Characterizations of a helicoid and a catenoid

Zühal Küçükarslan Yüzbaş1 ${ }^{1}$ (D), Dae Won Yoon*2 ${ }^{\text {(D) }}$
${ }^{1}$ Department of Mathematics, Firat University, 23119 Elazığ, Turkey
${ }^{2}$ Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract

In the present article, we consider a parametric surface generated by the Frenet frame of a curve, and study the minimality condition for the surface. As a result, we give characterizations of a helicoid and a catenoid. Finally we show some examples of minimal surfaces generated by a circle and a helix.

Mathematics Subject Classification (2020). 53A10, 53C42
Keywords. minimal surface, catenoid, helicoid, marching-scale function

1. Introduction

Minimal surfaces are one of main objects which have drawn geometers' interest for a very long time. A minimal surface is a surface with vanishing mean curvature. It is well known that the only minimal ruled surfaces in Euclidean 3 -space \mathbb{E}^{3} are planes and helicoids. Also, a plane and a catenoid are the only minimal surfaces of revolution in \mathbb{E}^{3}. Minimal surfaces have been studied in many research areas. In mathematics, the surfaces have wide applications in a surface design $[1,4-7]$. In physics, minimal surfaces are familiar as soap films. Besides the obvious application of a minimal surface theory to the study of soap films, there are a number of other physical systems in which the theory of minimal surfaces has a sometimes surprising applicability. The study of minimal surfaces generated by the its Frenet frame and a space curve appear attractive and is used many areas. In [4] Li, Wang and Zhu gave examples for approximation of minimal surface with a geodesic by using Dirichlet function. Also, in [6] author examined construction method of a minimal surface from a prescribed geodesic and drew minimal surfaces with a circle or a helix. Moreover, Riverros and Corro [5] analyzed the class of minimal surfaces parameterized by an isothermal coordinate and a geodesic coordinate. Several mathematician are studying minimal surfaces generated by a curve $[2-6,10]$, etc.
In this paper, we give minimal conditions of a parametric surface defined by the Frenet frame of a curve in terms of the marching-scale functions. Also, we present a new approach for obtaining minimal surfaces from a curve and give new examples of minimal surfaces. Finally, we characterize a helicoid and a catenoid generated by a circle and a helix in Euclidean 3-space.

[^0]
2. Conditions of minimal surfaces

Let γ be a curve parameterized by arc-length s in Euclidean 3 -space \mathbb{E}^{3}. Denote by $\{T, N, B\}$ the Frenet frame of a curve γ with the curvature κ and the torsion τ.

Consider a parametric surface generated by the curve γ and its Frenet frame as following

$$
\begin{gather*}
X(s, t)=\gamma(s)+(f(s, t) g(s, t) h(s, t))\left(\begin{array}{c}
T(s) \\
N(s) \\
B(s)
\end{array}\right), \tag{2.1}\\
s_{1} \leq s \leq s_{2}, \quad t_{1} \leq t \leq t_{2}
\end{gather*}
$$

where $f(s, t), g(s, t)$ and $h(s, t)$ are smooth functions.
If we take the parameter t as time variable, then $f(s, t), g(s, t)$ and $h(s, t)$ can be viewed as directed marching distances of a point unit at the time t in the directions $T(s), N(s)$ and $B(s)$, respectively. In the sense, $f(s, t), g(s, t)$ and $h(s, t)$ are said to be the marching-scale functions in the directions, respectively [8].

Some known simple examples are to be mentioned, namely
(1) If the marching-scale functions $f(s, t), g(s, t)$ and $h(s, t)$ are linear functions with the only parameter t, then the parametric surface $X(s, t)$ is a ruled surface.
(2) If γ is a circle and $f(s, t)=0, g(s, t)=\tilde{g}(t), h(s, t)=\tilde{h}(t)$, then the surface $X(s, t)$ is a usual surface of revolution.
(3) If the marching-scale functions are given by $f(s, t)=0, g(s, t)=r_{0} \cos t, h(s, t)=$ $r_{0} \sin t$ with a constant r_{0}, then the surface is a tubular surface.
Definition 2.1. If $X(s, t)$ satisfies $E=G$ and $F=0$, then $X(s, t)$ is called an isothermal surface, where E, F and G denote the coefficients of the first fundamental form of a surface $X(s, t)$.
Definition 2.2. If $X(s, t)$ satisfies $\frac{\partial^{2} X}{\partial s^{2}}+\frac{\partial^{2} X}{\partial t^{2}}=0$, then $X(s, t)$ is called a harmonic surface.
Lemma 2.3. (cf. [9]) The surface with an isothermal parameter is minimal if and only if it is a harmonic surface.

