nonnegative function ψ as∫ ∞

0
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tθ
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∣∣∣∣ ζ

θ − 1
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where if θ > 1, then Ψ(t) =
∫ t

0
ψ(s)ds and if θ < 1, then Ψ(t) =

∫ ∞

t
ψ(s)ds.

The exhibition of the results containing the improvements, generalizations and appli-
cations of the discrete and continuous Hardy inequalities (1.1)-(1.3) can be found in the
books [9, 30, 42, 43, 49] and references therein. In particular the discrete case was inves-
tigated in [11, 19, 20, 24, 44–47] while the continuous Hardy inequalities were analyzed in
[10,21,31,52,54,55].

If the arithmetic mean of a sequence c(j) is replaced by its weighted arithmetic mean,
then two discrete inequalities, one of which refines discrete inequality (1.1) while the other
one is a novel inequality, have been established by Copson [20, Theorem 1.1, Theorem 2.1]
as follows.

Let c(j) and z(j) be nonnegative sequences for j = 1, 2, · · · . If ζ > 1, θ > 1, then
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where G(j) =
j∑

i=1
z(i).

It is worth mentioning the concept introduced by Leindler in [46] for the inequalities
involving series. Let the heads and the tails of a sequence x be defined by

x1,m =
m∑

j=1
x(j) and xm,∞ =

∞∑
j=m

x(j),

repectively. By this definition and by using the tails of the sequence z, Bennett [11,
Corollary 3-Corollary 6] (see also Leindler [45, Proposition 1-Proposition 4]) obtained two
more inequalities in addition to inequalities (1.4) and (1.5) as follows:
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Let the sequences c(j) and z(j) be nonnegative for j = 1, 2, · · · and
∞∑
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us define the heads and the tails of the sequence z as
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Therefore by using this terminology, Bennett [11] (or Leindler [45]) treated the following
four cases:

Corollary 3 (or Proposition 1) 1 < θ ≤ ζ heads of z heads of cz
Corollary 4 (or Proposition 2) 0 ≤ θ < 1 < ζ heads of z tails of cz
Corollary 5 (or Proposition 3) 0 ≤ θ < 1 < ζ tails of z heads of cz
Corollary 6 (or Proposition 4) 1 < θ ≤ ζ tails of z tails of cz

Similar to the discrete Hardy inequality (1.1), the continuous versions (1.2) or (1.3) have
attracted many mathematicians’ interests and expansions of these continuous inequalities
have appeared in the literature. Continuous versions of discrete inequalities (1.4) (or (1.7))
and (1.5) (or (1.9)) were obtained by Copson [21, Theorem 1, Theorem 3], respectively.
By these results, Copson derived better inequalities than Hardy’s continuous inequalities
(1.2) or (1.3) as follows.

Let z and h be nonnegative functions. We set G =
∫ t

0
z(s)ds, H(t) =

∫ t

0
z(s)h(s)ds,

H(t) =
∫ ∞

t
z(s)h(s)ds.

If 1 < θ, 1 ≤ ζ, 0 < b ≤ ∞, then∫ b

0
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)ζ ∫ b

0

z(t)hζ(t)
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dt (1.10)

and if θ < 1 ≤ ζ, a > 0, then∫ ∞

a
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a

z(t)hζ(t)
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dt. (1.11)

Various generalizations and numerous variants of continuous Hardy-Copson inequalities
(1.10) and (1.11) can be found in Pachpatte [54] and references therein.
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Other refinements of continuous Hardy-Copson inequalities, which are generalizations
of (1.10) and (1.11), respectively, have been introduced by Pečarić and Hanjš [55] as in

the following: Let z and h be nonnegative functions. We set G(t) =
∫ t

0
z(s)ds, H(t) =∫ t

0
z(s)h(s)ds, H(t) =

∫ ∞

t
z(s)h(s)ds. If ζ > 1, η ≥ 0, η + θ > 1, then

∫ ∞

0
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0
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and if ζ > 1, η ≥ 0, η + θ < 1, then∫ ∞

0
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Following the development of the time scale concept [8, 15, 16, 25, 26], the analysis of
dynamic inequalities have become a popular research area and most classical inequalities
have been extended to an arbitrary time scale. The surveys [1, 58] and the monograph
[3] can be used to see these extended dynamic inequalities for delta approach. Although
the nabla dynamic inequalities are less attractive compared to the delta ones, some of the
nabla dynamic inequalities can be found in [6, 13,27,40,41,53,56].

The growing interest to Hardy-Copson type inequalities have taken place in the time
scale calculus as well and delta unifications of these inequalities have been established in
the book [4] and in the articles [59]-[65], [2,17,18,22,23] whereas their nabla counterparts
and extensions can be seen in [33–35].

The delta time scale generalizations of the foregoing Hardy-Copson type inequalities in
an arbirtary time scale are given in the next four theorems.

A delta unification of the discrete Bennett’s inequality (1.8) is stated as follows.

Theorem 1.1 ([64]). Let z and h be nonnegative functions on (0,∞)Tκ. We set G1(t) =∫ ∞

t
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[G1(t)]η+θ−ζ
∆t. (1.15)

A delta unification of the Copson’s discrete inequality (1.5) (or the Bennett’s discrete
inequality (1.9)) and its continuous versions (1.3), (1.11) as well as its continuous gener-
alization (1.13) is stated as follows.

Theorem 1.2 ([64]). Let z and h be nonnegative functions on (0,∞)Tκ. We set G1(t) =∫ t

a
z(s)∆s and H1(t) =

∫ ∞

t
z(s)h(s)∆s. If ζ > 1, η ≥ 0, η + θ < 1, then we have

∫ ∞

a

z(t)[H1(t)]η+ζ
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∆t ≤ η + ζ
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a
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∆t. (1.17)

A delta unification of the discrete Bennett’s inequality (1.6) is established as in the
folowing.
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Theorem 1.3 ([64]). Let z and h be nonnegative functions on (0,∞)Tκ. We set G1(t) =∫ ∞

t
z(s)∆s and H1(t) =

∫ ∞

t
z(s)h(s)∆s. For G

σ
1 (t)

G1(t)
≥ 1
K

> 0, if ζ > 1, η ≥ 0, η+θ > 1,

then we have ∫ ∞

a
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[G1(t)]η+θ
∆t ≤ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[H1(t)]η+ζ−1

[Gσ
1 (t)]η+θ−1 ∆t (1.18)

and ∫ ∞

a

z(t)[H1(t)]η+ζ
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[
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a

z(t)hζ(t)[H1(t)]η

[G1(t)]η+θ−ζ
∆t. (1.19)

Although the authors presented Theorem 1.1-Theorem 1.3 in [64] for delta time scale
calculus, they did not include the following theorem. For the completeness of the paper, we
give the next theorem, which is a delta unification of the Hardy’s discrete inequality (1.1),
the Copson’s discrete inequality (1.4) (or the Bennett’s discrete inequality (1.7)) and of
the continuous inequalities (1.2), (1.3), (1.10) as well as of their continuous generalization
(1.12), established in [33].

Theorem 1.4 ([33,64]). Let z and h be nonnegative functions on (0,∞)Tκ. We set G1(t) =∫ t

a
z(s)∆s and H1(t) =

∫ t

a
z(s)h(s)∆s. For G1(t)

G
σ
1 (t)

≥ 1
J
> 0, if ζ > 1, η ≥ 0, η + θ > 1,

then we have ∫ ∞

a

z(t)[Hσ
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[Gσ
1 (t)]η+θ

∆t ≤ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[Hσ
1 (t)]η+ζ−1

[G1(t)]η+θ−1 ∆t (1.20)

and ∫ ∞

a

z(t)[Hσ
1 (t)]η+ζ

[Gσ
1 (t)]η+θ

∆t ≤
[
Jη+θ−1 η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[Hσ
1 (t)]η

[Gσ
1 (t)]η+θ−ζ

∆t. (1.21)

The construction of the nabla time scale calculus, which has been introduced simulta-
neously with the delta time scale calculus, can be found in [8, 15,16,25,26].

Contrary to delta case, nabla Hardy-Copson type inequalities have not been considered
until 2021. The first results of this case were obtained by Kayar and Kaymakçalan in [33].

The nabla time scale generalizations of the foregoing inequalities in an arbirtary time
scale are given in the next four theorems.

A nabla unification of the discrete Bennett’s inequality (1.8) and a nabla analogue of
the delta inequality (1.14) are stated as follows.

