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Introduction 

Let 𝐺 be a finite group. Since past, many studies have 
been carried out to investigate the structure of  𝐺 whose 
character degrees have some special properties. For 
example, some authors  have found all finite groups in 
which nonlinear irreducible characters have same degree 
(see Chapter 12 of  [1]).  On the other hand, the structure 
of the group 𝐺 which has certain conditions on the 
number of its irreducible characters  has been considered 
in much of the studies. Then  in some cases the structure 
of the group has been fully presented. For example, Seitz 
has shown in [2] that if  𝐺 has one nonlinear irreducible 
character, then 𝐺 ≅ 𝐸𝑆(22𝑎+1), extraspecial 2-group, or 
𝐺 ≅ 𝑁 ⋊ 𝐾 is Frobenius group, where   𝑁 is an elementary 
abelian group of order 𝑞𝑎  and the complement 𝐾 is a 
cyclic group of order 𝑞𝑎 − 1 for some prime number 𝑞. 
Throughout this paper, a finite group having one nonlinear 
irreducible character is called as  a Seitz group. 
 

Materials and Methods 
 
Before  proving our main results, we should mention 

some definitions and notations in the character theory of 
finite groups for the convenience of the reader. Our 
notations are standard and taken mainly from [1]. From 
now on,  all groups are considered as finite. 

Definition 2.1. The ℂ-representation of the group  𝐺 is 
a homomorphism 𝜓: 𝐺 ⟶ 𝐺𝐿(𝑛, ℂ) for some integer 𝑛, 
where ℂ is the field of complex numbers and 𝐺𝐿(𝑛, ℂ) is 
the multiplicative group of non-singular 𝑛 × 𝑛 matrices 
over ℂ.  

Definition 2.2. If 𝜓 is a ℂ-representation of a  group 𝐺, 
then the  ℂ-character 𝜒 of 𝐺 is the function such that 
𝜒(𝑔) = 𝑡𝑟(𝜓(𝑔)) for all 𝑔 ∈ 𝐺,where 𝑡𝑟(𝜓(𝑔)) is the 
sum of the diagonal entries of 𝜓(𝑔). A character 

corresponding to an irreducible representation of  𝐺 is 
said to be irreducible. 

The set of all irreducible characters and all nonlinear 
irreducible characters of 𝐺 is denoted by 𝐼𝑟𝑟(𝐺) and 
𝐼𝑟𝑟1(𝐺), respectively. Also, 𝜒(1) is called the degree of 𝜒 
and 𝜒 is said to be a linear character when  𝜒(1) = 1.  In 
the character theory, it is well-known that  
 

|𝐺| = |𝐺: 𝐺′| + ∑ 𝜒(1)2

𝜒𝜖𝐼𝑟𝑟(𝐺)
𝜒(1)>1

 

and the number of linear irreducible characters of 𝐺 is 
equal to |𝐺: 𝐺′|, where 𝐺′ is the commutator subgroup of 
𝐺.  

Definition 2.3.  Let 𝜓 be an irreducible character of  
the group 𝐺. The kernel of 𝜓 is given by 𝑘𝑒𝑟(𝜓) =
{ 𝑔 ∈ 𝐺 | 𝜓(𝑔) = 𝜓(1) } and if 𝑘𝑒𝑟(𝜓) = 1, then we say 
that 𝜓  is  faithful.  

The restriction of a character 𝜒 to a subgroup 𝐻 of 𝐺 is 
a character of 𝐻, which is denoted by 𝜒𝐻 .  Conversely, an 
irreducible character 𝜇 of 𝐻 determines the character 𝜇𝐺  
of 𝐺 (see Definition 5.1 of [1]).  If 𝜇𝐺 = 𝜃 for some 
character 𝜃 of 𝐺, then we have that |𝐺: 𝐻|𝜇(1) = 𝜃(1).   

Definition 2.4. For a group 𝐺 and  𝜒 ∈ 𝐼𝑟𝑟(𝐺), if  
𝐺/𝑘𝑒𝑟 (𝜒) has a unique minimal normal subgroup, then 𝜒  
is said to be a monolithic character.  

We use the notations 𝐼𝑟𝑟 𝑚(𝐺) and 𝐼𝑟𝑟1,𝑚(𝐺) to 
denote all monolithic characters and all nonlinear 
monolithic characters of 𝐺, respectively. Monolithic 
characters contain some fundamental information in 
determining the structure of the group. For example, it is 
known that the group 𝐺 is abelian if and only if all 
monolithic characters of 𝐺 are linear. We want to note 
that if  𝜇 is an irreducible character of a 𝑝-group, then 𝜇 
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must be monolithic. Also, 𝐼𝑟𝑟 𝑚(𝐺/𝑁) ⊆ 𝐼𝑟𝑟 𝑚(𝐺) for all 
𝑁 ⊴ 𝐺.   

Remark 2.5. For a solvable group 𝐺, we  note by 
Lemma 2 of [5] that  𝐷𝑚: = ⋂ 𝑘𝑒𝑟(𝜒𝑖) ≤𝑛

𝑖=1 𝑍(𝐺), where 
𝜒𝑖 ranges over all nonlinear monolithic characters of 𝐺 
and  𝐷𝑚 ∩ 𝐺′ = 1. 

