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 Abstract  

According to F. Klein, Geometry is the study of invariant properties of figures, i.e., properties 

unchanged under all motions.  In this article, we introduce 4-dimensional pseudo-Galilean 

transformations. Moreover, we study invariant properties under translation, shear and 

Minkowskian rotation motions. We have computed Frenet-Serret formulas of a curve and also 

we have found the fundamental theorem of curve theory in 4-dimensional pseudo-Galilean 

geometry.  
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1. Introduction  

Non-Euclidean geometry, literally is any geometry that is not the same as Euclidean geometry. The applications 

of Non-Euclidean geometry, [1] have been found in a lot of places of our life such as the theory of general 

relativity, celestial mechanics, cosmology. Another interesting application area is architecture. For example, in 

2009, the Tote restaurant in Mumbai was designed with aid of the fractal geometry, [1]. Galilean geometry is a 
geometry of the Galilean Relativity or shortly a non-Euclidean geometry. It is a bridge from Euclidean geometry 

to special relativity. It is a theory that is invariant under Galilean transformations stated by Yaglom. Galilean 

geometry is worked in detail in [2-4]. 

In 1998, pseudo-Galilean  geometry 
3

1  as analog to  [2] and [4] is defined by Divjak, [5]. This work [5] also 

includes the theory of curves in 
3

1 . Then, a lot of papers such as [5- 12] in pseudo-Galilean geometry 
3

1 ,  have 

been worked. In this paper, 4-dimensional pseudo-Galilean geometry 
4

1  will be defined and the curves in 
4

1  

will be considered. 

2. Minkowski Space 
3

1   

In this section, we give some fundamental information to construct a new geometry about 3- dimensional 
Minkowski space. Thus, we will be able to consider Galilean transformations in 3- dimensional Minkowski space. 

Let us consider 3 dimensional Minkowski space  3

1 , , ,       and let the Lorentzian inner product of

 1 2 3, ,x x xx  and   3

1 2 3 1, , ,y y y y  be  

1 1 2 2 3 3, .x y x y x y  x y  

The norm of x  
3

1  is denoted by x  and defined as 

, .x x x  
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A vector x  
3

1  is called a spacelike, timelike and null (light-like) vector if , 0x x  or ,x 0  , 0x x  

and  , 0x x  for ,x 0 respectively, [13,14]. A timelike vector is said to be positive (resp. negative) if and 

only if 
3 0x   (resp. 

3 0).x   

Let x  and y  be positive (negative) timelike vectors in 
3

1 .  There is a unique non-negative real number   such 

that  

, cosh .x y x y  

This number is called the Lorentzian timelike angle between the vectors x  and .y  Let x  and y  be spacelike 

vectors in 
3

1  that span a spacelike vector subspace. There is a unique nonnegative real number   such that 

, cos .x y x y  

Let x  and y  be spacelike vectors in 
3

1  that span a timelike vector subspace. There is a unique nonnegative real 

number   such that 

, cosh .x y x y  

Let x  be a spacelike vector and y  be a timelike vector in 
3

1 .  Then, there is a unique real number 0   such 

that 

, sinh .x y x y  

Basic rotations (also called the elemental rotation) are rotations about one of the axes of a coordinate system. The 

following three basic rotation rotate vectors by an angle   about the x , y , or z axis, in 
3

1 .  The rotation by 

angle   about the axes x  is denoted by  xR   and is calculated as 

 

1 0 0

0 cosh sinh ,

0 sinh cosh

xR   

 

 
 


 
  

 

the rotation by angle   about the axes y  is denoted by  yR   and is obtained by 

 

cosh 0 sinh

0 1 0 ,

sinh 0 cosh

yR

 



 

 
 


 
  

 

and the rotation by angle   about the axes z  is denoted by  zR   and is calculated as: 

 

cos sin 0

sin cos 0 ,

0 0 1

zR

 

  

 
 

 
 
  

 

with the help of the article [15]. 