Theorem 1.5 ([33]). Let z and h be nonnegative functions on (0,∞)Tκ. We set G2(t) =∫ ∞

t
z(s)∇s and H2(t) =

∫ t

a
z(s)h(s)∇s. Assume that H2(∞) < ∞ and

∫ ∞

a

z(t)∇t
[Gρ

2(t)]θ+η
<

∞. If ζ > 1, η ≥ 0 and η + θ < 1 are real constants, then we have∫ ∞

a

z(t)[H2(t)]η+ζ

[Gρ
2(t)]η+θ

∇t ≤ η + ζ

1 − η − θ

∫ ∞

a

z(t)h(t)[H2(t)]η+ζ−1

[Gρ
2(t)]η+θ−1 ∇t (1.22)

and ∫ ∞

a

z(t)[H2(t)]η+ζ

[Gρ
2(t)]η+θ

∇t ≤
[

η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H2(t)]η

[Gρ
2(t)]η+θ−ζ ∇t. (1.23)

A nabla unification of the Copson’s discrete inequality (1.5) (or the Bennett’s discrete
inequality (1.9)) and its continuous versions (1.3), (1.11) and (1.13) as well as a nabla
analogue of the delta inequality (1.16) are stated as follows.
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Theorem 1.6 ([33]). Let z and h be nonnegative functions on (0,∞)Tκ. We set G2(t) =∫ t

a
z(s)∇s and H2(t) =

∫ ∞

t
z(s)h(s)∇s. Assume that H2(a) < ∞ and

∫ ∞

a

z(t)∇t
[Gρ

2(t)]θ+η
<

∞. If ζ > 1, η ≥ 0 and η + θ < 1 are real constants, then we have∫ ∞

a

z(t)[Hρ
2(t)]η+ζ

[G2(t)]η+θ
∇t ≤ η + ζ

1 − η − θ

∫ ∞

a

z(t)h(t)[Hρ
2(t)]η+ζ−1

[G2(t)]η+θ−1 ∇t (1.24)

and ∫ ∞

a

z(t)[Hρ
2(t)]η+ζ

[G2(t)]η+θ
∇t ≤

[
η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[Hρ
2(t)]η

[G2(t)]η+θ−ζ ∇t. (1.25)

A nabla unification of the Bennett’s discrete inequality (1.6) and a nabla analogue of
the delta inequality (1.18) are stated as follows.

Theorem 1.7 ([33]). Let z and h be nonnegative functions on (0,∞)Tκ. We set G2(t) =∫ ∞

t
z(s)∇s and H2(t) =

∫ ∞

t
z(s)h(s)∇s. Assume that H2(a) < ∞ and

∫ ∞

a

z(t)∇t
[Gρ

2(t)]θ+η
<

∞. Suppose that there exists M > 0 such that G
ρ(t)
G(t)

≤ M for t ∈ (a,∞)T. If ζ > 1, η ≥ 0

and η + θ > 1 are real constants, then we have∫ ∞

a

z(t)[Hρ
2(t)]η+ζ

[Gρ
2(t)]η+θ

∇t ≤ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[Hρ
2(t)]η+ζ−1

[G2(t)]η+θ−1 ∇t (1.26)

and ∫ ∞

a

z(t)[Hρ(t)]η+ζ

[Gρ(t)]η+θ
∇t ≤

[
Mη+θ−1 η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[Hρ(t)]η

[Gρ(t)]η+θ−ζ
∇t. (1.27)

A nabla unification of the discrete inequalities (1.1), (1.4) and (1.7) and the continuous
inequalities (1.2), (1.3), (1.10) and (1.12) as well as a nabla analogue of the delta inequality
(1.20) are stated as follows.

Theorem 1.8 ([33]). Let z and h be nonnegative functions on (0,∞)Tκ. We set G2(t) =∫ t

a
z(s)∇s and H2(t) =

∫ t

a
z(s)h(s)∇s. Assume that H2(∞) < ∞ and

∫ ∞

a

z(t)∇t
[G2(t)]η+θ

<

∞. Suppose that there exists L > 0 such that G(t)
G

ρ(t)
≤ L for t ∈ (a,∞)T. If ζ > 1, η ≥ 0

and η + θ > 1 are real constants, then we have∫ ∞

a

z(t)[H2(t)]η+ζ

[G2(t)]η+θ
∇t ≤ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[H2(t)]η+ζ−1

[Gρ
2(t)]η+θ−1 ∇t (1.28)

and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≤

[
Lη+θ−1 η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[G(t)]η+θ−ζ
∇t. (1.29)

To the best of our knowledge, contrary to delta and nabla cases, diamond alpha Hardy-
Copson type inequalities have not been considered yet. Hence the main contributions
of this article are to bind and unify abovementioned Hardy-Copson type inequalities by
diamond alpha calculus and to obtain new inequalities even for the discrete, continuous,
delta and nabla cases by taking account of the condition η + θ ≤ 0, which has not been
considered so far. We notice that there is more than one way to obtain diamond alpha
Hardy-Copson type inequalities. Our first method is inspired from the papers [64] and
[33] and is based on the convex linear combination of the aforementioned delta and nabla
Hardy-Copson type inequalities given in [33, 64]. By this method, we establish Hardy-
Copson type integral inequalities whose left or right hand side consists of delta and nabla
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integrals and right or left hand side composed of diamond alpha integrals, respectively. Our
second approach, which is a novel method for the diamond alpha calculus, is to obtain
diamond alpha versions of Theorem 1.1-Theorem 1.8 by using diamond alpha calculus
rather than algebra. By this method, since both sides of the diamond alpha Hardy-
Copson type inequalities include only single diamond alpha integrals, these inequalities
become compact forms. In this case, we have twelve diamond alpha Hardy-Copson type
inequalities, some of which are new even for delta and nabla time scale calculi while
the others are fusions of the results obtained for such calculi and all of which merge
the aforementioned inequalities. As a result, these techniques allow us to generalize and
unify the foregoing delta and nabla Hardy-Copson type inequalities and to obtain novel
inequalities for delta and nabla approaches as well as to contribute the current literature
by new diamond alpha Hardy-Copson type inequalities.

The organization of this paper can be seen as follows. Delta, nabla and diamond alpha
time scale calculi and their main propoerties are introduced in Section 2. The contribution
of Section 3, which includes one of the main results, is to unify the recently developed
results presented in [33, 64] for time scale diamond alpha calculus by combining dynamic
delta and nabla integral inequalities, both of which are special cases of dynamic diamond
alpha integral inequalities. Another main result of this paper is given in Section 4 which
contains diamond alpha unifications of the foregoing dynamic delta and nabla integral
inequalities proven in Theorem 1.1-Theorem 1.8.

2. Preliminaries
This section is devoted to present the main definitions and theorems of delta, nabla

and diamond alpha calculi. We refer the reader to [8, 15, 16] for the concept of time scale
calculus in delta and nabla senses.

A nonempty closed subset of R is called a time scale which is denoted by T. Since the
delta and the nabla time scale calculi are very well-known [8, 15, 16], we skip the details
of them and we consider only the main properties which will be used in the sequel.

Theorem 2.1 ([15]). Suppose that Λ,Γ : T → R and s ∈ Tκ. For µ(s) = σ(s) − s, we
have the following.

(1) If Λ is delta differentiable at s, then Λ(σ(s)) = Λσ(s) = Λ(s) + µ(s)Λ∆(s).
(2) The product ΛΓ : T → R is differentiable at s with

(ΛΓ)∆(s) = Λ∆(s)Γ(s) + Λ(σ(s))Γ∆(s) = Λ(s)Γ∆(s) + Λ∆(s)Γ(σ(s)). (2.1)

Lemma 2.2 ([15]). [Chain rules for delta derivative] If Γ ∈ C1(R,R) and Λ ∈ C(T,R) is
delta differentiable on Tκ, then Γ ◦ Λ is delta differentiable and

(i) one can find c ∈ [s, σ(s)] with

(Γ ◦ Λ)∆(s) = Γ′(Λ(c))Λ∆(s). (2.2)

(ii) the equation

(Γ ◦ Λ)∆(s) = Λ∆(s)
∫ 1

0
Γ′
(

Λ(s) + wµ(s)Λ∆(s)
)
dw (2.3)

holds.

Theorem 2.3 ([15]). Suppose that Γ : T → R and s ∈ Tκ. For ν(s) = s − ρ(s), we have
the following.

(1) If Γ is nabla differentiable at s, then Γ(ρ(s)) = Γρ(s) = Γ(s) − ν(s)Γ∇(s).
(2) The product ΛΓ : T → R is differentiable at s with

(ΛΓ)∇(s) = Λ∇(s)Γ(s) + Λ(ρ(s))Γ∇(s) = Λ(s)Γ∇(s) + Λ∇(s)Γ(ρ(s)). (2.4)
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Lemma 2.4 ([27]). [Chain rule for nabla derivative] If Γ ∈ C1(R,R) and Λ ∈ C(T,R) is
nabla differentiable on Tκ, then Γ ◦ Λ is nabla differentiable and

(Γ ◦ Λ)∇(s) = Λ∇(s)
∫ 1

0
Γ′
(

Λ(ρ(s)) + wν(s)Λ∇(s)
)
dw (2.5)

holds.