Remark 2.6. For a solvable group 𝐺, if 𝜑 ∈ 𝐼𝑟𝑟1(𝐺) has 
a maximal kernel among the nonlinear irreducible 
characters of 𝐺,  then 𝜑 is monolithic by Lemma 12.3 of 
[1]. Also, we may deduce that every kernel of nonlinear 
irreducible characters of 𝐺 is a subgroup of the kernel of a 
nonlinear monolithic character of 𝐺.  If 𝑁 ⊴ 𝐺 and 𝐺/𝑁 is 
nonabelian, then we have 𝑁 ≤ 𝑘𝑒𝑟(𝜒) for some 𝜒 ∈
𝐼𝑟𝑟1(𝐺).  

Definition 2.7. Let 𝐺 be a group. The regular character 
of 𝐺 is given by  

𝜌(𝑥) = {
|𝐺|,                𝑥 = 1  
0,             1 ≠ 𝑥 ∈ 𝐺

. 

By Lemma 2.11 of [1], we conclude that 𝑘𝑒𝑟(𝜌) = 1. 
Here, it is convenient to note the following lemma since 
we will frequently use it for proving our results.    

Lemma 2.8. If 𝐺 is a nonabelian group and 𝑇 =
⋂  {𝑘𝑒𝑟(𝜑) |𝜑 ∈ 𝐼𝑟𝑟1(𝐺)}, then 𝑇 is trivial. 

Proof.  Suppose that 𝑇 > 1. By considering regular 
character of 𝐺, we have that  𝑇 ∩ 𝐺′ = 1. Then we may 
write 

 

|𝐺| = |𝐺: 𝐺′| + ∑ 𝜒(1)2

𝜒𝜖𝐼𝑟𝑟(𝐺)
𝜒(1)>1

 

and 

|𝐺/𝑇| = |𝐺: 𝑇𝐺′| + ∑ 𝜒(1)2

𝜒𝜖𝐼𝑟𝑟(𝐺)
𝜒(1)>1

. 

Subracting |𝐺/𝑇| from |𝐺|, we get that 
 

|𝐺| (
|𝑇| − 1

|𝑇|
) = |𝐺| (

1

|𝐺′|
−

1

|𝐺′𝑇|
). 

 

By using |𝐺′𝑇| =
|𝐺′||𝑇|

|𝐺′∩ 𝑇|
  and simplifying above 

equation, we get the contradiction that |𝐺′|=1. This 
contradiction shows that  𝑇 = 1 

Lemma 2.9. Let 𝐺 = 𝐻 × 𝐴 be a direct product group, 
where 𝐴  is abelian and (|𝐻|, |𝐴|) = 1. If 𝜒 ∈ 𝐼𝑟𝑟(𝐻) and 
1 ≠ 𝜉 ∈ 𝐼𝑟𝑟(𝐴), then 𝑘𝑒𝑟𝐺(𝜒𝜉) = 𝑘𝑒𝑟𝐻 (𝜒) × 𝑘𝑒𝑟𝐴(𝜉). 

Proof.  By  Theorem 4.21 of [1], we know that the 
character 𝜒𝜉 is an irreducible character of 𝐺.  Let  𝑔 ∈
𝑘𝑒𝑟𝐻(𝜒) × 𝑘𝑒𝑟𝐴(𝜉). Then we may write 𝑔 = ℎ𝑎 for ℎ ∈
𝑘𝑒𝑟𝐻(𝜒) and 𝑎 ∈ 𝑘𝑒𝑟𝐴(𝜉). This implies that 

(𝜒𝜉)(𝑔) = 𝜒(ℎ)𝜉(𝑎) = 𝜒(1)𝜉(1) = (𝜒𝜉)(1). 
Thus, we obtain that 𝑔 ∈ 𝑘𝑒𝑟𝐺(𝜒𝜉), and hence 

𝑘𝑒𝑟𝐻(𝜒) × 𝑘𝑒𝑟𝐴(𝜉) ≤ 𝑘𝑒𝑟𝐺(𝜒𝜉). 
Now, assume that 𝑔 ∈ 𝑘𝑒𝑟𝐺(𝜒𝜉). Therefore, we have  

(𝜒𝜉)(𝑔) = 𝜒(ℎ)𝜉(𝑎) = 𝜒(1)𝜉(1), and so |𝜒(ℎ)| = 𝜒(1) 
because 𝜉 is a linear character of the abelian group  𝐴.  
Thus,  𝜒(ℎ) = 𝑢 𝜒(1)  for a complex number 𝑢 with |𝑢| =
1. On the other hand,  from Lemma 2.15  of [1], 𝑢 is the 
|𝐻|th root of the unity. This yields that 

𝜒(1) = 𝜒(ℎ)𝜉(𝑎) = 𝑢 𝜒(1)𝜉(𝑎), 

and hence 𝑢 𝜉(𝑎) = 1. Since 𝜉(𝑎)  is the |𝐴|th root of 
the unity and  (|𝐻|, |𝐴|) = 1, we obtain that 𝑢 = 1 and 
𝜉(𝑎) = 1. This gives us 𝜒(ℎ) = 𝜒(1)  and 𝜉(𝑎) = 𝜉(1), 
which shows that  𝑔 ∈ 𝑘𝑒𝑟𝐻(𝜒) × 𝑘𝑒𝑟𝐴(𝜉). This 
completes the proof. 