For the future analysis of a parametric surface, we now consider the marching-scale functions $f(s, t), g(s, t)$ and $h(s, t)$ expressed by

$$
\begin{equation*}
f(s, t)=l(s)+u(t), \quad g(s, t)=m(s)+v(t), \quad h(s, t)=n(s)+w(t), \tag{2.2}
\end{equation*}
$$

where $l(s), m(s), n(s), u(t), v(t), w(t)$ are smooth functions. In this case, the surface (2.1) does not pass through the curve $\gamma(s)$.

The following theorem is useful to construct minimal surfaces of a parametric surface $X(s, t)$ with the marching-scale functions given as (2.2).
Theorem 2.4. Let γ be a unit speed curve with the Frenet frame $\{T, N, B\}$ in Euclidean 3 -space. A surface parameterized by

$$
\begin{equation*}
X(s, t)=\gamma(s)+f(s, t) T(s)+g(s, t) N(s)+h(s, t) B(s) \tag{2.3}
\end{equation*}
$$

with the marching-scale functions f, g and h given by (2.2) is minimal if and only if the functions f, g and h satisfy the following conditions:

$$
\begin{gather*}
{\left[1+l^{\prime}(s)-\kappa(s)(m(s)+v(t))\right]^{2}+\left[m^{\prime}(s)+\kappa(s)(l(s)+u(t))-\tau(s)(n(s)+w(t))\right]^{2}} \tag{2.4}\\
+\left[n^{\prime}(s)+\tau(s)(m(s)+v(t))\right]^{2}-u^{\prime 2}(t)-v^{\prime 2}(t)-w^{\prime 2}(t)=0 \\
u^{\prime}(t)\left[1+l^{\prime}(s)-\kappa(s)(m(s)+v(t))\right] \\
\quad+v^{\prime}(t)\left[m^{\prime}(s)+\kappa(s)(l(s)+u(t))-\tau(s)(n(s)+w(t))\right] \tag{2.5}\\
\quad+w^{\prime}(t)\left[n^{\prime}(s)+\tau(s)(m(s)+v(t))\right]=0
\end{gather*}
$$

$$
\begin{align*}
& l^{\prime \prime}(s)+u^{\prime \prime}(t)-\kappa^{\prime}(s)(m(s)+v(t))-2 \kappa(s) m^{\prime}(s)-\kappa^{2}(s)(l(s)+u(t)) \\
& \quad+\kappa(s) \tau(s)(n(s)+w(t))=0 \tag{2.6}\\
& m^{\prime \prime}(s)+v^{\prime \prime}(t)+\kappa^{\prime}(s)(l(s)+u(t))-\tau^{\prime}(s)(n(s)+w(t))+2 \kappa(s) l^{\prime}(s) \\
& -2 \tau(s) n^{\prime}(s)-\left(\kappa^{2}(s)+\tau^{2}(s)\right)(m(s)+v(t))+\kappa(s)=0 \tag{2.7}\\
& \quad n^{\prime \prime}(s)+w^{\prime \prime}(t)+\tau^{\prime}(s)(m(s)+v(t))+2 \tau(s) m^{\prime}(s) \\
& \quad+\kappa(s) \tau(s)[l(s)+u(t)]-\tau^{2}(s)[n(s)+w(t)]=0 \tag{2.8}
\end{align*}
$$

where $\kappa(s)$ and $\tau(s)$ are the curvature and the torsion of the curve $\gamma(s)$, respectively.
Proof. After computations of the first fundamental form and the second derivative of the surface (2.3), if we apply the conditions of the isothermal surface and the harmonic surface, equations $(2.4)-(2.8)$ are obtained.

If we are able to solve the system of ordinary differential equations, we can find the minimal surface generated by a curve. But it is not easy for us to find exact solutions satisfying (2.4)-(2.8) for minimal surfaces. So we will consider partial solutions in terms of the curvature $\kappa(s)$ and the torsion $\tau(s)$ of the curve $\gamma(s)$.