However, according to Euler’s rotation theorem, any general rotations in space 
3
 may be described using three 

basic rotations. As you see, the elemental rotations can occur about the axes of the fixed coordinate system 

(extrinsic rotations) or about the axes of a rotating coordinate system, which is initially aligned with the fixed 

one, and modifies its orientation after each elemental rotation. Without considering the possibility of using two 
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different conventions for the definition of the rotation axes (intrinsic or extrinsic), there exist twelve possible 

sequences of rotation axes, divided into two groups: by Proper Euler angles ( ,z x zR R R  ,x y xR R R  ,y z yR R R  

,z y zR R R  ,x z xR R R  )y x yR R R  and by Tait–Bryan angles  ( ,x y zR R R  ,y z xR R R ,z x yR R R  ,x z yR R R  ,z y xR R R  

).y x zR R R  Similarly, the rotation matrices in 
3

1  can be obtained from above three using matrix multiplication. 

For example, the product  

     

cosh cos cosh sin sinh sinh cos sinh sin

 

cosh sinh cos

cosh sin cosh cos sinh sinh sin sinh cos cosh sinh sin

sinh cosh sinh cosh c

 

osh

z y xR R R R

           

              

    

  
 

    
 
  

 

represents a rotation whose yaw, pitch, and roll angles are ,   and   about axes , , ,z y x respectively. 

Moreover, the product 

     

cos cos cosh sin sin cos sin cosh cos sin sinh sin

cos sin cosh cos sin cosh cos cos sin sin sinh cos

sinh sin sinh cos cosh

 z x zR R R R

           

              

    

  
 

    
 
  

               (1)   

represents a rotation whose angles , ,    about axes , , .z x z  

Also, rotations in Minkowski space, preserve the types of vectors. One can be found more information about 

Minkowski space in [13-21]. 

3. Pseudo-Galiean Geometry 
4

1    

Let  , ,x y z  and  , ,x y z  
 be two referance frames in 

3

1 . We know that there is the relation 

cos cos cosh sin sin cos sin cosh cos sin sinh sin

cos sin cosh cos sin cosh cos cos sin sin sinh cos

sinh sin sinh cos cosh

x x a

y y b

z z c

           

           

    







        
       

           
             

 

between these two frames from (1). If the origin point O  of referans frame  , ,x y z  with constant velocity v  

on a non-null line l  moves according to relative frame  , ,x y z  
, then there are two cases with respect to l  for 

coordinates    ,a t b t  and  c t  of point O  at the moment t  where 1 2
ˆ ˆ, ,x Ol y Ol     and 3

ˆz Ol    by 

aid of [13]: 

Case 1 : if l  is timelike, then one can be written 

 

 

 

 

 

 

1

2

3

sinh

sinh ,

cosh

a t a v t

b t b v t

c t c v t







   
   

    
      

 

where 
2 2 3

1 2 3sinh sinh cosh 1     . 

So, the relation between the coordinates  , ,x y z  
 and  , ,x y z  of the point A  is given by  

 

 
1

2

cos cos cosh sin sin cos sin cosh cos sin sinh sin sinh

cos sin cosh cos sin cosh cos cos sin sin sinh cos sinh

sinh sin sinh cos cosh cosh

x x a v t

y y b v t

z z c v

            

            

     







       
     

          
            3

.

t

 
 
 
 
 
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By adding the relation t t d    which expresses the possibility of shifting the time origin, we arrive at the 

formulas  

       

       

       

1

2

3

cos cos cosh sin sin cos sin cosh cos sin sinh sinh sin

cos sin cosh cos sin sin sin cosh cos cos sinh sinh cos

sinh sin sinh cos cosh cosh

,

x a x y t v z

y b x y t v z

z c x y z t v

t d t

            

            

     









       


      


    
  

 

which give the relation between two coordinate systems the pseudo-Galilean motions. The motions can be split 

into three motions: a rotation about the t  axis; a shear in the direction of 

vector   1 2 3sinh , sinh , cosh ,0v v v  v , and a translation determined by the vector  , , ,a b c d . If the 

motion is arranged as x  instead of time parameter t  and , ,y z w instead of space parameter , , ,x y z  

respectively, we get  

       

       

       

1

2

3

sinh cos cos cosh sin sin cos sin cosh cos sin sinh sin

sinh cos sin cosh cos sin sin sin cosh cos cos sinh cos

cosh sinh sin sinh cos cosh

x d x

y a v x y z w

z b v x y z w

w c v x y z w

            

            

     









  


      


      
     

 

where 
2 2 3

1 2 3sinh sinh cosh 1     . 