 

Main Results 
 
Finite groups having two nonlinear irreducible characters 

have been described by Berkovich in Theorem 6 of Chapter 31 
of [4]. Berkovich's proof is based on the degrees of these 
irreducible characters. Here, we consider the relationship 
between the kernels of irreducible characters and the group 
structure.  By investigating  the kernels of these two nonlinear 
irreducible characters, we provide an alternate proof of 
Berkovich's theorem as follows: 

Theorem 3.1. Let 𝐼𝑟𝑟1(𝐺) = {𝜒, 𝜃} for the  group  𝐺.  Then 
one of the following  remains true: 

(1) If  𝑘𝑒𝑟(𝜃) = 𝑘𝑒𝑟(𝜒) = 1, then one of the following 
holds: 

(a) |𝐺| = 22𝑐 and cyclic center 𝑍(𝐺) ≥  𝐺′ with |𝐺′| = 2  
and |𝑍(𝐺)| = 4.  

(b) 𝐺 ≅ 𝐸𝑆(32𝑎+1). 
(c) 𝐺 ≅ 𝐺′ ⋊ 𝐾 is a Frobenius group, where 𝐾 is the cyclic 

Frobenius complement with 2|𝐾|  =  |𝐺′| − 1. 
(2) If  𝑘𝑒𝑟(𝜃)  =  1 and 𝑘𝑒𝑟(𝜒)  > 1, then  𝐺 satisfies one 

of the following : 
(d) 𝐺 ≅ (𝐶3 × 𝐶3) ⋊ 𝑄8  is a Frobenius group with the 

Frobenius complement isomorphic to 𝑄8.  
(e) 𝐺/𝑍(𝐺) ≅  𝑈 ⋊  𝑉 is a Frobenius group possessing 

elementary abelian kernel  𝑈 with a cyclic complement 𝑉. In 
this case, we also have |𝑍(𝐺)| = 2, |𝑉| = |𝑈| − 1 and 
𝑍(𝐺) ∩ 𝐺′ = 1. 

(3) 𝑘𝑒𝑟(𝜃)  > 1 and 𝑘𝑒𝑟(𝜒) >  1 if and only if  |𝐺| =
22𝛼+2,   𝑍(𝐺) ≅ 𝑉4,  𝐺′ ≤ 𝑍(𝐺)  and |𝐺′|=2. 

Proof. By  Theorem 12.15 of [1], we know that 𝐺  is 
solvable. Suppose that 𝑘𝑒𝑟(𝜃) = 𝑘𝑒𝑟(𝜒). By Lemma 2.8, we 
have 𝑘𝑒𝑟(𝜃) = 𝑘𝑒𝑟(𝜒) = 1.  Thus, 𝐺′ becomes the unique 
minimal normal subgroup of 𝐺. It can be seen  by Lemma 12.3 
of [1] that 𝜒(1) = 𝜃(1). Furthermore, 𝐺 becomes a 𝑟-group 
and 𝐺/𝑍(𝐺) is elementary abelian of order 𝜃(1)2 or a 
Frobenius group. Clearly, when 𝐺 is a 𝑟-group, we deduce  
|𝐺′| = 𝑟 since 𝐺′ ≤ 𝑍(𝐺) and 𝑍(𝐺) is  cyclic. Consequently, 
we have  the equation that  

 

|𝐺| = |𝐺: 𝐺′| + 𝜃(1)2 + 𝜒(1)2 =
|𝐺|

𝑟
+ 2𝑟2𝑎 

 
for some positive integer 𝑎. Computation yields that (𝑟 −
1)|𝐺| = 2𝑟2𝑎+1 and this equality holds only when 𝑟 = 2 
or 𝑟 = 3. Hence the cases (a) and (b) hold since the order of 
𝐺/𝑍(𝐺) is  𝑟2𝑎. Now let 𝐺 be a Frobenius group as in  Lemma  
12.3 of [1]. Thus, 𝐺′ is the Frobenius kernel of  𝐺. On the other 
side, the Frobenius complement 𝐻 becomes a cyclic group 
having the property that 2|𝐻|  =  |𝐺′| − 1 since |𝐻| =
𝜃(1) = 𝜒(1). We see that 𝐺 has the desired property in the 
case (c). 