3. Minimal surfaces generated by a circle

Let γ be a unit speed curve in Euclidean 3-space and X be a minimal surface parameterized by

$$
\begin{equation*}
X(s, t)=\gamma(s)+f(s, t) T(s)+g(s, t) N(s)+h(s, t) B(s) \tag{3.1}
\end{equation*}
$$

where f, g and h satisfy (2.2).
Suppose that the curve γ is a circle with $\kappa=1$ and $\tau=0$. Then, (2.8) implies

$$
n^{\prime \prime}(s)+w^{\prime \prime}(t)=0 .
$$

Since $n=n(s)$ and $w=w(s)$, it follows that there exists a constant c_{1} such that

$$
n^{\prime \prime}(s)=c_{1}, \quad w^{\prime \prime}(t)=-c_{1}
$$

that is,

$$
\begin{align*}
& n(s)=\frac{1}{2} c_{1} s^{2}+c_{2} s+c_{3} \\
& w(t)=-\frac{1}{2} c_{1} t^{2}+c_{4} t+c_{5} \tag{3.2}
\end{align*}
$$

where $c_{i}(i=1, \ldots, 5)$ are constants. Also, (2.7) gives

$$
m^{\prime \prime}(s)+2 l^{\prime}(s)-m(s)+v^{\prime \prime}(t)-v(t)+1=0
$$

which implies that there is a constant b_{1} such that

$$
\begin{align*}
m^{\prime \prime}(s)+2 l^{\prime}(s)-m(s) & =b_{1} \\
v^{\prime \prime}(t)-v(t)+1 & =-b_{1} \tag{3.3}
\end{align*}
$$

Also, equation (2.6) can be rewritten as

$$
l^{\prime \prime}(s)-2 m^{\prime}(s)-l(s)+u^{\prime \prime}(t)-u(t)=0,
$$

it follows that there is a constant a_{1} such that

$$
\begin{align*}
l^{\prime \prime}(s)-2 m^{\prime}(s)-l(s) & =a_{1} \\
u^{\prime \prime}(t)-u(t) & =-a_{1} \tag{3.4}
\end{align*}
$$

The solutions of the second equations of (3.3) and (3.4) are

$$
\begin{align*}
& v(t)=b_{2} e^{t}+b_{3} e^{-t}+1+b_{1} \\
& u(t)=a_{2} e^{t}+a_{3} e^{-t}+a_{1} \tag{3.5}
\end{align*}
$$

for constants a_{i} and $b_{i}, i=1,2,3$, respectively.

After taking the second derivative of the first equation of (3.3) and the first derivative of the first equation of (3.4) if we combine the two equations, then one finds

$$
m^{(4)}(s)+3 m^{\prime \prime}(s)+2 l^{\prime}(s)=0 .
$$

Thus, the last equation with the help of the first equation of (3.3) becomes

$$
m^{(4)}(s)+2 m^{\prime \prime}(s)+m(s)+b_{1}=0,
$$

and its solution is given by

$$
\begin{equation*}
m(s)=\left(d_{1}+d_{2} s\right) \cos s+\left(d_{3}+d_{4} s\right) \sin s-b_{1}, \tag{3.6}
\end{equation*}
$$

where $d_{i}(i=1, \ldots, 4)$ are constants. Applying the same method in (3.3) and (3.4) for a function $l(s)$, one finds

$$
l^{(4)}(s)+2 l^{\prime \prime}(s)+l(s)+a_{1}=0,
$$

it follows that its general solution is

$$
\begin{equation*}
l(s)=\left(d_{5}+d_{6} s\right) \cos s+\left(d_{7}+d_{8} s\right) \sin s-a_{1}, \tag{3.7}
\end{equation*}
$$

where $d_{i}(i=5, \ldots, 8)$ are constants.
If we substitute (3.6) and (3.7) into the first equations of (3.3) and (3.4), we get

$$
\begin{equation*}
d_{5}=-d_{3}, d_{6}=-d_{4}, d_{7}=d_{1}, d_{8}=d_{2}, a_{1}=0, b_{1}=0, \tag{3.8}
\end{equation*}
$$

it follows that the functions $m(s)$ and $l(s)$ can be written as

$$
\begin{align*}
m(s) & =\left(d_{1}+d_{2} s\right) \cos s+\left(d_{3}+d_{4} s\right) \sin s \\
l(s) & =-\left(d_{3}+d_{4} s\right) \cos s+\left(d_{1}+d_{2} s\right) \sin s \tag{3.9}
\end{align*}
$$