 

Case 2: Similary, if l  is spacelike, then there are four situations and it can be easily calculated such as above. 

 

Finally, if we calculate the two cases then we obtain the following equations  

     

     

     

cos cos cosh sin sin cos sin cosh cos sin sinh sin

cos sin cosh cos sin sin sin cosh cos cos sinh cos

sinh sin sinh cos cosh

x d x

y a vex y z w

z b vfx y z w

w c vgx y z w

           

           

    









  


      


      
     

           (2)     

where the coefficents , ,e f g are angles such that 
2 2 2 1.e f g    

So, the above equations are called 4-dimensional pseudo-Galilean transformations. The invariant theory under 4-
dimensional pseudo-Galilean transformations is called 4-dimensional pseudo-Galilean geometry and is denoted 

by 
4

1 . 

 

4. Basic Information About 
4

1  

Let ( , , , )x y z wa  and 1 1 1 1( , , , )x y z wb  be vectors in the pseudo-Galilean space 
4

1 . The scalar product in 

the Pseudo-Galilean space 
4

1  is defined by 

1, .xx  a b  

A vector ( , , , )x y z wa  is said to be isotropic or special vector if 0.x   Otherwise, ( , , , )x y z wa  is called a 

non-isotropic. All unit non-isotropic vectors and isotropic vectors are of the form ( , , , ),x y z wa  0x   and 

(0, , , ),y z wp  respectively. Let (0, , , )y z wp  and 1 1 1(0, , , )y z wq  be two isotropic vectors. Then, the 

special scalar product of  isotropic vectors p  and q  is defined by 

1 1 1, .yy zz ww    a b  



 

894 

 

Akbıyık, Yüce / Cumhuriyet Sci. J., 42(4) (2021) 890-905 
 

Along with the study, the special scalar product will be denoted by    product. The orthogonality of vectors in 

pseudo-Galilean space 
4

1 , a b , means that , 0  a b  for , 0.  a a  So, all isotropic vectors are 

orthogonal to the non-isotropic vectors. Also, the  -orthogonality of isotropic vectors p  and q  means that 

, 0.  p q   

 The norm of a vector a is defined by  

| |,xa  

and a  is called a unit vector  if 1.a  The norm of an isotropic vector p  is defined by 

2 2 2y z w   p  

and p  is called a unit isotropic vector if 1. p  Briefly, the vectors in 
4

1  are divided into two classes: the 

non-isotropic vector or the isotropic vectors which are spacelike, timelike or null.  

Let ( , , , )x y z wa , 1 1 1 1( , , , )x y z wb  and 2 2 2 2( , , , )x y z wc  be at least one non-isotropic vector in the 

pseudo-Galilean space 
4

1 , we introduce the vector product of a , b  and c  as the following: 

2 3 4

1 1 1 1

2 2 2 2

.
x y z w

x y z w

x y z z



   

0 e e e

a b c  

 

Especially, the vector product of isotropic vectors (0, , , )y z wp , 1 1 1(0, , , )y z wq  and 2 2 2(0, , , )y z wr  is 

introduced 

1 2 3 4

1 1 1

2 2 2

0
.

0

0

y z w

y z w

y z z



   

e e e e

p q r  

 

Here, 1 2 3, ,e e e and 4e are coordinate direction vectors which satisfy at follows:  

 

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3.

,

,

,

 

  

  

  

   

e e e e

e e e e

e e e e

e e e e

 

Let  , , ,D E F G  be vectors in 
4

1 .  

i) If D  is a unit non-isotropic vector and  ,E F  are unit isotropic spacelike vectors and G  is a unit isotropic 

timelike vector, then  , , ,D E F G  is called an orthonormal basis of 
4

1 .    

ii) If D  is a unit non-isotropic vector and E  is a unit isotropic spacelike vector,  ,F G  are unit isotropic 

lightlike vectors such that ,


F G  1  ,  , , ,D E F G  is called a null basis (or null frame) of 
4

1 . 
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5. Construction of Frenet-Serret Frame in 
4

1  

Let   be a curve in 
4

1  given first by 

 ( ) ( ( ), ( ), ( ), ),t x t y t z t w t   

where   4( ), ( ), ( ),x t y t z t w t C  (the set of four-times continuously differentiable functions) and t  run through 

a real interval. If 
( )

0,
dx t

dt
  then the curve   is called an admissible curve. Otherwise, the curve   is called a 

non-admissible curve. From now on, we denote differentiation with respect to t  by a dash. 