The next lemmas play crucial roles in the main theorems.

Lemma 2.5 ([8, 15]). If Γ is continuous, then

(i)
(∫ t

t1
Γ(s)∆s

)∆
= Γ(t) and

(∫ t

t1
Γ(s)∇s

)∆
= Γ(σ(t))

(ii)
(∫ t

t1
Γ(s)∇s

)∇
= Γ(t) and

(∫ t

t1
Γ(s)∆s

)∇
= Γ(ρ(t))

Lemma 2.6 ([26]). If Γ is continuous for all t1, t2 ∈ T with t1 < t2, then∫ t2

t1
Γ(t)∆t =

∫ t2

t1
Γ(ρ(t))∇t and

∫ t2

t1
Γ(t)∇t =

∫ t2

t1
Γ(σ(t))∆t.

The diamond alpha time scale calculus has been introduced by Sheng et al. in the article
[66]. This calculus deals with diamond alpha, which is denoted by ⋄α, differentiable and
diamond alpha integrable functions which are convex linear combinations of delta and
nabla differentiable and integrable functions, respectively. For some developments of this
calculus and for some integral inequalities in this calculus, we refer to [5, 7, 12–14, 32, 36–
39,48,50,51,53,57] and references therein.

Let ρ(s) − τ = asτ and σ(s) − τ = bsτ. Then the ⋄α-derivative of Λ : T → R at the point
s ∈ Tκ

κ denoted by Λ⋄α(s) is the number enjoying the property that for all ϵ > 0, there
exists a neighborhood V ⊂ T of s ∈ Tκ

κ such that for any τ ∈ V,∣∣∣∣ α|Λ(σ(s)) − Λ(τ)| |asτ | + (1 − α)|Λ(ρ(s)) − Λ(τ)| |bsτ | − Λ⋄α(s)|asτ | |bsτ |
∣∣∣∣ ≤ ϵ|asτ | |bsτ |.

By [66], Λ : T → R is ⋄α-differentiable at s ∈ Tκ
κ provided it is both delta and nabla

differentiable at s. Moreover, for 0 ≤ α ≤ 1, such a function satisfies

Λ⋄α(s) = αΛ∆(s) + (1 − α)Λ∇(s). (2.6)

By [66], Λ : T → R is diamond alpha integrable provided it is continuous. Moreover, for
0 ≤ α ≤ 1, we have∫ s2

s1
Λ(s) ⋄α s = α

∫ s2

s1
Λ(s)∆s+ (1 − α)

∫ s2

s1
Λ(s)∇s. (2.7)

Lemma 2.7 ([26,51]). For all s ∈ T, a time scale T is said to be regular provided σ(ρ(s)) =
ρ(σ(s)) = s holds. A regular time scale T satisfies Tκ

κ = Tκ = Tκ = T. Moreover,
σ(T) = ρ(T) = T in such a time scale.

Lemma 2.8 (Diamond-alpha Hölder’s inequality). [5, 53] Let s1, s2 ∈ T. For Λ,Γ ∈
C([a, b]T, [0,∞)) with

∫ s2

s1
Γλ2(s) ⋄α s > 0, and for the conjugate numbers λ1, λ2 > 1

satisfying 1
λ1

+ 1
λ2

= 1, the following Hölder’s inequality

∫ s2

s1
Λ(s)Γ(s) ⋄α s ≤

(∫ s2

s1
Λλ1(s) ⋄α s

)1/λ1 (∫ s2

s1
Γλ2(s) ⋄α s

)1/λ2

(2.8)

holds.
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One of the disadvantages of diamond alpha integral which sometimes does not allow us
to use diamond alpha calculus is that the fundamental theorem of calculus is not fulfilled
for diamond alpha integral. However, by [66], it is known that(∫ t

t1
Λ(s) ⋄α s

)⋄α

= (1 − 2α− α2)Λ(t) + (α− α2)[Λ(ρ(t)) + Λ(σ(t))].

3. Dynamic diamond alpha inequalities-I
Let T be a time scale and a ∈ [0,∞)T. This section is devoted to find new integral

inequalities, which are established by using the second inequalities (the first inequalities
can be used as well) in Theorem 1.1-Theorem 1.8. In addition to their novelty, these
inequalities cover the ones in Theorem 1.1-Theorem 1.8. Since the following inequalities
follow from the fact that diamond alpha integral is the convex linear combination of delta
and nabla integrals, these inequalities can be considered as mixed type Hardy-Copson
diamond alpha inequalities.

The next theorem provides diamond alpha unifications of the previous Hardy-Copson
type inequalities given for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1. These previous Hardy-Copson
type inequalities are listed as follows:

(a) The discrete inequality (1.8) obtained by Bennett [11, Corollary 5] or Leindler
[45, Proposition 3].

(b) The continuous inequality obtained by Saker et al. [64, Corollary 2.2] or Kayar
and Kaymakçalan [33, Remark 3.22].

(c) The delta inequality (1.15) obtained by Saker et al. [64, Theorem 2.2].
(d) The nabla inequality (1.23) obtained by Kayar and Kaymakçalan [33, Theorem

3.19].

Theorem 3.1. Suppose that z and h are nonnegative functions on T. Let G1(t) =∫ ∞

t
z(s)∆s, G2(t) =

∫ ∞

t
z(s)∇s, H1(t) =

∫ t

a
z(s)h(s)∆s and H2(t) =

∫ t

a
z(s)h(s)∇s.

Moreover let us define H(t) = min
t∈[a,∞)

{Hσ
1 (t),H2(t)} , G(t) = max

t∈[a,∞)
{G1(t), Gρ

2(t)} , and

H̃(t) = max
t∈[a,∞)

{Hσ
1 (t),H2(t)} . If ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 are real constants, then

(i)∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
η + ζ

1 − η − θ

]ζ

×
[∫ ∞

a

z(t)hζ(t)[Hσ
1 (t)]η

[G1(t)]η+θ−ζ
∆t+

∫ ∞

a

z(t)hζ(t)[H2(t)]η

[Gρ
2(t)]η+θ−ζ

∇t
]
.

(ii)

α

∫ ∞

a

z(t)[Hσ
1 (t)]η+ζ

[G1(t)]η+θ
∆t+ (1 − α)

∫ ∞

a

z(t)[H2(t)]η+ζ

[Gρ
2(t)]η+θ

∇t

≤
[

η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H̃(t)]η

[G(t)]η+θ−ζ
⋄α t.

(3.1)

(iii) ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H̃(t)]η

[G(t)]η+θ−ζ
⋄α t. (3.2)
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Proof. (i) It follows from inequality (1.15) for 0 ≤ α ≤ 1 that

α

∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∆t ≤ α

∫ ∞

a

z(t)[Hσ
1 (t)]η+ζ

[G1(t)]η+θ
∆t ≤

∫ ∞

a

z(t)[Hσ
1 (t)]η+ζ

[G1(t)]η+θ
∆t

≤
[

η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[Hσ
1 (t)]η

[G1(t)]η+θ−ζ
∆t.

(3.3)

Similarly, inequality (1.23) implies for 0 ≤ α ≤ 1 that

(1 − α)
∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≤ (1 − α)

∫ ∞

a

z(t)[H2(t)]η+ζ

[Gρ
2(t)]η+θ

∇t ≤
∫ ∞

a

z(t)[H2(t)]η+ζ

[Gρ
2(t)]η+θ

∇t

≤
[

η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H2(t)]η

[Gρ
2(t)]η+θ−ζ

∇t.

(3.4)
If we add inequalities (3.3) and (3.4) side by side, we obtain the desired result.

(ii) Multiplying both sides of inequality (1.15) and inequality (1.23) by α and 1 − α,
respectively, and adding the resulting inequalities side by side lead to

α

∫ ∞

a

z(t)[Hσ
1 (t)]η+ζ∆t

[G1(t)]η+θ
+ (1 − α)

∫ ∞

a

z(t)[H2(t)]η+ζ∇t
[Gρ

2(t)]η+θ

≤ α

[
η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[Hσ
1 (t)]η

[G1(t)]η+θ−ζ
∆t

+ (1 − α)
[

η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H2(t)]η

[Gρ
2(t)]η+θ−ζ

∇t.