To prove the case (2), suppose that 𝑘𝑒𝑟(𝜃)  =  1 and 
𝑘𝑒𝑟(𝜒) > 1. Obviously, 𝐺/𝑘𝑒𝑟(𝜒) is a Seitz group. We also 
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know from Lemma 2.8  that 𝑘𝑒𝑟 (𝜒) must be a minimal normal 
subgroup of 𝐺. Thus, we have that |𝑘𝑒𝑟(𝜒)| = 𝑟𝑎 for some 
prime 𝑟 and integer 𝑎.  Now first, let us consider 𝐺/𝑘𝑒𝑟(𝜒) an 
extraspecial 2-group. Assume that 𝑘𝑒𝑟(𝜒) ≰  𝐺′. Since 
𝑘𝑒𝑟 (𝜒) is a minimal normal subgroup of 𝐺, we know that  
𝑘𝑒𝑟 (𝜒) ∩ 𝐺′ = 1. Thus 𝐺′ is also a minimal normal subgroup 
of 𝐺. Hence 2 = |𝐺′𝑘𝑒𝑟(𝜒)/𝑘𝑒𝑟(𝜒)| = |𝐺′|, and this 
implies 𝐺′ ≤ 𝑍(𝐺).  Therefore,  𝐺 is nilpotent. It follows that 
𝑟  must be equal to 2. Otherwise, we obtain that |𝐼𝑟𝑟1(𝐺)| >
2 by using the fact that  |𝐼𝑟𝑟(𝐺)| = |𝐼𝑟𝑟(𝑃)|. |𝐼𝑟𝑟(𝑘𝑒𝑟(𝜒))|, 
where P is the Sylow 2-subgroup of 𝐺. Therefore,  𝐺 is a 2-
group and |𝑘𝑒𝑟(𝜒)| = 2. We have a contradiction that 𝐺′ =
𝑘𝑒𝑟(𝜒) since 𝑍(𝐺) is cyclic. This contradiction implies that 
𝑘𝑒𝑟(𝜒) ≤  𝐺′ and also 𝑘𝑒𝑟(𝜒) is the unique minimal normal 
subgroup of 𝐺. By using the equations  

 
|𝐺| = |𝐺: 𝐺′| + 𝜃(1)2 + 𝜒(1)2                                            (1) 

 
and |𝐺/𝑘𝑒𝑟(𝜒)| = |𝐺: 𝐺′| + 𝜒(1)2,  we get that 

 

 𝜃(1)2 = |𝐺| (1 −
1

|𝑘𝑒𝑟(𝜒)|
) =  22𝑏+1(𝑟𝑎 − 1),              (2) 

 
where |𝐺/𝑘𝑒𝑟(𝜒)| = 22𝑏+1 for some integer 𝑏. Since 
𝑘𝑒𝑟(𝜒) is abelian group, we know from Theorem 6.15 of [1] 
(Ito Theorem) that  𝜃(1) divides |𝐺/𝑘𝑒𝑟(𝜒)| = 22𝑏+1. Thus,  

𝑟𝑎 − 1 = 2𝛽 for some odd  integer 𝛽. Thus, we get that  𝑟 ≠
 2.  It follows that 𝑍(𝐺) = 1. Otherwise, 𝐺 must be nilpotent 
since 𝑘𝑒𝑟(𝜒) ≤ 𝑍(𝐺). But this is a contradiction since we 
obtain that |𝐼𝑟𝑟1(𝐺)| > 2 by using the equation |𝐼𝑟𝑟(𝐺)| =
|𝐼𝑟𝑟(𝑃)|. |𝐼𝑟𝑟(𝑘𝑒𝑟(𝜒))|, where  P is the Sylow 2-subgroup of 
𝐺. Now we determine possible values of 𝑟. If 2 | 𝑎, then we 
see that the only possibility is that 𝑟𝑎 − 1 = 8 because 𝑟𝑎 −

1 = (𝑟𝑎/2 − 1)(𝑟𝑎/2 + 1) = 2𝛽 and 𝑟 is an odd prime. 
Thus,  𝑘𝑒𝑟(𝜒) ≅ 𝐶3

2 elementary abelian and also, 𝑘𝑒𝑟(𝜒) =
𝐹(𝐺)  because  𝐹(𝐺) is a 𝑟-group. Let 𝐾 ∈ 𝑆𝑦𝑙2(𝐺). Since the 

centralizer 𝐶𝐺(𝑘𝑒𝑟(𝜒)) = 𝑘𝑒𝑟(𝜒), we conclude that  𝐾 is 

isomorphic to a subgroup of the group 𝐴𝑢𝑡(𝐶3 × 𝐶3)  
Therefore, we get 𝐺 ≅  (𝐶3 × 𝐶3) ⋊  𝑄8.  Now consider the 
case that 2 ∤  𝑎. If 𝑎 > 1, then we see that there exists an odd 
prime which would have to divide  

 
(𝑟 − 1)(𝑟𝑎−1+. . . +𝑟 + 1) = 𝑟𝑎 − 1 = 2𝛽 , 

 
and hence there clearly is no such prime 𝑟. Thus, 𝑎 = 1 and 

we have that 𝑟 − 1 = 2𝛽  for some odd number 𝛽. The only 
possibility is that 𝑟 = 3 and we obtain that 𝑘𝑒𝑟(𝜒) is a cyclic 
group of order 3. This is a contradiction because 𝑍(𝐺) = 1. 
Therefore, we need to consider that 𝐺/𝑘𝑒𝑟(𝜒) is a Seitz 
Frobenius group  possessing  H/𝑘𝑒𝑟(𝜒) Frobenius 
complement with the kernel 𝐺′𝑘𝑒𝑟(𝜒)/𝑘𝑒𝑟(𝜒). Next, we 
claim that 𝑘𝑒𝑟(𝜒) ≰  𝐺′. If not,  𝑘𝑒𝑟(𝜒)  becomes the unique 
minimal normal subgroup and so |𝑘𝑒𝑟(𝜒)| = 𝑟𝑎  for some 
prime 𝑟 and integer 𝑎. By using Equation (1) and  |𝐺/
𝑘𝑒𝑟(𝜒)| = |𝐺: 𝐺′| + 𝜒(1)2,  we know that 

