

Cumhuriyet Science Journal

e-ISSN: 2587-246X ISSN: 2587-2680 Cumhuriyet Sci. J., 42(1) (2021) 141-144 <u>http://dx.doi.org/10.17776/csj.834216</u>

On the Euler method of summability and concerning Tauberian theorems

Sefa Anıl SEZER ^{1,*}^(D), İbrahim ÇANAK^{2,}^(D)

¹İstanbul Medeniyet University, Department of Mathematics, İstanbul/ TURKEY ²Ege University, Department of Mathematics, İzmir/ TURKEY

Abstract

For any two regular summability methods (U) and (V), the condition under which $V - \lim x_n = \lambda$ implies $U - \lim x_n = \lambda$ is called a Tauberian condition and the corresponding theorem is called a Tauberian theorem. Usually in the theory of summability, the case in which the method U is equivalent to the ordinary convergence is taken into consideration. In this paper, we give new Tauberian conditions under which ordinary convergence or Cesàro summability of a sequence follows from its Euler summability by means of the product theorem of Knopp for the Euler and Cesàro summability methods.

Article info

History: Received:01.12.2020 Accepted:17.03.2021

Keywords: Euler summability, Cesàro summability, Tauberian theorem, order condition

1. Introduction

We consider throughout complex sequences $x = \{x_n\}$ and discuss the relations of Euler and Cesàro summability methods. We say that a sequence $\{x_n\}$ is summable to λ by the

1. Cesàro method C_1 , briefly $C_1 - \lim x_n = \lambda$, if

$$x_n^{(1)} := \frac{1}{n+1} \sum_{k=0}^n x_k \to \lambda \quad \text{as } n \to \infty;$$

2. Euler method E_p of order p, briefly $E_p - \lim x_n = \lambda$, if

$$\sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} x_k \to \lambda \text{ as } n \to \infty.$$

Cesàro method and Euler method of order $p \in (0,1)$ are regular (see [1]). In other words, they sum a convergent sequence to its limit.

For any sequence $\{u_n\}$, the symbols $u_n = O(n^{\alpha})$ and $u_n = o(n^{\alpha})$ denote, as usual, that $\limsup |n^{-\alpha}u_n| < \infty$ and $\lim n^{-\alpha}u_n = 0$, respectively. The backward difference of $\{u_n\}$ is defined for all $n \ge 0$ by $\Delta u_0 = u_0$ and $\Delta u_n = u_n - u_{n-1}$.

The difference of a sequence and its arithmetic mean is given with the Kronecker identity (see [2])

$$x_n - x_n^{(1)} = \delta_n \tag{1}$$

where

$$\delta_n := \frac{1}{n+1} \sum_{k=0}^n k \Delta x_k = n \Delta x_n^{(1)}.$$

The *r*-times iterated arithmetic mean of sequences $\{x_n\}$ and $\{\delta_n\}$ are defined respectively as

$$x_n^{(r)} := \frac{1}{n+1} \sum_{k=0}^n x_k^{(r-1)}$$

and

$$\delta_n^{(r)} := \frac{1}{n+1} \sum_{k=0}^n \delta_k^{(r-1)}$$

where $x_n^{(0)} = x_n$ and $\delta_n^{(0)} = \delta_n$.

A sequence $\{x_n\}$ is called slowly oscillating, if

$$x_m - x_n = o(1)$$

as $n \to \infty$, m > n and $m/n \to 1$.

 $[*] Corresponding \ author. \ email \ address: \ sefaanil.sezer@medeniyet.edu.tr$

http://dergipark.gov.tr/csj ©2021 Faculty of Science, Sivas Cumhuriyet University

Historically, the concept 'slow oscillation' goes back to Schmidt [3].

For any two regular summability methods (*U*) and (*V*), the condition under which $V - \lim x_n = \lambda$ implies $U - \lim x_n = \lambda$ is called a Tauberian condition and the corresponding theorem is called a Tauberian theorem. Usually in the theory of summability, the case in which the method *U* is equivalent to the ordinary convergence is taken into consideration.

Tauberian theorems for various methods of summation have a long history; see the classical books [4,5] and they found new attention recently in (see e.g., [6-8]).

In the present paper, we consider Tauberian conditions on $\{x_n\}$ under which $E_p - \lim x_n = \lambda$ implies $C_1 - \lim x_n = \lambda$ or $\lim x_n = \lambda$.

The major Tauberian results for Euler method of summation were proved by Knopp [9]. We use these theorems as a stepping stone to obtain stronger results.

Theorem 1.1 If $E_p - \lim x_n = \lambda$ for some 0 $and <math>\Delta x_n = O(n^{-1/2})$, then $\lim x_n = \lambda$.

Theorem 1.2 If $E_p - \lim x_n = \lambda$ for some 0 $and <math>\Delta x_n = o(n^{-1/2})$, then $\lim x_n = \lambda$.