(3.5)

By using G(t) = max
t∈[a,∞)

{G1(t), Gρ
2(t)} and H̃(t) = max

t∈[a,∞)
{Hσ

1 (t),H2(t)} for

η + θ− ζ ≤ 0, on the right hand side of inequality (3.5), we get the desired result.
(iii) If we use H(t) = min

t∈[a,∞)
{Hσ

1 (t),H2(t)} and G(t) = max
t∈[a,∞)

{G1(t), Gρ
2(t)} on the

left hand side of the inequality (3.1), we arrive the desired result.
�

Remark 3.2. If we choose α = 1 and α = 0 in inequality (3.5), then we obtain∫ ∞

a

z(t)[Hσ
1 (t)]η+ζ

[G1(t)]η+θ
∆t ≤

[
η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[Hσ
1 (t)]η

[G1(t)]η+θ−ζ
∆t

and ∫ ∞

a

z(t)[H2(t)]η+ζ

[Gρ
2(t)]η+θ

∇t ≤
[

η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H2(t)]η

[Gρ
2(t)]η+θ−ζ

∇t,

which are exactly the same as the results of Theorem 1.1 and Theorem 1.5, respectively.
Therefore the result in (ii) is the diamond alpha unification of the delta Hardy-Copson
inequality (1.15) and the nabla Hardy-Copson inequality (1.23).

Remark 3.3. Although inequality (3.1) is better than inequality (3.2), it is worth men-
tioning inequality (3.2) due to the fact that the mixed integrals disappear and there exist
only diamond alpha integrals on the both sides of the inequality (3.2).

The next theorem provides diamond alpha unifications of the previous Hardy-Copson
type inequalities given for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1. These previous Hardy-Copson
type inequalities are listed as follows:

(a) The discrete inequality (1.5) obtained by Copson [20, Theorem 2.1] and the discrete
inequality (1.9) obtained by Bennett [11, Corollary 4] or Leindler [45, Proposition
3].
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(b) The continuous inequality (1.3) obtained by Hardy et al. [30, Theorem 330], the
continuous inequality (1.11) obtained by Copson [21, Theorem 3] and the contin-
uous inequality (1.13) obtained by Pachpatte as inequality (6) in [54, Theorem 1]
and Pečarić and Hanjš as inequality (9) in [55, Theorem 3].

(c) The delta inequality (1.17) obtained by Saker et al. [64, Theorem 2.1].
(d) The nabla inequality (1.25) obtained by Kayar and Kaymakçalan [33, Theorem

3.13].

Theorem 3.4. Suppose that z and h are nonnegative functions. Let G1(t) =
∫ t

a
z(s)∆s,

G2(t) =
∫ t

a
z(s)∇s, H1(t) =

∫ ∞

t
z(s)f(s)∆s and H2(t) =

∫ ∞

t
z(s)h(s)∇s. Moreover

let us define H(t) = min
t∈[a,∞)

{
H1(t), Hρ

2(t)
}
, G(t) = max

t∈[a,∞)

{
G

σ
1 (t), G2(t)

}
and H̃(t) =

max
t∈[a,∞)

{
H1(t), Hρ

2(t)
}
. If ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 are real constants, then

(i)∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
η + ζ

1 − η − θ

]ζ

×
[∫ ∞

a

z(t)hζ(t)[H1(t)]η

[Gσ
1 (t)]η+θ−ζ

∆t+
∫ ∞

a

z(t)hζ(t)[Hρ
2(t)]η

[G2(t)]η+θ−ζ
∇t
]
.

(ii)

α

∫ ∞

a

z(t)[H1(t)]η+ζ

[Gσ
1 (t)]η+θ

∆t+ (1 − α)
∫ ∞

a

z(t)[Hρ
2(t)]η+ζ

[G2(t)]η+θ
∇t

≤
[

η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H̃(t)]η

[G(t)]η+θ−ζ
⋄α t.

(3.6)

(iii) ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H̃(t)]η

[G(t)]η+θ−ζ
⋄α t. (3.7)

Proof. If the same steps of the proof of Theorem 3.1 are followed for the delta ineqality
(1.17) and the nabla inequality (1.25), the proof will be completed. �
Remark 3.5. After expressing the right hand side of the inequality (3.6) in terms of delta
and nabla integrals, if we choose α = 1 and α = 0 in the resulting inequality, then we
obtain ∫ ∞

a

z(t)[H1(t)]η+ζ

[Gσ
1 (t)]η+θ

∆t ≤
[

η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H1(t)]η

[Gσ
1 (t)]η+θ−ζ

∆t

and ∫ ∞

a

z(t)[Hρ
2(t)]η+ζ

[G2(t)]η+θ
∇t ≤

[
η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[Hρ
2(t)]η

[G2(t)]η+θ−ζ
∇t,

which are exactly the same as the results of Theorem 1.2 and Theorem 1.6, respectively.
Therefore the result in (ii) is the diamond alpha unification of the delta Hardy-Copson
inequality (1.17) and the nabla Hardy-Copson inequality (1.25).
Remark 3.6. Although inequality (3.6) is better than inequality (3.7), it is worth men-
tioning inequality (3.7) due to the fact that the mixed integrals disappear and there exist
only diamond alpha integrals on the both sides of the inequality (3.7).

The next theorem provides diamond alpha unifications of the previous Hardy-Copson
type inequalities given for ζ > 1, η ≥ 0 and η+θ > 1. These previous Hardy-Copson type
inequalities are listed as follows:



Diamond alpha Hardy-Copson inequalities 59

(a) The discrete inequality (1.6) obtained by Bennett [11, Corollary 6] or Leindler
[45, Proposition 4].

(b) The continuous inequality obtained by Saker et al. [64, Corollary 2.3] and by
Kayar and Kaymakçalan [33, Remark 3.11].

(c) The delta inequality (1.19) obtained by Saker et al. [64, Theorem 2.3].
(d) The nabla inequality (1.27) obtained by Kayar and Kaymakçalan [33, Theorem

3.8].

Theorem 3.7. Let the fuctions G1, G2, H1, H2, G,H, H̃ and be defined as in Theorem 3.1

and Theorem 3.4. Let G
σ
1 (t)

G1(t)
≥ 1
K1

> 0 and G2(t)
Gρ

2(t)
≥ 1
K2

> 0 and K = max {K1,K2}. If

ζ > 1, η ≥ 0 and η + θ > 1 are real constants, then
(i) ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
Kη+θ−1

1
η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H1(t)]η

[G1(t)]η+θ−ζ
∆t

+
[
Kη+θ−1

2
η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[Hρ
2(t)]η

[Gρ
2(t)]η+θ−ζ

∇t.

(ii)

α

∫ ∞

a

z(t)[H1(t)]η+ζ

[G1(t)]η+θ
∆t+ (1 − α)

∫ ∞

a

z(t)[Hρ
2(t)]η+ζ

[Gρ
2(t)]η+θ

∇t

≤
[
Kη+θ−1 η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H̃(t)]η

[G(t)]η+θ−ζ
⋄α t.

(3.8)

(iii)∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
Kη+θ−1 η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H̃(t)]η

[G(t)]η+θ−ζ
⋄α t. (3.9)

Proof. If we follow the same procedure of the proof of Theorem 3.1 for the delta inequality
(1.19) and the nabla inequality (1.27), we obtain the desired result. �

Remark 3.8. If 1 < ζ ≤ η+θ, then G(t) can be replaced by G̃(t) = min
t∈[a,∞)

{G1(t), Gρ
2(t)}

on the right hand sides of the inequalities (3.8) and (3.9).

Remark 3.9. After expressing the right hand side of the inequality (3.8) in terms of delta
and nabla integrals, if we choose α = 1 and α = 0 in the resulting inequality, then we
obtain ∫ ∞

a

z(t)[H1(t)]η+ζ

[Gσ
1 (t)]η+θ

∆t ≤
[
Kη+θ−1

1
η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H1(t)]η

[G1(t)]η+θ−ζ
∆t

and ∫ ∞

a

z(t)[Hρ
2(t)]η+ζ

[Gρ
2(t)]η+θ

∇t ≤
[
Kη+θ−1

2
η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[Hρ
2(t)]η

[Gρ
2(t)]η+θ−ζ

∇t,

which are exactly the same as the results of Theorem 1.3 and Theorem 1.7, respectively.
Therefore the result in (ii) is the diamond alpha unification of the delta Hardy-Copson
inequality (1.19) and the nabla Hardy-Copson inequality (1.27).

Remark 3.10. Although inequality (3.8) is better than inequality (3.9), it is worth men-
tioning inequality (3.9) due to the fact that the mixed integrals disappear and there exist
only diamond alpha integrals on the both sides of the inequality (3.9).
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The next theorem provides diamond alpha unifications of the previous Hardy-Copson
type inequalities given for ζ > 1, η ≥ 0 and η+θ > 1. These previous Hardy-Copson type
inequalities are listed as follows:

(a) The discrete inequality (1.1) obtained by Hardy as inequality (2) in [28, Theorem
B], the discrete inequality (1.4) obtained by Copson [20, Theorem 1.1] and the
discrete inequality (1.7) obtained by Bennett [11, Corollary 3] or Leindler [45,
Proposition 1].