I . 

An admissible curve given first by 

 ( ) ( ( ), ( ), ( ), ),t x t y t z t w t   

where ( ) 0x t  , the parameter of arc length is defined by 

( ) .ds x t dt dx   

For briefly, we assume ds dx  and s x  as the arc length of the curve  . Let an admissible curve   of the 

class 
rC ( 3)r   parameterized by arclength x , given in coordinate form  ( ) ( , ( ), ( ), ).x x y x z x w x   The 

first vector of the Frenet-Serret frame, namely the tangent vector of   is defined by 

  ( ) ( ) 1, ( ), ( ), .x x y x z x w x     T  

Since T  is a unit vector, so, we may express , 1.T T  Differentiating the last equation with respect to x , 

we have , 0. T T  Note that ( )x
T  can be a timelike, spacelike or null vector: 

So, we have computed Frenet-Serret formulas with respect to three conditions of  ( )x
T . 

A. Let  x
T  be a timelike vector: The vector function 


T  gives us the rotation measurement of  the curve  . 

The real valued function  

     
2 2 2

1k y z w


       T                                                                                                                        (3)   

is called the first curvature of the curve .  Now, we define the principal normal vector 

 
1k




T

N or  
 

  
1

1
0, ( ), ( ), .x y x z x w x

k x

  N   

Since  xN  is a timelike vector,    , 1x x

 N N  and    2 , 0.x x



 N N  So,  x
N  is a spacelike 

vector. Then,  x N 0  is a spacelike vector linearly independent with  .xN  We define second curvature of 

the curve   as 

   2 .k x x


 N  

The third vector field, namely binormal vector field of the curve   which is spacelike vector is defined by 

     

 

 1

2 1 1 1

1 ( ) ( )
( ) 0, , , .

w xy x z x
x

k x k x k x k x

  
       

                   

B                                         
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Therefore, the vector 1( ),xB  is both orthogonal to T  and N . Hence, the fourth unit vector is defined 

by 

     2 1( ) .x x x x  B T N B  

The basis  1 2, , ,T N B B  is positively oriented because det  1 2, , , 1.T N B B  We define the third curvature of 

the curve   by the inner product 

3 1 2, .k


 B B  

Here, as well known, the set  1 2 1 2 3, , , , , ,k k kT N B B  is called the Frenet-Serret apparatus of the curve .  And 

here, we know that the vectors are mutally orthogonal vectors satisfying 

1 1 2 2

1 2 1 2 1 2

, , , , 1,

, , , , , , 0.

  

  

    

     

T T N N B B B B

T N T B T B N B N B B B
 

Now, let calculate Frenet Serret equations. Considering the definitions above, firstly, we know that 

   1( ) .x k x x T N  

It is possible to define the vector 


N  according to frame  1 2, , ,T N B B  by  

               1 2 3 1 4 2( ) ,x x x x x x x x x       N T N B B  

,i   for 1 4.i   Multiply both sides by the vectors  1 2, , ,T N B B  and considering above the equations, 

we have, respectively 

     

     

       

1

2

3 1 2

, 0

, 0

,

x x x

x x x

x x x k x

















 

 

 

N T

N N

N B

 

By the definiton the the third vector field 1,B  we easily obtain 

 4 2, 0.x


  N B  

We immediately arrive at 

   2 1 .k x x N B  

In order to compute the vector function 1


B , let us decompose 

               1 1 2 3 1 4 2 ,x x x x x x x x       B T N B B  

where ,i   for 1 4.i   Similiar to 


N , we express 

     

       

     

       

1 1

2 1 2

3 1 1

4 1 2 3

, 0

,

, 0

,

x x x

x x x k x

x x x

x x x k x























 