2. Auxilary Results

We shall make use of the following four lemmas.

Lemma 2.1 ([10]) If $\{x_n\}$ is slowly oscillating, then $\delta_n = O(1)$ and $\{\delta_n\}$ is slowly oscillating.

Lemma 2.2 ([3]) If $C_1 - \lim x_n = \lambda$ and $\{x_n\}$ is slowly oscillating, then $\lim x_n = \lambda$.

Lemma 2.3 ([9]) Let $0 . Then <math>E_p \subset E_pC_1$; that is, if $\{x_n\}$ is Euler summable to λ , then so is $\{x_n^{(1)}\}$.

The next lemma proposes a relation between Euler and Cesàro methods.

Lemma 2.4 ([9]) If $E_p - \lim x_n = \lambda$ for some $0 and <math>\Delta x_n = o(1)$, then $C_1 - \lim x_n = \lambda$.

3. Main Results

In this section, we establish Tauberian conditions for an Euler summable sequence to be Cesàro summable or convergent.

Our first result is a $E_p \rightarrow C_1$ type theorem.

Theorem 3.1 Let $0 . Then <math>E_p - \lim x_n = \lambda$ and

$$\delta_n = O(n^{1/2}) \tag{2}$$

imply $C_1 - \lim x_n = \lambda$.

Proof. By the assumption and Lemma 2.3, we have

$$E_p - \lim x_n^{(1)} = \lambda. \tag{3}$$

Besides, since

$$\delta_n = n\Delta x_n^{(1)} = O(n^{1/2})$$

by (2), we obtain
 $\Delta x_n^{(1)} = O(n^{-1/2}).$ (4)

Therefore, combining (3) and (4) together with Theorem 1.1 imply our result.

Remark 3.1 Note that condition (2) may be replaced with the weaker condition $\delta_n = O(1)$.

Corollary 3.1 ([9]) Let $0 . Then <math>E_p - \lim x_n = \lambda$ and

$$x_n = O(n^{1/2})$$
 (5)

imply $C_1 - \lim x_n = \lambda$.

Proof. It is enough to prove $\delta_n = n\Delta x_n^{(1)} = O(n^{1/2})$ or equivalently

$$\psi_n := n^{1/2} \Delta x_n^{(1)} = O(1).$$

In view of (5), we observe

$$\begin{split} \psi_n &= n^{1/2} \left[\frac{1}{n+1} \sum_{k=0}^n x_k - \frac{1}{n} \sum_{k=0}^{n-1} x_k \right] \\ &= n^{1/2} \left[\frac{1}{n+1} x_n - \frac{1}{n+1} \frac{1}{n} \sum_{k=0}^{n-1} x_k \right] \\ &= n^{1/2} \left[\frac{1}{n+1} O(n^{1/2}) - \frac{1}{n+1} O(n^{1/2}) \right] \\ &= O(1), \end{split}$$

which completes the proof.

Now, we prove some $E_p \rightarrow c$ type theorems.

Theorem 3.2 Let $0 . Then <math>E_p - \lim x_n = \lambda$ and

$$\Delta \delta_n = O(n^{-1/2}) \tag{6}$$

imply $\lim x_n = \lambda$.

Proof. Plainly, we have $E_p - \lim x_n^{(1)} = \lambda$ from Lemma 2.3. We observe using (1) that

$$E_p - \lim \delta_n = 0. \tag{7}$$

Combining (6) and (7) with Theorem 1.1, we get

$$\delta_n = n\Delta x_n^{(1)} = o(1),$$

that necessiates

 $\Delta x_n^{(1)} = o(n^{-1/2}).$

Further, applying Theorem 1.2 to $\{x_n^{(1)}\}\)$, we conclude $\lim x_n^{(1)} = \lambda$.

Therefore, the proof follows from (1).

Theorem 3.3 Let $0 . Then <math>E_p - \lim x_n = \lambda$ and

$$\Delta \delta_n^{(1)} = o(n^{-1}) \tag{8}$$

imply $\lim x_n = \lambda$.

Proof. From the hypothesis, it is clear that $E_p - \lim x_n^{(1)} = \lambda$ and $E_p - \lim x_n^{(2)} = \lambda$. We may write the identity

$$x_n^{(1)} - x_n^{(2)} = \delta_n^{(1)} \tag{9}$$

by taking Cesàro mean of both sides of the Kronecker identity (1). Then, it follows from (9) that

$$E_p - \lim \delta_n^{(1)} = 0. \tag{10}$$

Taking (8) and (10) into account together with Theorem 1.2, we observe

$$\delta_n^{(1)} = n\Delta x_n^{(2)} = o(1), \tag{11}$$

which also implies

 $\Delta x_n^{(2)} = o(n^{-1/2}).$

Now, applying Theorem 1.2 to $\{x_n^{(2)}\}$, we conclude

$$\lim x_n^{(2)} = \lambda. \tag{12}$$

Using (11) and (12), we get via the identity (9) that

$$\lim x_n^{(1)} = \lambda.$$

Since

 $\delta_n - \delta_n^{(1)} = n\Delta\delta_n^{(1)},$

we find $\delta_n = o(1)$ from (8) and (11). Consequently, it is easy to obtain $\lim x_n = \lambda$ by using (1).