(b) The continuous inequality (1.2) obtained by Hardy as inequality (4) in [28, Theo-
rem B], the continuous inequality (1.3) obtained by Hardy et al. [30, Theorem 330],
the continuous inequality (1.10) obtained by Copson [21, Theorem 1] and the con-
tinuous inequality (1.12) obtained by Pachpatte as inequality (6) in [54, Theorem
1] and Pečarić and Hanjš as inequality (3) in [55, Theorem 1].

(c) The delta inequality (1.21) obtained by Kayar and Kaymakçalan [33, Remark 3.2]
and Saker et al. [64].

(d) The nabla inequality (1.29) obtained by Kayar and Kaymakçalan [33, Theorem
3.1].

Theorem 3.11. Let the fuctions G1, G2,H1,H2,H, H̃,G be defined as in Theorem 3.1

and Theorem 3.4. Let G1(t)
Gσ

1 (t)
≥ 1
L1

> 0 and G2
ρ(t)

G2(t)
≥ 1
L2

> 0 and L = min {L1, L2} . If

ζ > 1, η ≥ 0 and η + θ > 1 are real constants, then
(i) ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
Lη+θ−1

1
η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[Hσ
1 (t)]η

[Gσ
1 (t)]η+θ−ζ

∆t

+
[
Lη+θ−1

2
η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H2(t)]η

[G2(t)]η+θ−ζ
∇t.

(ii)

α

∫ ∞

a

z(t)[Hσ
1 (t)]η+ζ

[Gσ
1 (t)]η+θ

∆t+ (1 − α)
∫ ∞

a

z(t)[H2(t)]η+ζ

[G2(t)]η+θ
∇t

≤
[
Lη+θ−1 η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H̃(t)]η

[G(t)]η+θ−ζ
⋄α t.

(3.10)

(iii)∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
Lη+θ−1 η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H̃(t)]η

[G(t)]η+θ−ζ
⋄α t. (3.11)

Proof. If we follow the same procedure of the proof of Theorem 3.1 for the delta inequality
(1.21) and the nabla inequality (1.29), we obtain the desired result. �

Remark 3.12. If 1 < ζ ≤ η+θ, thenG(t) can be replaced by G̃(t) = min
t∈[a,∞)

{
G

σ
1 (t), G2(t)

}
on the right hand sides of the inequalities (3.10) and (3.11).

Remark 3.13. After expressing the right hand side of the inequality (3.10) in terms of
delta and nabla integrals, if we choose α = 1 and α = 0 in the resulting inequality, then
we obtain∫ ∞

a

z(t)[Hσ
1 (t)]η+ζ

[Gσ
1 (t)]η+θ

∆t ≤
[
Lη+θ−1

1
η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[Hσ
1 (t)]η

[Gσ
1 (t)]η+θ−ζ

∆t

and ∫ ∞

a

z(t)[H2(t)]η+ζ

[G2(t)]η+θ
∇t ≤

[
Lη+θ−1

2
η + ζ

η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H2(t)]η

[G2(t)]η+θ−ζ
∇t,



Diamond alpha Hardy-Copson inequalities 61

which are exactly the same as the results of Theorem 1.4 and Theorem 1.8, respectively.
Therefore the result in (ii) is the diamond alpha unification of the delta Hardy-Copson
inequality (1.21) and the nabla Hardy-Copson inequality (1.29).

Remark 3.14. Although inequality (3.10) is better than inequality (3.11), it is worth
mentioning inequality (3.11) due to the fact that the mixed integrals disappear and there
exist only diamond alpha integrals on the both sides of the inequality (3.11).

4. Dynamic diamond alpha inequalities-II
This section is devoted to derive new integral inequalities, which are different than the

ones obtained in Section 3 and are established by using the properties of diamond alpha
derivative and integral.

Let T be a regular time scale and a ∈ [0,∞)T. We assume that z(t) and h(t) are
non-negative, ⋄α-differentiable and locally ⋄α-integrable functions defined on T.

The next theorem not only provides diamond alpha unifications of the previous Hardy-
Copson type inequalities given for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 but also yields novel
Hardy-Copson type inequalities for the discrete, continuous, delta, nabla and diamond
alpha cases when ζ > 1, η ≥ 0 and η + θ ≤ 0. This novelty is caused by the condition
η + θ ≤ 0, which has not been considered so far. These previous Hardy-Copson type
inequalities are listed as follows:

(a) The discrete inequality (1.8) obtained by Bennett [11, Corollary 5] or Leindler
[45, Proposition 3].

(b) The continuous inequality obtained by Saker et al. [64, Corollary 2.2] or Kayar
and Kaymakçalan [33, Remark 3.22].

(c) The delta inequalities in Theorem 1.1 obtained by Saker et al. [64, Theorem 2.2].
(d) The nabla inequalities in Theorem 1.5 obtained by Kayar and Kaymakçalan [33,

Theorem 3.19].

Theorem 4.1. Let the product (zh) be a nondecreasing function on [a,∞)T. For G(t) =∫ ∞

t
z(s) ⋄α s and H(t) =

∫ t

a
z(s)h(s) ⋄α s, assume that there exists L1 > 0 such that

G(t)
Gρ(t)

≥ L1 for t ∈ (a,∞)T. Let ζ > 1, η ≥ 0.

(i) If 0 ≤ η + θ < 1, then∫ ∞

a

z(t)[H(t)]η+ζ

[Gρ(t)]η+θ
⋄α t ≤ η + ζ

(1 − η − θ)(1 − α)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ⋄α t (4.1)

and∫ ∞

a

z(t)[H(t)]η+ζ

[Gρ(t)]η+θ
⋄α t ≤

[
η + ζ

(1 − η − θ)(1 − α)

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[Gρ(t)]η+θ−ζ
⋄α t. (4.2)

(ii) If η + θ ≤ 0, then∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ η + ζ

(1 − η − θ)(1 − α)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ⋄α t (4.3)

and∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
Lη+θ−1

1 (η + ζ)
(1 − η − θ)(1 − α)

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[G(t)]η+θ−ζ
⋄α t. (4.4)

Proof. (i) Let us define u(t) = [H(t)]η+ζ [G(t)]1−η−θ for t ∈ [a,∞). If we take the
nabla derivative of the function u by using formula (2.4), we get

u∇(t) = [Hη+ζ(t)][G1−η−θ(t)]∇ + [Hη+ζ(t)]∇[Gρ(t)]1−η−θ. (4.5)
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By utilizing Lemma 2.5, one can obtain

H∇(t) =
[∫ t

a
z(s)f(s) ⋄α s

]∇
= α

[∫ t

a
z(s)f(s)∆s

]∇
+ (1 − α)

[∫ t

a
z(s)h(s)∇s

]∇

= αzρ(t)hρ(t) + (1 − α)z(t)h(t) ≥ 0.
(4.6)

By taking account of (4.6) and by employing the formula (2.5), one can observe
for η + ζ > 1 that[

Hη+ζ(t)
]∇

= (η + ζ)H∇(t)
∫ 1

0

[
Hρ(t) + wν(t)H∇(t)

]η+ζ−1
dw

=
∫ 1

0
(η + ζ) [αzρ(t)hρ(t) + (1 − α)z(t)h(t)] [(1 − w)Hρ(t) + wH(t)]η+ζ−1 dw

≤
∫ 1

0
(η + ζ) [αzρ(t)hρ(t) + (1 − α)z(t)h(t)] [(1 − w)H(t) + wH(t)]η+ζ−1 dw

≤ (η + ζ)z(t)h(t)[H(t)]η+ζ−1,
(4.7)

where H(ρ(t)) ≤ H(t) and nondecreasing property of (zh) have been used.
Similarly, by Lemma 2.5, note that

G∇(t) =
[∫ ∞

t
z(s) ⋄α s

]∇
= α

[∫ ∞

t
z(s)∆s

]∇
+ (1 − α)

[∫ ∞

t
z(s)∇s

]∇

= −αzρ(t) − (1 − α)z(t) ≤ 0.
(4.8)

It follows from (4.8) and using the formula (2.5) for 0 ≤ η + θ < 1 leads to[
G1−η−θ(t)

]∇
=
∫ 1

0

(1 − η − θ) [−αzρ(t) − (1 − α)z(t)] dw
[(1 − w)Gρ(t) + wG(t)]η+θ

≤ −(1 − η − θ)(1 − α) z(t)
[Gρ(t)]η+θ

,

(4.9)

where G(ρ(t)) ≥ G(t) has been used. Using inequalities (4.7) and (4.9) in equation
(4.5) yields

u∇(t) ≤ (η + ζ)z(t)h(t) [H(t)]η+ζ−1

[Gρ(t)]η+θ−1 − (1 − η − θ)(1 − α)[H(t)]η+ζ z(t)
[Gρ(t)]η+θ

or∫ ∞

a

z(t)[H(t)]η+ζ

[Gρ(t)]η+θ
⋄α t ≤ (η + ζ)

(1 − η − θ)(1 − α)

∫ ∞

a

z(t)h(t) [H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ⋄α t

− 1
(1 − η − θ)(1 − α)

∫ ∞

a
u∇(t) ⋄α t.