 
𝜃(1)2 = 𝑞𝑐(𝑞𝑐 − 1)(𝑟𝑎 − 1),                                   (3) 

 

where |𝐺′/𝑘𝑒𝑟(𝜒)| = 𝑞𝑐  and |𝐻/𝑘𝑒𝑟(𝜒)| = 𝑞𝑐 − 1. Now, 
we can consider the two cases that 𝐹(𝐺) =  𝑘𝑒𝑟(𝜒) or 
𝐹(𝐺) = 𝐺′ since 𝑘𝑒𝑟(𝜒) ≤ 𝐹(𝐺) ≤  𝐺′ and 𝐺′/𝑘𝑒𝑟(𝜒) is 
the unique minimal normal subgroup of 𝐺/ 𝑘𝑒𝑟(𝜒). Let 
𝐹(𝐺) =  𝑘𝑒𝑟(𝜒). We now have 𝑟 ≠ 𝑞 and 𝐺′ is not an 
abelian group.  It follows that 𝐺′′ = 𝑘𝑒𝑟(𝜒) and so 𝑘𝑒𝑟(𝜒) ≰
𝑘𝑒𝑟(𝜆) for every 𝜆 ∈ 𝐼𝑟𝑟1(𝐺′). Therefore,  𝑘𝑒𝑟(𝜒) ≰
𝑘𝑒𝑟(𝜆𝐺)  and by Clifford's Theorem  (see Theorem 6.2 of [1]) 
we conclude that  𝜆𝐺 = 𝜃  since 𝜃 is the unique faithful 
irreducible character of 𝐺 and 𝐺/𝐺′ is a cyclic group. Because 
the fact that  𝐹(𝐺′) = 𝑘𝑒𝑟(𝜒) and 𝐺′/𝐹(𝐺′) is an abelian 
group, from Lemma 18.1 of  [3], there must be an irreducible 
character 𝜑 of 𝐺′  satisfying the property that 𝜑(1) =
|𝐺′: 𝐹(𝐺′)| = 𝑞𝑐 . Thus, we obtain that 

 
𝜑𝐺 (1) = |𝐺: 𝐺′|φ(1) = (𝑞𝑐 − 1)𝑞𝑐 = 𝜃(1), 

 
and hence by using Equation (3), we get 𝜃(1) = 𝑞𝑐(𝑞𝑐 −
1) = (𝑟𝑎 − 1). By Clifford's Theorem, we have 𝜃𝑘𝑒𝑟(𝜒) =

𝜉1 + 𝜉2+. . . +𝜉𝑟𝑎−1, where 𝜉𝑖 ∈ 𝐼𝑟𝑟(𝑘𝑒𝑟(𝜒)) for 𝑖 ∈
{1, . . . , 𝑟𝑎 − 1}. This leads by Clifford's Theorem to 𝐼𝐺(𝜉𝑖) =
𝑘𝑒𝑟(𝜒) for all nonprincipal irreducible characters 𝜉𝑖  of 𝑘𝑒𝑟(𝜒)  
because |𝐺: 𝐼𝐺(𝜉𝑖)| =  𝑟𝑎 − 1 = 𝜃(1). Thus, we have seen 
that there exists 𝐾 ≤ 𝐺 such that 𝐺 = 𝑘𝑒𝑟(𝜒) ⋊  𝐾 is a 
Frobenius group with  𝑘𝑒𝑟(𝜒) being the Frobenius kernel. 𝐾 
has a unique involution since |𝐾| = 𝑞𝑐(𝑞𝑐 − 1) is even. This 
shows 𝑍(𝐾) > 1, which leads the contradiction as we know 
that 𝐺/𝑘𝑒𝑟(𝜒) ≅  𝐾 is a Frobenius group. 

 Now, we may assume that  𝐹(𝐺) = 𝐺′. We note that 𝑟 =
𝑞 and 𝐺′ ∈ 𝑆𝑦𝑙𝑟(𝐺)  as 𝐹(𝐺) is a 𝑟-group. Thus we also know 
that 𝐺′ is not an abelian group since 𝑞 |𝜃(1). It follows that 
𝑘𝑒𝑟(𝜒) = 𝑍(𝐺′) = 𝐺′′ since 𝐺′/ 𝑘𝑒𝑟(𝜒) is  the unique 
minimal normal subgroup of 𝐺/ 𝑘𝑒𝑟(𝜒). By using the similar 
thought in the previous paragraph, we have  𝜓𝐺 = 𝜃  for 𝜓 ∈
𝐼𝑟𝑟1(𝐺′). Therefore, 𝜃(1) = 𝑟𝑡(𝑟𝑐 − 1), where 𝜓(1) = 𝑟𝑡 
for some integer 𝑡. By using Equation (3), we get that 