Now, we must check that the marching-scale functions determined by (2.2) satisfy (2.4) and (2.5). If we first substitute (3.2), (3.5) and (3.9) into (2.5), we get the following equations to be satisfied:

$$
\begin{align*}
c_{1} & =0, \\
c_{2} c_{4}+2 a_{3} b_{2}-2 a_{2} b_{3} & =0 \tag{3.10}
\end{align*}
$$

as the coefficients of $s t$ term and constant term, respectively, and we also obtain

$$
\begin{gather*}
b_{2} d_{2}+a_{2} d_{4}=0, \\
a_{2} d_{2}-b_{2} d_{4}=0, \tag{3.11}\\
b_{3} d_{2}+a_{3} d_{4}=0, \\
a_{3} d_{2}-b_{3} d_{4}=0, \tag{3.12}\\
a_{2}\left(d_{2}+2 d_{3}\right)+b_{2}\left(2 d_{1}-d_{4}\right)=0, \\
a_{2}\left(-2 d_{1}+d_{4}\right)+b_{2}\left(d_{2}+2 d_{3}\right)=0, \tag{3.13}\\
a_{3}\left(d_{2}+2 d_{3}\right)+b_{3}\left(2 d_{1}-d_{4}\right)=0, \\
a_{3}\left(-2 d_{1}+d_{4}\right)+b_{3}\left(d_{2}+2 d_{3}\right)=0 \tag{3.14}
\end{gather*}
$$

because the coefficients of the exponential function and the trigonometric function are all zero.
In order to solve the system (3.11)-(3.14), we split it into two cases.
Case 1: $a_{2} \neq 0$ or $b_{2} \neq 0$.
In this case, (3.11) implies $d_{2}=0$ and $d_{4}=0$. It follows that from (3.13) we also obtain $d_{1}=0$ and $d_{3}=0$. Therefore, the functions $m(s)$ and $l(s)$ are identically zero. Thus, (2.4) leads to the condition that the constants satisfy

$$
4 a_{2} a_{3}+4 b_{2} b_{3}+c_{2}^{2}-c_{4}^{2}=0
$$

Case 2: $a_{2}=0$ and $b_{2}=0$.

In the case, the second equation of (3.10) gives $c_{2} c_{4}=0$ and (3.11) implies that d_{2} and d_{4} are arbitrary constants. It follows that from (3.12) one finds $a_{3}=0$ and $b_{3}=0$. Equation (2.4) with the help of $a_{2}=0, a_{3}=0, b_{2}=0$ and $b_{3}=0$ gives

$$
\begin{aligned}
& d_{2}=0, d_{4}=0 \\
& 4 d_{1}^{2}+4 d_{3}^{2}+c_{2}^{2}-c_{4}^{2}=0
\end{aligned}
$$

It follows that the marching-scale functions are reduced to

$$
\begin{align*}
& f(s, t)=d_{1} \sin s-d_{3} \cos s \\
& g(s, t)=d_{1} \cos s+d_{3} \sin s+1 \tag{3.15}\\
& h(s, t)=c_{2} s+c_{4} t+c_{3}+c_{5}
\end{align*}
$$

and thus c_{4} must be a non-zero constant. Since $c_{2} c_{4}=0$, one find $c_{2}=0$. In such a case, the coefficients of the first fundamental form of the surface are given by $E=0, F=0$ and $G=c_{4}^{2}$. Therefore, there exist no surfaces for Case 2.
Consequently, since the functions $m(s)$ and $l(s)$ vanish, by renaming the constants we have following theorem.

Theorem 3.1. Let γ be a circle parameterized by arc-length with radius 1 in Euclidean 3 -space and let X be a regular surface parameterized by

$$
\begin{equation*}
X(s, t)=\gamma(s)+f(s, t) T(s)+g(s, t) N(s)+h(s, t) B(s) \tag{3.16}
\end{equation*}
$$

with $f(s, t)=l(s)+u(t), g(s, t)=m(s)+v(t)$ and $h(s, t)=n(s)+w(t)$. Then the surface X is minimal if and only if the marching-scale functions f, g and h are expressed in the form:

$$
\left\{\begin{array}{l}
f(s, t)=a_{1} e^{t}+a_{2} e^{-t}, \tag{3.17}\\
g(s, t)=b_{1} e^{t}+b_{2} e^{-t}+1, \\
h(s, t)=c_{1} s+c_{2} t+c_{3}
\end{array}\right.
$$