(4.10)

The definition of u implies u(∞) = u(a) = 0 and by employing Lemma 2.6, we
obtain∫ ∞

a
u∇(t) ⋄α t = α

∫ ∞

a
u∇(t)∆t+ (1 − α)

∫ ∞

a
u∇(t)∇t

= α[u(ρ(∞)) − u(ρ(a))] + (1 − α) [u(∞) − u(a)] ≥ 0,
(4.11)

where we have imposed that (−1)η+ζ = −1. Therefore we can infer that inequality
(4.10) becomes∫ ∞

a

z(t)[H(t)]η+ζ

[Gρ(t)]η+θ
⋄α t ≤ η + ζ

(1 − η − θ)(1 − α)

∫ ∞

a

z(t)h(t) [H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ⋄α t,

which is the desired inequality (4.1).



Diamond alpha Hardy-Copson inequalities 63

Since∫ ∞

a

z(t)h(t) [H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ⋄α t =
∫ ∞

a

z
1
ζ (t)h(t)[H(t)]

η
ζ

[Gρ(t)]
η+θ−ζ

ζ

[
z(t)[H(t)]η+ζ

[Gρ(t)]η+θ

] ζ−1
ζ

⋄α t,

applying Hölder inequality (2.8) with the constants ζ > 1 and ζ
ζ−1 > 1 to the right

hand side of above equation leads to inequality (4.2).
(ii) If we follow the same procedure of the proof of (i), we arrive inequality (4.8). Using

inequality (4.8) and the formula (2.5) for η + θ ≤ 0 leads to[
G1−η−θ(t)

]∇
=
∫ 1

0

(1 − η − θ) [−αzρ(t) − (1 − α)z(t)] dw
[(1 − w)Gρ(t) + wG(t)]η+θ

≤ −(1 − η − θ)(1 − α) z(t)
[G(t)]η+θ

,

(4.12)

where G(ρ(t)) ≥ G(t) has been used. Then continuing in the manner of the proof
of (i) by using inequalities (4.7) and (4.12) in equation (4.5) yields∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ (η + ζ)

(1 − η − θ)(1 − α)

∫ ∞

a

z(t)h(t) [H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ⋄α t

− 1
(1 − η − θ)(1 − α)

∫ ∞

a
u∇(t) ⋄α t.

Then the desired inequality (4.3) can be established by taking account of (4.11).

After using G(t)
Gρ(t)

≥ L1 on the right hand side of inequality (4.3) and applying

Hölder inequality (2.8) with the constants ζ > 1 and ζ
ζ−1 > 1 to the resulting

integral, one can obtain inequality (4.4).
�

Remark 4.2. Special cases of the diamond alpha Hardy-Copson type inequalities
(4.1)-(4.4) can be seen below.

(i) After expressing inequality (4.1) and inequality (4.2) in terms of delta and nabla
integrals, for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1, choosing α = 0 in those inequalities
yields∫ ∞

a

z(t)[H(t)]η+ζ

[Gρ(t)]η+θ
∇t ≤ η + ζ

1 − η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ∇t (4.13)

and ∫ ∞

a

z(t)[H(t)]η+ζ

[Gρ(t)]η+θ
∇t ≤

[
η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[Gρ(t)]η+θ−ζ
∇t, (4.14)

respectively. Although one of the hypotheses of Theorem 1.5 is η + θ < 1, in fact,
this theorem was proved only for 0 ≤ η + θ < 1. Therefore inequality (4.13) and
inequality (4.14) coincide with Hardy-Copson type inequalities (1.22) and (1.23),
respectively, obtained by nabla time scale calculus. We can conclude that (i) of
Theorem 4.1 is a diamond alpha unification of Theorem 1.5.

(ii) After expressing inequality (4.3) and inequality (4.4) in terms of delta and nabla
integrals, for ζ > 1, η ≥ 0 and η + θ ≤ 0, choosing α = 0 in those inequalities
yields∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≤ η + ζ

1 − η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ∇t (4.15)
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and∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≤

[
Lη+θ−1

1 (η + ζ)
1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[G(t)]η+θ−ζ
∇t, (4.16)

respectively. Since the condition η + θ ≤ 0 has not been considered for any time
scale so far, nabla Hardy-Copson type inequalities (4.15) and (4.16) appear in the
literature for the first time. Therefore (ii) of Theorem 4.1 is not only a diamond
alpha unification of Theorem 1.5 but also provides novel results for diamond alpha
and nabla time scale calculi.

The next theorem not only provides diamond alpha unifications of the previous Hardy-
Copson type inequalities given for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1 but also yields novel
Hardy-Copson type inequalities for the discrete, continuous, delta, nabla and diamond
alpha cases when ζ > 1, η ≥ 0 and η + θ ≤ 0. This novelty is caused by the condition
η + θ ≤ 0, which has not been considered so far. These previous Hardy-Copson type
inequalities are listed as follows:

(a) The discrete inequality (1.5) obtained by Copson [20, Theorem 2.1] and the discrete
inequality (1.9) obtained by Bennett [11, Corollary 4] or Leindler [45, Proposition
3].

(b) The continuous inequality (1.3) obtained by Hardy et al. [30, Theorem 330], the
continuous inequality (1.11) obtained by Copson [21, Theorem 3] and the contin-
uous inequality (1.13) obtained by Pachpatte as inequality (6) in [54, Theorem 1]
and Pečarić and Hanjš as inequality (9) in [55, Theorem 3].

(c) The delta inequalities in Theorem 1.2 obtained by Saker et al. [64, Theorem 2.1].
(d) The nabla inequalities in Theorem 1.6 obtained by Kayar and Kaymakçalan [33,

Theorem 3.13].

Theorem 4.3. Let the product (zh) be a nonincreasing function on [a,∞)T. For G(t) =∫ t

a
z(s) ⋄α s, and H(t) =

∫ ∞

t
z(s)h(s) ⋄α s, assume that there exists M1 > 0 such that

G(t)
G

σ(t)
≥ M1 for t ∈ (a,∞)T. Let ζ > 1, η ≥ 0.

(i) If 0 ≤ η + θ < 1, then∫ ∞

a

z(t)[H(t)]η+ζ

[Gσ(t)]η+θ
⋄α t ≤ η + ζ

α(1 − η − θ)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ⋄α t (4.17)

and∫ ∞

a

z(t)[H(t)]η+ζ

[Gσ(t)]η+θ
⋄α t ≤

[
η + ζ

α(1 − η − θ)

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[Gσ(t)]η+θ−ζ
⋄α t. (4.18)

(ii) If η + θ ≤ 0, then∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ η + ζ

α(1 − η − θ)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ⋄α t (4.19)

and∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
Mη+θ−1

1 (η + ζ)
α(1 − η − θ)

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[G(t)]η+θ−ζ
⋄α t. (4.20)

Proof. (i) Let us define u(t) = [H(t)]η+ζ [G(t)]1−η−θ for t ∈ [a,∞). If we take the
delta derivative of the function u by using formula (2.1), we get

u∆(t) = [Hη+ζ(t)][G1−η−θ(t)]∆ + [Hη+ζ(t)]∆[Gσ(t)]1−η−θ. (4.21)
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By utilizing Lemma 2.5, one can obtain

H
∆(t) =

[∫ ∞

t
z(s)h(s) ⋄α s

]∆
= α

[∫ ∞

t
z(s)h(s)∆s

]∆
+ (1 − α)

[∫ ∞

t
z(s)h(s)∇s

]∆

= −αz(t)h(t) − (1 − α)zσ(t)hσ(t) ≤ 0.
(4.22)

By taking account of (4.22) and by employing the formula (2.2), one can observe
for η + ζ > 1 that[

H
η+ζ(t)

]∆
= (η + ζ)H∆(t)Hη+ζ−1(c)

= (η + ζ) [−αz(t)h(t) − (1 − α)zσ(t)hσ(t)]Hη+ζ−1(c)

≥ −(η + ζ)z(t)h(t)[H(t)]η+ζ−1,

(4.23)

where H(σ(t)) ≤ H(c) ≤ H(t) and nonincreasing property of (zh) have been used.
Similarly, by Lemma 2.5, note that