 

 

 

B T

B N

B B

B B

 

so we get, 



 

897 

 

Akbıyık, Yüce / Cumhuriyet Sci. J., 42(4) (2021) 890-905 
 

         1 2 3 2 .x k x x k x x  B N B                                                                                                                            (4) 

In an analogous way, we can write 

                 2 1 2 3 1 4 2 ,x x x x x x x x x       B T N B B  

where ,i   for 1 4.i   Then, with the aid of the equaiton (4), we can find  

     

     

       

     

1 2

2 2

3 2 1 3

3 2 2

, 0

, 0

,

, 0.

x x x

x x x

x x x k x

x x x























 

 

  

 

B T

B N

B B

B B

 

So, we have  2 3 1.k  B B  And we obtain the Frenet equations in matrix form  

1

2

2 3 11

3 22

0 0 0

0 0 0
.

0 0

0 0 0

k

k

k k

k









     
     
     
     
     

     

TT

NN

BB

BB

 

 

B.Let  x
T  be a spacelike vector: The first curvature of   is defined by 

     
2 2 2

1 .k y z w      

We define the principal normal vector  
 1

( )x
x

k x




T

N  and    , 1.x x

N N  So, we get 

   2 , 0.x x


 N N  Since  x
N  is orthogonal to the spacelike vector   ,xN   x

N  may be spacelike, 

timelike or lightlike.  

i.Assume that  x
N  is a spacelike vector. Again we write the second curvature 

2 ,k


 N  

and 

     

 

 1

2 1 1 1

1 ( ) ( )
( ) 0, , , .

w xy x z x
x

k x k x k x k x

  
       

                   

B  

Also, 

     2 1( )x x x x  B T N B  

and 

3 1 2, .k


 B B  

2 ( )xB  is a timelike vector. Similarly, the Frenet equations are 
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1

2

2 3 11

3 22

0 0 0

0 0 0
.

0 0

0 0 0

k

k

k k

k









     
     
     
     
     
     

TT

NN

BB

BB

                                                                                                                               (5) 

ii.Assume that  x
N  is a timelike vector. The second curvature is  

   2k x x


 N   

and 

     

 

 1

2 1 1 1

1 ( ) ( )
( ) 0, , , .

w xy x z x
x

k x k x k x k x

  
       

                   

B  

Moreover,  

     2 1( )x x x x  B T N B   

and 

 
3 1 2, .k



 B B                                                                                                                                                                  (6) 

2 ( )xB  is a spacelike vector. The Frenet equations can be easily seen 

1

2

2 3 11

3 22

0 0 0

0 0 0
.

0 0

0 0 0

k

k

k k

k









     
     
     
     
     
     

TT

NN

BB

BB

                                                                                                                                                         (7) 

 

iii.Assume that  x
N is a lightlike vector.  We define the third vector field as  1( ) ,x xB N  which is linearly 

independent with  .xN  Let 2 ( )xB  be the unique lightlike vector such that 
1 2, 1


 B B  and it is orthogonal 

to  .xN  The vector 2 ( )xB  is the second binormal vector of .  The third curvature of the curve   

3 1 2, .k


  B B  The Frenet formulas are similar to above 

1

3 11

3 22

0 0 0

0 0 1 0
.

0 0 0

0 1 0

k

k

k









     
     
     
     
     

     

TT

NN

BB

BB

                                     

                                                                                                                     

C. Let  x
T  be a lightlike vector: The normal vector as    x xN T  and define the first binormal vector as 

   1 ,x xB N  which is a unit spacelike vector. The second binormal vector  2 xB  is unique lightlike vector 

which is orthogonal to  1 xB  such that    2, 1.x x

 N B  Thus,  1 2, , ,T N B B  is null frame. The Frenet 

formulas are 
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3 11

3 22

0 1 0 0

0 0 1 0
.

0 0 1

0 0 0

k

k









     
     
     
     
     
     

TT

NN

BB

BB

                                                                                                                                        (8) 

The third curvature of   is 
3 1 2, .k



  B B  

Corollary 5.1 The admissible curve  x  in 
4

1  classifies in the following cases: 

1) a curve with timelike normal vector N . 