where constants $a_{i}, b_{i}, c_{i}(i=1,2)$ satisfy the following equations:

$$
\begin{gather*}
c_{1} c_{2}-2 a_{1} b_{2}+2 a_{2} b_{1}=0 \\
4 a_{1} a_{2}+4 b_{1} b_{2}+c_{1}^{2}-c_{2}^{2}=0 \tag{3.18}\\
\left(a_{1}, a_{2}\right) \neq(0,0),\left(b_{1}, b_{2}\right) \neq(0,0),\left(c_{1}, c_{2}\right) \neq(0,0)
\end{gather*}
$$

Example 3.2. Consider a circle with radius 1 on $x y$-plane and take

$$
a_{1}=0, \quad a_{2}=1, \quad b_{1}=-\frac{1}{2}, \quad b_{2}=0, \quad c_{1}=1, \quad c_{2}=1, \quad c_{3}=0
$$

in Theorem 3.1. Then the minimal surface $X(s, t)$ with the help of (3.17) is parameterized as

$$
X(s, t)=\left(\frac{1}{2} e^{t} \cos s-e^{-t} \sin s, \frac{1}{2} e^{t} \sin s+e^{-t} \cos s, s+t\right) .
$$

This surface is given in Figure 1.
By using Theorem 3.1 with the following theorem, we can characterize a catenoid and a helicoid as minimal surfaces.
Theorem 3.3. Let $X(s, t)$ be a minimal surface determined by Theorem 3.1 with the marching-scale functions (3.17). If $c_{1}=0$ and $a_{1}, a_{2}, b_{1}, b_{2}$ are nonzero constants with the relations

$$
\begin{equation*}
a_{1}=a_{2}=\frac{c_{2}}{2} \cos \theta_{0}, \quad b_{1}=b_{2}=\frac{c_{2}}{2} \sin \theta_{0} \tag{3.19}
\end{equation*}
$$

for a constant θ_{0}, then the surface is part of a catenoid.

Fig. 1: A minimal surface generated by the circle with radius 1.

Proof. Since the relations in (3.18) are satisfied by (3.19), the marching-scale functions f, g and h are reduced to

$$
\begin{align*}
f(s, t) & =c_{2} \cos \theta_{0} \cosh t \\
g(s, t) & =c_{2} \sin \theta_{0} \cosh t+1 \tag{3.20}\\
h(s, t) & =c_{2} t+c_{3}
\end{align*}
$$

Suppose that $\gamma(s)$ is a unit circle in Euclidean 3-space. By a rigid motion, we consider γ parameterized by

$$
\begin{equation*}
\gamma(s)=(\cos s, \sin , 0) \tag{3.21}
\end{equation*}
$$

Thus, the minimal surface $X(s, t)$ with the help of (3.20) and (3.21) is expressed as

$$
X(s, t)=\left(-c_{2} \cosh t \sin \left(s+\theta_{1}\right), c_{2} \cosh t \cos \left(s+\theta_{1}\right), c_{2} t+c_{3}\right)
$$

with a constant θ_{1}. By a rigid motion, the surface is obtained by rotating the curve $y=c_{2} \cosh z$ in the $y z$-plane around the z-axis and it is a catenoid. Thus, the theorem is proved.

Theorem 3.4. Let $X(s, t)$ be a minimal surface determined by Theorem 3.1 with the marching-scale functions (3.17). If $c_{2}=0$ and $a_{1}, a_{2}, b_{1}, b_{2}$ are nonzero constants with the relations

$$
\begin{equation*}
a_{1}=-a_{2}=\frac{c_{1}}{2} \cos \theta_{0}, \quad b_{1}=-b_{2}=\frac{c_{1}}{2} \sin \theta_{0} \tag{3.22}
\end{equation*}
$$

for a constant θ_{0}, then the surface is part of a helicoid.
Proof. A similar computation as in Theorem 3.2 gives

$$
X(s, t)=\left(-c_{1} \sinh t \sin \left(s+\theta_{1}\right), c_{1} \sinh t \cos \left(s+\theta_{1}\right), c_{1} s+c_{3}\right)
$$

with constant θ_{1}. It is a ruled surface and a helicoid. Thus, the theorem is proved.