G
∆(t) =

[∫ t

a
z(s) ⋄α s

]∆
= α

[∫ t

a
z(s)∆s

]∆
+ (1 − α)

[∫ t

a
z(s)∇s

]∆

= αz(t) + (1 − α)zσ(t) ≥ 0.
(4.24)

It follows from (4.24) and using the formula (2.5), for 0 ≤ η + θ < 1, leads to[
G

1−η−θ(t)
]∆

= (1 − η − θ)G∆(t)
∫ 1

0

[
G(t) + wµ(t)G∆(t)

]−η−θ
dw

=
∫ 1

0

(1 − η − θ) [αz(t) + (1 − α)zσ(t)] dw[
(1 − w)G(t) + wG

σ(t)
]η+θ

≥
∫ 1

0

(1 − η − θ)αz(t)dw[
(1 − w)Gσ(t) + wG

σ(t)
]η+θ

= α(1 − η − θ)z(t)dw
[Gσ(t)]η+θ

,

(4.25)

where G(t) ≤ G(σ(t)) has been used. Using inequalities (4.23) and (4.25) in
equation (4.21) yields

u∆(t) ≥ −(η + ζ)z(t)h(t)[H(t)]η+ζ−1[Gσ(t)]1−η−θ + α(1 − η − θ)z(t)
[Gσ(t)]η+θ

[H(t)]η+ζ

or∫ ∞

a

z(t)[H(t)]η+ζ

[Gσ(t)]η+θ
⋄α t ≤ (η + ζ)

α(1 − η − θ)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ⋄α t

+ 1
α(1 − η − θ)

∫ ∞

a
u∆(t) ⋄α t.

(4.26)

The definition of u implies u(∞) = u(a) = 0 and by using Lemma 2.6, we obtain∫ ∞

a
u∆(t) ⋄α t = α

∫ ∞

a
u∆(t)∆t+ (1 − α)

∫ ∞

a
u∆(t)∇t

= α[u(∞) − u(a)] + (1 − α) [u(σ(∞)) − u(σ(a))] ≤ 0,
(4.27)

where we have imposed that (−1)η+ζ = −1.
Therefore we can infer that the inequality (4.26) becomes as∫ ∞

a

z(t)[H(t)]η+ζ

[Gσ(t)]η+θ
⋄α t ≤ (η + ζ)

α(1 − η − θ)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ⋄α t,

which is the desired inequality (4.17).
Inequality (4.18) can be obtained by applying Hölder inequality (2.8) with the

constants ζ > 1 and ζ
ζ−1 > 1 to the right hand side of inequality (4.17).
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(ii) If we follow the same procedure of the proof of (i), we arrive inequality (4.24).
Using inequality (4.24) and the formula (2.5) for η + θ ≤ 0 leads to[

G
1−η−θ(t)

]∇
=
∫ 1

0

(1 − η − θ) [αz(t) + (1 − α)zσ(t)] dw[
(1 − w)G(t) + wG

σ(t)
]η+θ

≥ α(1 − η − θ) z(t)
[G(t)]η+θ

,

(4.28)
where Gσ(t) ≥ G(t) has been used. Then continuing in the manner of the proof of
(i) by using inequalities (4.23) and (4.28) in equation (4.21) yields∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ η + ζ

α(1 − η − θ)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ⋄α t

− 1
α(1 − η − θ)

∫ ∞

a
u∆(t) ⋄α t.

Hence the desired inequality (4.19) can be established by taking account of (4.27).

After using G(t)
G

σ(t)
≥ M1 on the right hand side of inequality (4.19) and applying

Hölder inequality (2.8) with the constants ζ > 1 and ζ
ζ−1 > 1 to the resulting

integral, one can obtain inequality (4.20).
�

Remark 4.4. Special cases of the diamond alpha Hardy-Copson type inequalities
(4.17)-(4.20) can be seen below.

(i) After expressing inequality (4.17) and inequality (4.18) in terms of delta and nabla
integrals, for ζ > 1, η ≥ 0 and 0 ≤ η + θ < 1, choosing α = 1 in those inequalities
yields∫ ∞

a

z(t)[H(t)]η+ζ

[Gσ(t)]η+θ
∆t ≤ η + ζ

1 − η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ∆t (4.29)

and ∫ ∞

a

z(t)[H(t)]η+ζ

[Gσ(t)]η+θ
∆t ≤

[
η + ζ

1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[Gσ(t)]η+θ−ζ
∆t, (4.30)

respectively. Although one of the hypotheses of Theorem 1.2 is η + θ < 1, in fact,
this theorem was proved only for 0 ≤ η + θ < 1. Therefore inequality (4.29) and
inequality (4.30) coincide with Hardy-Copson type inequalities (1.16) and (1.17),
respectively, obtained by delta time scale calculus. We can conclude that (i) of
Theorem 4.3 is a diamond alpha unification of Theorem 1.2.

(ii) After expressing inequality (4.19) and inequality (4.20) in terms of delta and nabla
integrals, for ζ > 1, η ≥ 0 and η + θ ≤ 0, choosing α = 1 in those inequalities
yields∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∆t ≤ η + ζ

1 − η − θ

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ∆t (4.31)

and∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∆t ≤

[
Mη+θ−1

1 (η + ζ)
1 − η − θ

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[G(t)]η+θ−ζ
∆t, (4.32)

respectively. Since the condition η + θ ≤ 0 has not been considered for any time
scale so far, delta Hardy-Copson type inequalities (4.31) and (4.32) appear in the
literature for the first time. Therefore (ii) of Theorem 4.3 is not only a diamond
alpha unification of Theorem 1.2 but also provides novel results for diamond alpha
and nabla time scale calculi.
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The next theorem provides diamond alpha unifications of the previous Hardy-Copson
type inequalities given for ζ > 1, η ≥ 0 and η+ θ > 1. These previous Hardy-Copson type
inequalities are listed as follows:

(a) The discrete inequality (1.1) obtained by Hardy as inequality (2) in [28, Theorem
B], the discrete inequality (1.4) obtained by Copson [20, Theorem 1.1] and the
discrete inequality (1.7) obtained by Bennett [11, Corollary 3] or Leindler [45,
Proposition 1].

(b) The continuous inequality (1.2) obtained by Hardy as inequality (4) in [28, Theo-
rem B], the continuous inequality (1.3) obtained by Hardy et al. [30, Theorem 330],
the continuous inequality (1.10) obtained by Copson [21, Theorem 1] and the con-
tinuous inequality (1.12) obtained by Pachpatte as inequality (6) in [54, Theorem
1] and Pečarić and Hanjš as inequality (3) in [55, Theorem 1].

(c) The delta inequalities in Theorem 1.4 obtained by Kayar and Kaymakçalan [33,
Remark 3.2] and Saker et al. [64].

(d) The nabla inequalities in Theorem 1.8 obtained by Kayar and Kaymakçalan [33,
Theorem 3.1].

Theorem 4.5. Let the product (zh) be a nondecreasing function on [a,∞)T. For G(t) =∫ t

a
z(s) ⋄α s and H(t) =

∫ t

a
z(s)h(s) ⋄α s, assume that there exists L2 > 0 such that

G(t)
G

ρ(t)
≤ L2 for t ∈ (a,∞)T. If ζ > 1, η ≥ 0 and η + θ > 1, then

∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ η + ζ

(1 − α)(η + θ − 1)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ⋄α t (4.33)

and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
Lη+θ−1

2 (η + ζ)
(1 − α)(η + θ − 1)

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[G(t)]η+θ−ζ
⋄α t. (4.34)

Proof. Let us define u(t) = [H(t)]η+ζ [G(t)]1−η−θ for t ∈ [a,∞). If we take the nabla
derivative of the function u by using formula (2.4), we get

u∇(t) = [Hη+ζ(t)][G1−η−θ(t)]∇ + [Hη+ζ(t)]∇[Gρ(t)]1−η−θ. (4.35)

Lemma 2.5 implies that

G
∇(t) =

[∫ t

a
z(s) ⋄α s

]∇
= α

[∫ t

a
z(s)∆s

]∇
+ (1 − α)

[∫ t

a
z(s)∇s

]∇

= αzρ(t) + (1 − α)z(t) ≤ 0.
(4.36)

It follows from (4.36) and using the formula (2.5), for η + θ > 1, we get[
G

1−η−θ(t)
]∇

=
∫ 1

0

(1 − η − θ)G∇(t)dw[
G

ρ(t) + w
{
G(t) −G

ρ(t)
}]η+θ

=
∫ 1

0

−(η + θ − 1) [αzρ(t) + (1 − α)z(t)] dw[
(1 − w)Gρ(t) + wG(t)

]η+θ
≤ −(η + θ − 1)(1 − α)z(t)

[G(t)]η+θ
,

(4.37)
where G(ρ(t)) ≤ G(t) has been used. Using inequalities (4.7) and (4.37) in equation (4.35)
yields

u∇(t) ≤ (η + ζ)z(t)h(t) [H(t)]η+ζ−1 [Gρ(t)]1−(η+θ) − (η + θ − 1)(1 − α)z(t)[H(t)]η+ζ

[G(t)]η+θ
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or ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ (η + ζ)

(η + θ − 1)(1 − α)

∫ ∞

a

z(t)h(t) [H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ⋄α t

− 1
(η + θ − 1)(1 − α)

∫ ∞

a
u∇(t) ⋄α t.