2) three curves with spacelike normal vector N  and binormal vector 1B  which is spacelike, timelike or null. 

3)a curve with null normal vector N . 

II. 

A non-admissible curve   is given by the parametrization ( ) ( , ( ), ( ), ( ))t c y t z t w t  , where c  constant. So, 

a non-admissible curve   classify in the three kinds, spacelike, timelike, null curve, on 3 dimensional 

Minkowski Space x c  in 
4

1 .  Finally, with the help of [19], we can easily find the construction of Frenet-

Serret frames for a non-admissible curve  .  

6. The Fundamental Theorem 

Until now, we can construct the Frenet-Serret apparatus for a given curve. But, we have not yet addressed to what 

extent we can do inverse. Given some 1 2,k k  and 3k , we would like to know if it is possible to construct a curve 

to fit these functions. The fundamental theorem of curves says that it is possible to reconstruct the curve from 
only the curvature functions.   

Theorem 6.1  Let  1 0,k x    2 0k x   and  3 ,k x  ,x I  be three differentiable maps. Then, there exist 

three differential regular parametrized curves 
4

1: I  ,   ,x   with curvatures  1k x ,  2k x  and 

 3k x . 

Proof. Let 0x I  and let  , , ,D E F G  be an orthonormal basis, which it will be the initial conditions of an 

ordinary differential equation (ODE) system. Depending on the causal character of the vectors E  and F , we 
obtain three different cases:  

Firstly, if we want to obtain a curve with timelike normal N  and curvatures  1k x ,  2k x  and  3 ,k x  

respectively, then we consider that  , , ,D E F G  is orthonormal basis positively oriented and E  is timelike. In 

such case, we solve the ODE system of equations 

     

     

         

     

0 1 0 0

0 2 0 1 0

1 0 2 0 0 3 0 2 0

2 0 3 0 1 0

x k x x

x k x x

x k x x k x x

x k x x













 

 

T N

N B

B N B

B B

 

with initial condition 
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 

 

 

 

0

0

1 0

2 0 .

x

x

x

x









T D

N E

B F

B G

 

Let  1 2, , ,T N B B  be the unique solutions and define    
0

.
x

x
x u du   T  We prove that this curve is with 

timelike normal N  and curvatures  1k x ,  2k x  and  3 ,k x  respectively. We show that 

 1 2, , ,T N B B  is an orthonormal basis with the same causal properties that initial basis  , , , .D E F G  Consider 

the ODE system:  

1

2 1

1 1 2 1 2 1

2 2 3 1 2

, 2 ,

, 2 ,

, 2 , 2 ,

, 2 ,

k

k

k

k

 

  

 













 

 

T T N T

N N B N

B B N B B B

B B B B

 

1 2 1

1 1 1

2 1 1

1 2 1 1 2 3 2

2 2 1 2 3 1

1 2 2 2 3 2 2 3 1 1

, , ,

, ,

, ,

, , , ,

, , ,

, , , ,

k k

k

n k

k k k

n k k

k k k

   

  

   













 





  

 

  

T N N N T B

T B N B

T B N B

N B B B N N N B

N B B B N B

B B N B B B B B

 

with initial conditions at 0x x  given by  1, 1,1,1,0,0,0,0,0,0 .  On the other hand, the functions 

1 2 3 4 5 6 7 8 9 101, 1, 1, 1, 0, 0, 0, 0, 0, 0f f f f f f f f f f            satisfy the same ODE system and 

initial conditions. By uniqueness, 

1 1 2 2

1 2 1 2 1 2

, , , , 1

, , , , , , 0.

  

  

    

     

T T N N B B B B

T N T B T B N B N B B B
 

So,  1 2, , ,T N B B  is an orthonormal basis of 
4

1 , where N  is timelike. From the definition of ,  

   x x  T  and so   is a curve with timelike normal parametrized by arc lengh and curvatures of   are 1k

, 2k  and 3.k  

Secondly, if we want to obtain a curve with spacelike normal vector N  and spacelike binormal vector 1B  and 

curvatures 1k , 2k  and 3k , consider the initial conditions 

 

 

 

 

0

0

1 0

2 0 ,

x

x

x

x









T D

N E

B F

B G
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where  , , ,D E F G  is orthonormal basis and G  is timelike. Considering that the ODE system that we solve is 

(5), the proof is clear. 