4. A minimal surface generated by a helix

We mentioned in Chapter 2 that it is difficult to find the exact solution of the system of the ordinary differential equations in Theorem 2.4. So, we want to find a partial solution of the system for a minimal surface in some special cases.
In this section, we consider a helix parameterized by

$$
\begin{equation*}
\gamma(s)=\left(\frac{1}{\sqrt{2}} \cos s, \frac{1}{\sqrt{2}} \sin s, \frac{1}{\sqrt{2}} s\right) \tag{4.1}
\end{equation*}
$$

then the helix has the curvature $\kappa=\frac{1}{\sqrt{2}}$ and the torsion $\tau=\frac{1}{\sqrt{2}}$.

4.1. Case $f(s, t)=h(s, t)$

In this case, equation (2.8) implies

$$
l^{\prime \prime}(s)+\sqrt{2} l^{\prime}(s)+u^{\prime \prime}(t)=0
$$

It follows that there exists a constant c_{1} such that

$$
\begin{aligned}
l^{\prime \prime}(s)+\sqrt{2} l^{\prime}(s) & =c_{1} \\
u^{\prime \prime}(t) & =-c_{1}
\end{aligned}
$$

and its general solutions of ODEs are

$$
\begin{align*}
& l(s)=-\frac{\sqrt{2}}{2} d_{1} e^{-\sqrt{2} s}+\frac{\sqrt{2}}{2} c_{1} s+d_{2}, \\
& u(t)=-\frac{1}{2} c_{1} t^{2}+c_{2} t+c_{3} \tag{4.2}
\end{align*}
$$

for some constants $c_{2}, c_{3}, d_{1}, d_{2}$, respectively. Also, equation (2.7) leads to

$$
m^{\prime \prime}(s)-m(s)+v^{\prime \prime}(t)-v(t)+\frac{1}{\sqrt{2}}=0,
$$

from this, there exists a constant a_{1} satisfying

$$
\begin{aligned}
m^{\prime \prime}(s)-m(s) & =a_{1}, \\
v^{\prime \prime}(t)-v(t)+\frac{1}{\sqrt{2}} & =-a_{1}
\end{aligned}
$$

Then, its general solutions are given by

$$
\begin{align*}
m(s) & =a_{2} e^{s}+a_{3} e^{-s}-a_{1}, \\
v(t) & =a_{4} e^{t}+a_{5} e^{-t}+a_{1}+\frac{\sqrt{2}}{2}, \tag{4.3}
\end{align*}
$$

for constants $a_{2}, a_{3}, a_{4}, a_{5}$, respectively. Substituting (4.2) and (4.3) into (2.6), we have

$$
a_{2}=0, a_{3}=0, c_{1}=0, d_{1}=0
$$

From this, (2.5) implies $c_{2}=0$ and (2.4) also gives $8 a_{4} a_{5}+1=0$. If $a_{4} \neq 0$, we have the marching-scale functions in the form

$$
\begin{aligned}
& f(s, t)=d_{2}+c_{3}=c, \\
& g(s, t)=a_{4} e^{t}-\frac{1}{8 a_{4}} e^{-t}+\frac{\sqrt{2}}{2} .
\end{aligned}
$$

Thus, a surface (3.1) is parameterized as

$$
\begin{equation*}
X(s, t)=\left(-\left(a_{4} e^{t}-\frac{1}{8 a_{4}} e^{-t}\right) \cos s,-\left(a_{4} e^{t}-\frac{1}{8 a_{4}} e^{-t}\right) \sin s, \frac{1}{\sqrt{2}} s+\sqrt{2} c\right) \tag{4.4}
\end{equation*}
$$

and it is a helicoid as a minimal ruled surface.

4.2. Case $f(s, t)=-h(s, t)$

By using the same method used in the previous part, equation (2.8) implies

$$
\begin{align*}
& l(s)=-a_{2} e^{\frac{\sqrt{6}-\sqrt{2}}{2} s}-a_{3} e^{-\frac{\sqrt{6}+\sqrt{2}}{2} s}+a_{1}, \tag{4.5}\\
& u(t)=-a_{4} e^{t}-a_{5} e^{-t}-a_{1},
\end{align*}
$$