 
 𝜃(1)2 = 𝑟𝑐(𝑟𝑐 − 1)(𝑟𝑎 − 1) = 𝑟2𝑡(𝑟𝑐 − 1)2,   

 
and  by equating these expressions, we find that 𝑎 = 𝑐 = 2𝑡. 
It follows that |𝑘𝑒𝑟(𝜒)| = 𝑟𝑐 = |𝐺′/𝑘𝑒𝑟(𝜒)| and 𝜓(1) =

𝑟𝑐/2 for every nonlinear irreducible character 𝜓 of 𝐺′. Since by 
Corollary 2.30 of  [1] we have that 𝑟𝑐 = 𝜓(1)2 ≤ |𝐺′: 𝑍(𝜓)| 
and that 𝑍(𝐺′) ≤ 𝑍(𝜓), we deduce that  𝑍(𝐺′) = 𝑍(𝜓). As 
𝑟𝑐 = |𝐺′/𝑍(𝐺′)|,  again by Corollary 2.30 of  [1], for all 𝑥 ∈
 𝐺′ − 𝑍(𝐺′)   we see that 𝜓(𝑥) = 0.  

Take  𝑥 ∈  𝐺′ − 𝑍(𝐺′); then 𝜓(𝑥) = 0 for all 𝜓 ∈
𝐼𝑟𝑟1(𝐺′). Then we have a contradiction that 

 
𝑟𝑐 = |𝑍(𝐺′)| < |𝐶 𝐺′(𝑥) | 

      =  ∑ |𝜓(𝑥)|2
𝜓∈𝐼𝑟𝑟1(𝐺′) +  ∑ |𝜇(𝑥)|2

𝜇∈𝐿𝑖𝑛(𝐺′) =𝑟𝑐  

 
This proves our claim 𝑘𝑒𝑟(𝜒) ≰  𝐺′. Thus, 𝑘𝑒𝑟(𝜒)  and 𝐺′ 

are different minimal normal subgroups of 𝐺. By Ito's 
Theorem, 𝜃(1) | 𝑞𝑐 − 1 since 𝐺′ × 𝑘𝑒𝑟(𝜒) ⊴ 𝐺 is abelian, 
and hence it may be written the degree of 𝜃 as 𝜃(1) =
𝑞𝑐−1

𝑡
  for some 𝑡. By using Equation (1),  
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𝑞𝑐(𝑞𝑐 − 1)𝑟𝑎 = |𝐺|   
             = (𝑞𝑐 − 1)𝑟𝑎 + (𝑞𝑐 − 1)2 + (𝑞𝑐 − 1/𝑡)2 
 

and this calculation shows that 𝑟𝑎 = 1 +
1

𝑡2, which is possible 

only if 𝑟𝑎 = 2. This implies that |𝑘𝑒𝑟(𝜒)| = 2. Actually,  we 
have 𝑘𝑒𝑟(𝜒) = 𝑍(𝐺), which yields that the case (b) holds.  

Let us consider the case (3), that is, 𝑘𝑒𝑟(𝜒) > 1 and 
𝑘𝑒𝑟(𝜃) > 1. Take 𝑁: = 𝑘𝑒𝑟(𝜒) ∩  𝑘𝑒𝑟(𝜃),  then we know 
from Lemma 2.8 that |𝑁| = 1 and both 𝑘𝑒𝑟(𝜒) and 
𝑘𝑒𝑟(𝜃) are minimal normal subgroups of 𝐺. Since 𝐺/
𝑘𝑒𝑟(𝜒)𝑘𝑒𝑟(𝜃) is abelian, we have that 𝐺′ ≤ 𝑘𝑒𝑟(𝜒)𝑘𝑒𝑟(𝜃). 
Suppose that 𝐺 = 𝑘𝑒𝑟(𝜒)𝑘𝑒𝑟(𝜃). By using Equation (1),  we 
get that 

 
|𝐺/ 𝑘𝑒𝑟(𝜃)| − |𝐺: 𝐺′| = 𝜃(1)2 = |𝐺| − |𝐺/ 𝑘𝑒𝑟(𝜒)|   

 
since 𝑘𝑒𝑟(𝜒)  and 𝑘𝑒𝑟(𝜃) are subgroups of 𝐺′. Thus, we have 
|𝑘𝑒𝑟(𝜃)|(|𝑘𝑒𝑟(𝜒)| − 1) = |𝑘𝑒𝑟(𝜒)| − 1, which leads the 
contradiction that |𝑘𝑒𝑟(𝜃)| = 1. Therefore, we see that 𝐺′ <
𝑘𝑒𝑟(𝜒)𝑘𝑒𝑟(𝜃). Suppose that 𝑘𝑒𝑟(𝜒)  ≤ 𝐺′, then we get 
𝐺′𝑘𝑒𝑟(𝜃) = 𝑘𝑒𝑟(𝜒)𝑘𝑒𝑟(𝜃), and so |𝐺′ ∩ 𝑘𝑒𝑟(𝜃)| > 1. 
Thus, we have 𝑘𝑒𝑟(𝜃) ≤  𝐺′, which contradicts with 𝐺′ <
𝑘𝑒𝑟(𝜒)𝑘𝑒𝑟(𝜃). Then 𝑘𝑒𝑟(𝜒) ≰ 𝐺′. Similarly, we obtain that 
𝑘𝑒𝑟(𝜃) ≰ 𝐺′. Thus 𝐺′ is the another minimal normal 
subgroup. Now, we claim that 𝐺′𝑘𝑒𝑟(𝜃) = 𝐺′𝑘𝑒𝑟(𝜒) =
𝑘𝑒𝑟(𝜒)𝑘𝑒𝑟(𝜃). It is easy to see that  𝑘𝑒𝑟(𝜃) = 𝑘𝑒𝑟(𝜃) ∩
 𝐺′𝑘𝑒𝑟(𝜒) ≤  𝐺′𝑘𝑒𝑟(𝜒) and 𝑘𝑒𝑟(𝜒) = 𝑘𝑒𝑟(𝜒) ∩
 𝐺′𝑘𝑒𝑟(𝜃) ≤  𝐺′𝑘𝑒𝑟(𝜃),  which yields that   𝐺′𝑘𝑒𝑟(𝜃) =
𝐺′𝑘𝑒𝑟(𝜒) = 𝑘𝑒𝑟(𝜒)𝑘𝑒𝑟(𝜃), as desired. We also note that 
|𝐺′| = |𝑘𝑒𝑟(𝜃)| = |𝑘𝑒𝑟(𝜒)|. 