Finally, if we are looking for a curve with spacelike normal and timelike binormal vector, the initial condition is 

an orthonormal basis  , , , ,D E F G  where F  is timelike and the ODE system (7). And the proof is similar. 

 

Theorem 6.2 Let  1 0,k x   and  3 ,k x  ,x I  be two smooth maps. Then, there exist a curve with spacelike 

normal N  and lightlike binormal 1B  with curvatures  1k x  and  3k x . 

Proof.  If we want to obtain a curve with spacelike normal N  and lightlike binormal 1B  with curvatures 

 1k x  and  3k x , respectively, then we consider that  , , ,D E F G  be the null frame of 
4

1  such that E  is 

spacelike and ,F G  are unit isotropic lightlike vectors such that ,


F G  1  . We pose the ODE system (8) 

with initial conditions 

 

 

 

 

0

0

1 0

2 0

,

,

,

.

x

x

x

x









T D

N E

B F

B G

 

Let  1 2, , ,T N B B  be the unique solution and define    
0

.
x

x
x u du   T  We prove that   is a curve with 

spacelike normal N  and null binormal vector 1B . First, we consider the next ODE system of 10 equations: 

1

1

1 1 3 1 1

2 2 1 3 2 2

1 2 1

1 1 1

2 1 1

1 1 1 3 1

2 1 2 3 2

1 2 3 1 2 1 3 1 2

, 2 ,

, 2 ,

, 2 ,

, 2 , 2 ,

, , ,

, ,

, ,

, , ,

, , , ,

, , , ,

k

k

k

k k

k

k

k

k

k k

 

 

  

  

   

   

























 

 





 

  

  

T T N T

N N N B

B B B B

B B N B B B

T N N N T B

T B N B

T B N B

N B B B N B

N B B B N N N B

B B B B B N B B

 

with initial conditions at 0x x  given by  1,1,0,0,0,0,0,0,0, 1 .  On the other hand, the functions 

1 2 3 4 5 6 7 8 9 101, 1, 0, 0, 0, 0, 0, 0, 0, 1f f f f f f f f f f            

satisfy the same ODE system and initial conditions. By uniqueness, 

1 1 2 2

1 2 1 2 1 2

, , 1,  , , 0

, , , , , 0,  , 1.

  

  

   

      

T T N N B B B B

T N T B T B N B N B B B
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This implies that  1 2, , ,T N B B is a null basis of 
4

1 , where N  is spacelike. From the definition of ,  

   x x  T  and so   is a curve with spacelike normal N  and lightlike binormal 1B  with curvatures 

 1k x   and  3k x . 

Theorem 6.3 Let  3 ,k x  ,x I  be a smooth function. Then, there is a curve with null normal vector  xN  

and curvature  3 .k x  

Proof.  It can be easily proved from the ODE system (8) as above the theorem.  

As we see from Theorem 6.1, we have two different curves having the same curvatures. So, there is not a unique 

curve with the same curvatures. And also, these curves are not equivalent under pseudo-Galilean motions. 

Because we don’t have any of these motions. But for any two same types orthonormal frame in 
4

1  there is a 

pseudo-Galilean motion which transforms one frame into the other one and a space curve in 
4

1  under proper 

pseudo-Galilean motions is transformed in the same type curve. So, we can give the following theorem: 

Theorem 6.4  Two admissible same type curves in 
4

1  are equivalent under pseudo-Galilean motions if only if 

they have the same natural equations for   , 1,2,3.ik x i   

7. Applications 

Now, we illustrate examples of presented method. 

Example 7.1 Let us consider the following curve with spacelike normal vector  xN  and timelike binormal 

vector  1 xB  in the space 
4

1   

   ,1,cosh ,sinh .x x x x                                                                                                                                               (9) 

By differentiating both sides of (9) with respect to arc length ,x we have  

   1,0,sinh ,cosh .x x x    

Thus, we decompose tangent vector of    as follows:  

   1,0,sinh ,cosh .x x xT  

And considering the equation (3), 

   1 1. k x x


 T  

Thereafter, we arrive at    0,0,cosh ,sinh .x x xN  So, the curve is a curve with spacelike normal vector. 