where $a_{i}(i=1, \ldots, 5)$ are constants. Also, equation (2.7) gives

$$
\begin{align*}
m(s) & =b_{2} e^{s}+b_{3} e^{-s}-2 a_{2} e^{\frac{\sqrt{6}-\sqrt{2}}{2} s}-2 a_{3} e^{-\frac{\sqrt{6}+\sqrt{2}}{2} s}-b_{1}, \\
v(t) & =b_{4} e^{t}+b_{5} e^{-t}+\frac{1}{\sqrt{2}}+b_{1} \tag{4.6}
\end{align*}
$$

for some constants $b_{i}(i=1, \ldots, 5)$.
On the other hand, we can determine constants a_{i} and $b_{i}(i=1, \ldots, 5)$ in (2.4), (2.5) and (2.6) with the help of (4.5) and (4.6), and they are given by

$$
\begin{align*}
& a_{2}=0, a_{3}=0, b_{2}=0, b_{3}=0, \\
& a_{4} b_{5}-a_{5} b_{4}=0,2 a_{4} a_{5}+b_{4} b_{5}=0 \tag{4.7}
\end{align*}
$$

- If $a_{4} \neq 0$ and $b_{4} \neq 0$, there exists a constant k such that $a_{5}=k a_{4}$ and $b_{5}=k b_{4}$. It follows that $k\left(2 a_{4}^{2}+b_{4}^{2}\right)=0$, from this $k=0$, that is, $a_{5}=0$ and $b_{5}=0$. In this case, the marching-scale functions f and g are reduced to

$$
f(s, t)=-a_{4} e^{t}, g(s, t)=b_{4} e^{t}+\frac{1}{\sqrt{2}} .
$$

Thus, a surface (3.1) is parameterized as

$$
X(s, t)=\left(p_{0} e^{t} \cos \left(s+\theta_{0}\right), p_{0} e^{t} \sin \left(s+\theta_{0}\right), \frac{1}{\sqrt{2}} s\right)
$$

for some constants p_{0} and θ_{0}, and it is a helicoid.

- If $a_{4}=0$, equation (4.7) implies that either $b_{4}=0$ or $a_{5}=0$ and $b_{5}=0$. In both cases, we can show that a surface (3.1) is also a helicoid. Thus, we have the following result.

Theorem 4.1. Let γ be a helix given by (4.1) in Euclidean 3-space and let X be a surface parameterized by

$$
\begin{equation*}
X(s, t)=\gamma(s)+f(s, t) T(s)+g(s, t) N(s)+\varepsilon f(s, t) B(s) \tag{4.8}
\end{equation*}
$$

where $\varepsilon= \pm 1$ and $f(s, t)=l(s)+u(t), g(s, t)=m(s)+v(t)$. If the surface X is minimal, it is part of a helicoid.

Acknowledgment. The second author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07046979).

References

[1] Y.-X. Hao, R.-H. Wang and C.-J. Li, Minimal quasi-Bézier surface, Appl. Math. Model. 36, 5751-5757, 2012.
[2] E. Kasap and F.T. Akyildiz, Surfaces with common geodesic in Minkowski 3-space, Appl. Math. Comput. 177, 260-270, 2006.
[3] E. Kasap, F.T. Akyildiz and K. Orbay, A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput. 201, 781-789, 2008.
[4] C.-Y. Li, R.-H. Wang and C.-G. Zhu, Designing approximation minimal parametric surfaces with geodesics Appl. Math. Model. 37, 6415-6424, 2013.
[5] C.M.C. Riverros and A.M.V. Corro, Geodesics in minimal surfaces, Math. Notes, 101, 497-514, 2017.
[6] J. Sánchez-Reyes, On the construction of minimal surfaces from geodesics, Appl. Math. Model. 40, 1676-1682, 2016.
[7] J. Sánchez-Reyes and R. Dorado, Constrained design of polynomial surfaces from geodesic curves, Comput. Aided Design. 40, 49-55, 2008.
[8] G.-J. Wang, K. Tang and C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Design. 36, 447-459, 2004.
[9] G. Xu and G.-Z. Wang, Quintic parametric polynomial minimal surfaces and thier properties, Diff. Geom. Appl. 28, 697-704, 2010.
[10] D.W. Yoon, Approximation of minimal surfaces in Minkowski 3-space, preprint.

[^0]: *Corresponding Author.
 Email addresses: zuhal2387@yahoo.com.tr (Z.K. Yüzbaşı), dwyoon@gnu.ac.kr (D.W. Yoon)
 Received: 17.02.2021; Accepted: 27.11.2021