 First, we assume that 𝐺/𝑘𝑒𝑟(𝜒) is a Seitz Frobenius 
group. Since |𝐺′𝑘𝑒𝑟(𝜒)/𝑘𝑒𝑟(𝜒)| = |𝐺′𝑘𝑒𝑟(𝜃)/𝑘𝑒𝑟(𝜃)|, 
we see that 𝐺/𝑘𝑒𝑟(𝜃) cannot be an extraspecial 2-group. 
Thus, 𝐺/𝑘𝑒𝑟(𝜃) is also a Seitz Frobenius group whose order is  
𝑟𝑛(𝑟𝑛 − 1) for some prime 𝑟 and 𝜃(1) = 𝜒(1) = 𝑟𝑛 − 1. 
Because 𝐺′ ≅  𝐺′𝑘𝑒𝑟(𝜒)/𝑘𝑒𝑟(𝜒) ≅ 𝑘𝑒𝑟(𝜃), we conclude 
that 𝑟𝑛 = |𝐺′| = |𝑘𝑒𝑟(𝜒)|, and hence we get |𝐺| =
𝑟2𝑛(𝑟𝑛 − 1). By using Equation (1), we have 

 
𝑟2𝑛(𝑟𝑛 − 1) = 𝑟𝑛(𝑟𝑛 − 1) + 2(𝑟𝑛 − 1)2, 
 
which gives a contradiction that 1 = 𝑟𝑛 − 1 = 𝜒(1). 
Therefore we need to consider  the case that 𝐺/𝑘𝑒𝑟(𝜒) is an 
extraspecial 2-group. Since we have 2 = |𝐺′𝑘𝑒𝑟(𝜒)/
𝑘𝑒𝑟(𝜒)| = |𝐺′𝑘𝑒𝑟(𝜃)/𝑘𝑒𝑟(𝜃)|, we deduce that 𝐺/𝑘𝑒𝑟(𝜃) 
is also an extraspecial 2-group, and so we get that  𝐺 is a 2-
group. Thus, minimal normal subgroups 𝑘𝑒𝑟(𝜒), 𝑘𝑒𝑟(𝜃) and 
𝐺′ are also subgroups of 𝑍(𝐺) of order 2. In fact, 
𝑘𝑒𝑟(𝜒) 𝑘𝑒𝑟(𝜃) = 𝑍(𝐺) because 𝐺/𝑘𝑒𝑟(𝜒) is an 
extraspecial 2-group. Therefore, we obtain the case (3) that 
𝑍(𝐺) ≅  𝑉4, |𝐺| = 22𝑛+2 and 𝜒(1) = 𝜃(1) = 2𝑛, where 𝑉4 
is the Klein-4-group, and hence we are done. 

Theorem 3.2.  Let 𝐼𝑟𝑟1,𝑚(𝐺) = {𝜒1 , 𝜒2, … , 𝜒𝑛} for a 

nonabelian solvable group 𝐺. Assume that  𝑘𝑒𝑟(𝜒𝑖) =

𝑘𝑒𝑟(𝜒𝑗)  for 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}. Then  𝜒1(1) = ⋯ =

𝜒𝑛(1) = 𝑑  for some integer 𝑑  and one of the following holds:  
(i) 𝐺 = 𝑆 × 𝑇, where 𝑆 ∈ 𝑆𝑦𝑙𝑝(𝐺) and 𝑇 ⊴ 𝐺 is abelian.  

Also, 𝑆/𝑍(𝑆) is an elementary abelian 𝑝-group and  𝑍(𝑆) is 
cyclic. 