(4.38)

The definition of u implies u(a) = 0 and by using Lemma 2.6, we obtain∫ ∞

a
u∇(t) ⋄α t = α

∫ ∞

a
u∇(t)∆t+ (1 − α)

∫ ∞

a
u∇(t)∇t

= α[u(ρ(∞)) − u(ρ(a))] + (1 − α) [u(∞) − u(a)] ≥ 0,

where we have imposed that (−1)ζ−θ = −1. Therefore we can infer that the inequality
(4.38) becomes as∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ (η + ζ)

(η + θ − 1)(1 − α)

∫ ∞

a

z(t)h(t) [H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ⋄α t,

which is the desired inequality (4.33).

After using G(t)
G

ρ(t)
≥ L2 on the right hand side of inequality (4.33) and applying Hölder

inequality (2.8) with the constants ζ > 1 and ζ
ζ−1 > 1 to the resulting integral, one can

obtain inequality (4.34). �
Remark 4.6. After expressing inequality (4.33) and inequality (4.34) in terms of delta
and nabla integrals, for ζ > 1, η ≥ 0 and η + θ > 1, choosing α = 0 in those inequalities
yields ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≤ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gρ(t)]η+θ−1 ∇t (4.39)

and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∇t ≤

[
Lη+θ−1

2 (η + ζ)
η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[G(t)]η+θ−ζ
∇t, (4.40)

respectively. Inequality (4.39) and inequality (4.40) coincide with Hardy-Copson type in-
equalities (1.28) and (1.29), respectively, obtained by nabla time scale calculus. Therefore
Theorem 4.5 is a diamond alpha unification of Theorem 1.8.

The next theorem provides diamond alpha unifications of the previous Hardy-Copson
type inequalities given for ζ > 1, η ≥ 0 and η+ θ > 1. These previous Hardy-Copson type
inequalities are listed as follows:

(a) The discrete inequality (1.6) obtained by Bennett [11, Corollary 6] or Leindler
[45, Proposition 4].

(b) The continuous inequality obtained by Saker et al. [64, Corollary 2.3] and by
Kayar and Kaymakçalan [33, Remark 3.11].

(c) The delta inequalities in Theorem 1.3 obtained by Saker et al. [64, Theorem 2.3].
(d) The nabla inequalities in Theorem 1.7 obtained by Kayar and Kaymakçalan [33,

Theorem 3.8].
Theorem 4.7. Let the product zh be a nonincreasing function on [a,∞)T. For G(t) =∫ ∞

t
z(s) ⋄α s, and H(t) =

∫ ∞

t
z(s)h(s) ⋄α s, assume that there exists M2 > 0 such that

G(t)
Gσ(t)

≤ M2 for t ∈ (a,∞)T. If ζ > 1, η ≥ 0 and η + θ > 1, then

∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ η + ζ

α(η + θ − 1)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ⋄α t (4.41)
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and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤

[
Mη+θ−1

2 (η + ζ)
α(η + θ − 1)

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[G(t)]η+θ−ζ
⋄α t. (4.42)

Proof. Let us define u(t) = [H(t)]η+ζ [G(t)]1−η−θ for t ∈ [a,∞). If we take the delta
derivative of the function u by using formula (2.1), we get

u∆(t) = [Hη+ζ(t)][G1−η−θ(t)]∆ + [Hη+ζ(t)]∆[Gσ(t)]1−η−θ. (4.43)

By Lemma 2.5, note that

G∆(t) =
[∫ ∞

t
z(s) ⋄α s

]∆
= α

[∫ ∞

t
z(s)∆s

]∆
+ (1 − α)

[∫ ∞

t
z(s)∇s

]∆

= −αz(t) − (1 − α)zσ(t) ≤ 0.
(4.44)

It follows from (4.44) and the formula (2.5), for η + θ > 1, that[
G1−η−θ(t)

]∆
=
∫ 1

0

(1 − η − θ)G∆(t)dw
[G(t) + w {Gσ(t) −G(t)}]η+θ

=
∫ 1

0

−(η + θ − 1) [−αz(t) − (1 − α)zσ(t)] dw
[(1 − w)G(t) + wGσ(t)]η+θ

≥ α(η + θ − 1)z(t)
[G(t)]η+θ

,

(4.45)

where G(t) ≥ G(σ(t)) has been used. Using inequalities (4.23) and (4.45) in equation
(4.43) yields

u∆(t) ≥ −(η + ζ)z(t)h(t)[H(t)]η+ζ−1[Gσ(t)]1−η−θ + α(η + θ − 1)z(t)
[G(t)]η+θ

[H(t)]η+ζ

or ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ η + ζ

α(η + θ − 1)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ⋄α t

+ 1
α(η + θ − 1)

∫ ∞

a
u∆(t) ⋄α t.

(4.46)

The definition of u implies u(∞) = 0 and by using Lemma 2.6, we obtain∫ ∞

a
u∆(t) ⋄α t = α

∫ ∞

a
u∆(t)∆t+ (1 − α)

∫ ∞

a
u∆(t)∇t

= α[u(∞) − u(a)] + (1 − α) [u(σ(∞)) − u(σ(a))] ≤ 0,

where we have imposed that (−1)ζ−θ = 1. Therefore we can infer that the inequality (4.46)
becomes as∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
⋄α t ≤ η + ζ

α(η + θ − 1)

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ⋄α t,

which is the desired inequality (4.41).

After using G(t)
Gσ(t)

≤ M2 on the right hand side of inequality (4.41) and applying Hölder

inequality (2.8) with the constants ζ > 1 and ζ
ζ−1 > 1 to the resulting integral, one can

obtain inequality (4.42). �

Remark 4.8. After expressing inequality (4.41) and inequality (4.42) in terms of delta
and nabla integrals, for ζ > 1, η ≥ 0 and η + θ > 1, choosing α = 1 in those inequalities
yields ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∆t ≤ η + ζ

η + θ − 1

∫ ∞

a

z(t)h(t)[H(t)]η+ζ−1

[Gσ(t)]η+θ−1 ∆t (4.47)
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and ∫ ∞

a

z(t)[H(t)]η+ζ

[G(t)]η+θ
∆t ≤

[
Mη+θ−1

2 (η + ζ)
η + θ − 1

]ζ ∫ ∞

a

z(t)hζ(t)[H(t)]η

[G(t)]η+θ−ζ
∆t, (4.48)

respectively. Inequality (4.47) and inequality (4.48) coincide with Hardy-Copson type
inequalities (1.18) and (1.19), respectively, obtained by delta time scale calculus. Therefore
Theorem 4.7 is a diamond alpha unification of Theorem 1.3.

5. Conclusion
Since the time scale calculus enables us to avoid the separate discussion of the two cases,

which are continuous and discrete cases, the unification of these cases by the delta and
the nabla calculi has gained importance in recent years. However, this unification is not
complete unless it is done via diamond alpha calculus which harmonizes the delta and the
nabla calculi.

In this paper, diamond alpha Hardy-Copson type inequalities were obtained to unify
the results established for the special cases, which are discrete and continuous cases as
well as the delta and the nabla approaches. In addition to unification, our results provided
new Hardy-Copson type inequalities in the special cases.

We derived two kinds of diamond alpha Hardy-Copson type inequalities. The first
kind (mixed type) were based on the fact that diamond alpha integral is the convex linear
combination of the delta and the nabla integrals. Since the first type inequalities contained
delta, nabla and diamond alpha integrals together, we called them mixed type. The second
type inequalities were different from the first type in terms of their forms and their method
of proofs. Since the second type inequalities included only diamond alpha integrals, they
had more compact forms. Moreover some of the second type inequalities were novel even
for the delta and nabla cases.

Another novelty of our paper is the method used in the proofs of the theorems in Section
4. In the existing literature, all the authors employed algebra and algebraic inequalities to
obtain diamond alpha integral inequalities. However, the proofs of the present paper were
based on the time scale calculus including delta and nabla chain rules. Therefore our new
developed method could serve as starting point for the new results in the diamond alpha
calculus and for the other diamond alpha integral inequalities.
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