Moreover, one more differentiating of the normal vector equation, we have  

   0,0,sinh ,cosh .x x x N  

By the aid of the this equation, we have the second curvature function 

2 ( ) 1k x    

and timelike binormal vector  1 xB  is obtained  

   1 0,0,sinh ,cosh .x x xB  

Furthermore, the cross product of tangent, principal normal, and binormal vectors is formed 
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2 3 4

2 1

1 0 cosh sinh
( ) ( ) ( ) ( ) .

0 0 sinh cosh

0 0 cosh sinh

x x
x x x x

x x

x x



    

0 e e e

B T N B  

Thus, we have  

   2 0,1,0,0 .x B  

In order to determine the third curvature of the curve, considering the equation (6), we have  

 3 0.k x   

So, the curve is a curve with spacelike normal vector  xN  and timelike binormal vector  1 .xB  Also, the 

following equations provide 

11

22

0 1 0 0

0 0 1 0
.

0 1 0 0

0 0 0 0









    
    
    
    
    
      

TT

NN

BB

BB

 

So, we construct the Frenet-Serret apparatus for the given curve ( )x . Now, let reconstruct the curve ( )x  from 

only the curvature functions. 

Example 7.2 Let  1 1,k x    2 1k x   and  3 0,k x   ,x I  and consider the following ordinary differential 

equation system  

     

     

         

     

0 1 0 0

0 2 0 1 0

1 0 2 0 0 3 0 2 0

2 0 3 0 1 0

x k x x

x k x x

x k x x k x x

x k x x













 

 

T N

N B

B N B

B B

 

with initial condition 

 

 

 

 

0

0

1 0

2 0

(1,0,0,1)

(0,0,1,0)

(0,0,0,1)

(0,1,0,0).

x

x

x

x









T

N

B

B

 

Then we have  

1

2 0,

i i

i i

i i

i

t n

n b

b n

b

 

 

 

 

 

for 1,2,3,4i  . If we solve this ODE with method of Laplace transformation, then we obtain 
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   

   

   1

2

1,0,sinh ,cosh ,

0,0,cosh ,sinh ,

0,0,sinh ,cosh ,

( ) (0,1,0,0).

x x x

x x x

x x x

x









T

N

B

B

 

Now, let define  
0

( ) .

x

x u du  T  So, we get    ,0,cosh 1,sinh .x x x x    

Actually, we find the same curve in the equation (9) 

   ,1,cosh ,sinhx x x x   

under the translation determined with (0, 1,1,0) u . Finally, the curve is a curve with spacelike normal vector 

 xN  and timelike binormal vector  1 xB  and  1 1,k x    2 1k x   and  3 0,k x   x I  (See Figure 1). 

 
Figure 1. The image of the curve   in 3-dimensional 1y  -pseudo-Galilean space or 3-dimensional xzw pseudo-

Galilean space in 4-dimensional pseudo-Galiean geometry 

8. Conclusion and Further Remarks 

Throughout the presented paper, we define pseudo-

Galilean motions and pseudo-Galilean  geometry 
4

1 . 

That is, we introduce a new geometry. Also, we present 

the curve theory in 
4

1 .  Here, using vector product, we 

give formulas of frame vectors for curves.  

Unlike Euclidean, Minkowskian, and Galilean 
geometries, the curves in pseudo-Galilean  geometry 

4

1  are not enough to classify the curves according to 

their tangent vectors T . It is also necessary to classify 

with respect to their normal vector N  and binormal 

vector 1B . There are actually 8-kinds of curves in 
4

1 .

So, differences according to other geometries are 

observed in the calculation of the fundamental theorem 

of curve theory in 
4

1 .  However, we can construct the 

Frenet-Serret apparatus for a given curve and also 

reconstruct the curve from only the curvature 
functions. 

Via this method, some of classical differential 

geometry topics can be treated. We hope these results 

will helpful to mathematicians who are specialized in 

mathematical modeling. 
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