 (ii) 𝐺/𝑍(𝐺) is a Frobenius group possessing an abelian 
Frobenius complement whose order equals  𝑑, 𝐺′ is an 
elementary abelian 𝑝-group and 𝐺′ ∩ 𝑍(𝐺) = 1. Also, for 
𝑅 ∈ 𝑆𝑦𝑙𝑝(𝑍(𝐺)) we have  𝐺 = 𝑅 × 𝐾. In fact,  𝐾/𝑍(𝐾)  

becomes a Frobenius group.  
Proof.  We first note that when every nonlinear monolithic 

character of 𝐺 is faithful, then 𝐺′ becomes the unique minimal 
normal subgroup of G from Remark 2.6, and hence we 
complete the proof by Lemma 12.3 of [1]. Therefore, we can 
suppose that 𝑘𝑒𝑟(𝜒𝑖) ≠ 1 for 𝑖 ∈ {1, 2, … , 𝑛}. Since 1 <
⋂ 𝑘𝑒𝑟(𝜒𝑖) = 𝑘𝑒𝑟(𝜒1),𝑛

𝑖=1  then by Remark 2.5, we have that  
𝑘𝑒𝑟(𝜒1) ≤ 𝑍(𝐺) and also 𝑘𝑒𝑟(𝜒1) ∩ 𝐺′ = 1.  Therefore, we 
conclude by Remark 2.6 that  𝐺′ is a minimal normal subgroup 
of 𝐺. First  let  us consider 𝑘𝑒𝑟(𝜒1) < 𝑍(𝐺). Thus, we get that 
𝐺/𝑍(𝐺) is  abelian because it has no nonlinear monolithic 
character. So 𝐺 becomes a nilpotent group. Because the fact 
that 𝐺 is  nonabelian and nilpotent, then there is a nonabelian 
Sylow 𝑝-subgroup 𝑆 ⊴ 𝐺 having the property with 𝐺 = 𝑆 ×
𝑇. Since 𝑆′ = 𝐺′ ≤ 𝑆, then we observe that 𝑇 is an abelian 
group.  Furthermore, the factor group  𝐺/ 𝑘𝑒𝑟(𝜒1)  needs to 
be a nonabelian and 𝑝-group. This gives from Remark 2.6 that 
𝑇 ≤ 𝑘𝑒𝑟(𝜒1). Since we know 𝐼𝑟𝑟1,𝑚(𝐺/𝑇) = 𝐼𝑟𝑟1,𝑚(𝑆),  we 

obtain that 𝑆 has exactly 𝑛 nonlinear monolithic characters 
having same kernel. From Lemma 2.8, we deduce that every 
nonlinear irreducible characters of 𝑆  needs to be faithful. 
Therefore,  𝑆 is as in Lemma 12.3 (a) of [1], which is as desired 
result in (i). 

From now on, we shall suppose that 𝑘𝑒𝑟(𝜒1) = 𝑍(𝐺). If 
the factor group  𝐺/𝑍(𝐺) is a 𝑝-group,  𝐺 is  nonabelian and 
nilpotent. Also, we note that (|𝑆|, |𝑍(𝐺)|) ≠ 1, where 𝑆 is a 
Sylow 𝑝-subgroup of  𝐺. Therefore, there exists 𝑁 < 𝑍(𝐺)  
subgroup with 𝐺/𝑁 ≅ 𝑆. Since 𝐼𝑟𝑟1,𝑚(𝑆) ⊆ 𝐼𝑟𝑟1,𝑚(𝐺) and 

𝐺/𝑁𝑍(𝑆) ≅ 𝑆/𝑍(𝑆),  we have a contradiction that  
𝑛 = |𝐼𝑟𝑟1,𝑚(𝑆/𝑍(𝑆))| < |𝐼𝑟𝑟1,𝑚(𝑆)| ≤ |𝐼𝑟𝑟1,𝑚(𝐺)|  = 𝑛. 

Then 𝐺/𝑍(𝐺) becomes a Frobenius group as  Lemma 
12.3 (b) of [1], that is,  
 
𝐺/𝑍(𝐺) ≅ 𝑍(𝐺)𝐺′/ 𝑍(𝐺) ⋊ 𝐵/𝑍(𝐺), 
 
where 𝑍(𝐺)𝐺′/ 𝑍(𝐺) ≅  𝐺′ is an elementary abelian 𝑝-
group. Let's pick 𝑅 ∈ 𝑆𝑦𝑙𝑝(𝑍(𝐺)). Because the fact that 

𝑍(𝐺) ∩ 𝐺′ = 1,   we get 𝐺′ × 𝑅 ∈ 𝑆𝑦𝑙𝑝(𝐺).  Since 𝐺′ × 𝑅 

splits over the normal abelian group 𝑅, then we get by 
Gaschütz's Lemma that 𝐺 = 𝑅 × 𝐾, where 𝐾/𝑍(𝐾) is a 
Frobenius group.  

Conversely, the groups as in the theorem have nonlinear 
monolithic characters having equal kernel by Lemma 2.9,  and 
hence we are done.  

 

Conclusion       

For many years, several authors have defined some 
new concepts and given theorems on  the classifications 
of a finite group by using its irreducible characters. The 
aim of this paper is to consider the relation between the 
groups structure and their irreducible character kernels. 
Under some certain conditions related to irreducible 
character kernels, we have given a classification of finite 
groups. On above occassion, we want to emphasize that 
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monolithic characters are important constituent of the set 
of irreducible characters. Therefore, this study may be 
considered as a pioneering work for classifying finite 
groups having more nonlinear  monolithic character 
kernels.  
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