Corollary 3.2 Let $0 . Then <math>E_p - \lim x_n = \lambda$ and

$$\delta_n = o(1) \tag{13}$$

imply $\lim x_n = \lambda$.

Proof. Assuming (13), we have $\delta_n^{(1)} = o(1)$. Hence, by the identity $\delta_n - \delta_n^{(1)} = n\Delta\delta_n^{(1)}$, it follows $\Delta\delta_n^{(1)} = o(n^{-1})$. Thus, the proof follows from Theorem 3.3.

Remark 3.2 In (8) and (13) *o*-type condition can not be replaced with *O*-type condition.

The following theorem is first proved by Tam [11]. Here, we give an alternative proof.

Theorem 3.4 Let $0 . If <math>E_p - \lim x_n = \lambda$ and $\{x_n\}$ is slowly oscillating, then $\lim x_n = \lambda$.

Proof. Taking Lemma 2.1 and the slow oscillation of $\{x_n\}$ into account, we clearly have $\delta_n = O(n^{1/2})$ and the slow oscillation of $\{x_n^{(1)}\}$. Hence, we obtain

 $C_1 - \lim x_n = \lambda$

from Theorem 3.1. Thus, the proof is completed via Lemma 2.2.

Corollary 3.3 Let $0 . Then <math>E_p - \lim x_n = \lambda$ and

$$\Delta x_n = O(n^{-1}) \tag{14}$$

imply $\lim x_n = \lambda$.

Proof. The proof is completed from the fact that (14) implies the slow oscillation of $\{x_n\}$.

Theorem 3.5 Let $0 . If <math>E_p - \lim x_n = \lambda$ and $\{\delta_n\}$ is slowly oscillating, then $\lim x_n = \lambda$.

Proof. By the definition of slow oscillation, obviously $\Delta \delta_n = o(1)$. Further, since $E_p - \lim x_n = \lambda$ we have $E_p - \lim \delta_n = 0$. Then, from Lemma 2.4, we find $C_1 - \lim \delta_n = 0$. Now, by Lemma 2.2, we obtain $\lim \delta_n = 0$ which leads us to

$$\Delta x_n^{(1)} = o(n^{-1/2}).$$

By applying Theorem 1.2 to $\{x_n^{(1)}\}\)$, we have $C_1 - \lim x_n = \lambda$. Therefore, using (1) we conclude $\lim x_n = \lambda$.

Acknowledgment

The authors would like to thank the anonymous referees for their careful reading of our manuscript and their constructive comments.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

- [1] Hardy G.H., Divergent series. 1st ed. Oxford: Clarendon Press, (1949).
- [2] Meyer-König W., Zeller K., Kronecker-Ausdruck und Kreisverfahren der Limitierungstheorie, *Math. Z.*, 114 (1970), 300-302.
- [3] Schmidt R., Über Divergente Folgen und Lineare Mittelbildungen, *Math. Z.*, 22 (1925), 89-152.

- [4] Korevaar J., Tauberian theory: A century of developments. 1st ed. Berlin: Springer-Verlag, (2004).
- [5] Peyerimhoff A., Lectures on summability, Lecture notes in mathematics. vol. 107 Berlin: Springer-Verlag, (1969).
- [6] Çanak İ., Braha N.L., Totur Ü., A Tauberian Theorem for the Generalized Nörlund Summability Method, *Georgian Math. J.*, 27 (2020), 31-36.
- [7] Sezer S.A., Çanak İ., Tauberian Conditions of Slowly Decreasing Type for the Logarithmic Power Series Method, *Proc. Natl. Acad. Sci.*, *India, Sect. A Phys. Sci.*, 90 (2020), 135-139.

- [8] Sezer S.A., Çanak İ, Tauberian Conditions under which Convergence follows from Summability by the Discrete Power Series Method, *Turk. J. Math.*, 43 (2019), 2898-2907.
- [9] Knopp K., Über das Eulersche Summierungsverfahren II., *Math. Z.*, 18 (1923), 125-156.
- [10] Dik M., Tauberian Theorems for Sequences with Moderately Oscillatory Control Modulo, *Math. Morav.*, 5 (2001), 57-94.
- [11] Tam L., A Tauberian Theorem for the General Euler-Borel Summability Method, *Can. J. Math.*, 44 (1992) 1100–1120.