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Abstract

In this paper we obtain some new additive refinements and reverses of Young’s operator
inequality via a result of Cartwright and Field. Comparison with other additive Young’s
type inequalities are also provided.

1. Introduction

We have the following inequality that provides a refinement and a reverse for the celebrated Young’s inequality

1
2

ν (1−ν)
(b−a)2

max{a,b}
≤ (1−ν)a+νb−a1−ν bν ≤ 1

2
ν (1−ν)

(b−a)2

min{a,b}
(1.1)

for any a,b > 0 and ν ∈ [0,1] .
This result was obtained in 1978 by Cartwright and Field [1] who established a more general result for n variables and gave an application
for a probability measure supported on a finite interval.
Throughout this paper A, B are positive invertible operators on a complex Hilbert space (H,〈·, ·〉) . We use the following notations for
operators

A∇ν B := (1−ν)A+νB,

the weighted operator arithmetic mean and

A]ν B := A1/2
(

A−1/2BA−1/2
)ν

A1/2,

the weighted operator geometric mean. When ν = 1
2 we write A∇B and A]B for brevity, respectively.

The famous Young inequality for positive invertible operators A, B says that if ν ∈ [0,1], then

A]ν B≤ A∇ν B. (1.2)

The inequality (1.2) is also called ν-weighted arithmetic-geometric operator mean inequality.
In the recent paper [12], by the use of Cartwright and Field inequality (1.1), Minculete and Furuichi showed amongst other that

1
2

ν (1−ν)
(

AB−1A−2A+B
)
≤ A∇ν B−A]ν B (1.3)

≤ 1
2

ν (1−ν)
(

BA−1B−2B+A
)
,
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provided that A≤ B, and

1
2

ν (1−ν)
(

BA−1B−2B+A
)
≤ A∇ν B−A]ν B (1.4)

≤ 1
2

ν (1−ν)
(

AB−1A−2A+B
)
,

provided that B≤ A.
For other inequalities between the operator means A]ν B and A∇ν B see [2]- [11], [13]- [14] and the references therein.
In this paper, several other lower and upper bounds for the Young’s difference A∇ν B−A]ν B under various boundedness assumptions for the
involved operators A and B are given. Comparison with other additive Young’s type inequalities are also provided.

2. A Refinement and Reverse of Young’s Inequality

We have:

Theorem 2.1. Let A, B be positive invertible operators and M > m > 0 such that

MA≥ B≥ mA. (2.1)

Then for any ν ∈ [0,1] we have

1
2

ν (1−ν)c(m,M)A≤ 1
2

ν (1−ν)

max{M,1}
(B−A)A−1 (B−A) , (2.2)

≤ A∇ν B−A]ν B,

≤ 1
2

ν (1−ν)

min{m,1}
,(B−A)A−1 (B−A) ,

≤ 1
2

ν (1−ν)C (m,M)A,

where

c(m,M) :=


(M−1)2 if M < 1,
0 if m≤ 1≤M,
(m−1)2

M if 1 < m

and

C (m,M) :=


(m−1)2

m if M < 1,
1
m max

{
(m−1)2 ,(M−1)2

}
if m≤ 1≤M,

(M−1)2 if 1 < m.

In particular,

1
8

c(m,M)A≤ 1
8max{M,1}

(B−A)A−1 (B−A)≤ A∇B−A]B (2.3)

≤ 1
8min{m,1}

(B−A)A−1 (B−A)≤ 1
8

C (m,M)A.

Proof. If we write the inequality (1.1) for a = 1 and b = x we get

1
2

ν (1−ν)
(x−1)2

max{x,1}
≤ 1−ν +νx− xν ≤ 1

2
ν (1−ν)

(x−1)2

min{x,1}
(2.4)

for any x > 0 and for any ν ∈ [0,1] .
If x ∈ [m,M]⊂ (0,∞) , then max{x,1} ≤max{M,1} and min{m,1} ≤min{x,1} and by (2.4) we get

1
2

ν (1−ν)
minx∈[m,M] (x−1)2

max{M,1}
≤ 1

2
ν (1−ν)

(x−1)2

max{M,1}
(2.5)

≤ 1−ν +νx− xν

≤ 1
2

ν (1−ν)
(x−1)2

min{m,1}

≤ 1
2

ν (1−ν)
maxx∈[m,M] (x−1)2

min{m,1}

for any x ∈ [m,M] and for any ν ∈ [0,1] .
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Observe that

min
x∈[m,M]

(x−1)2 =


(M−1)2 if M < 1,

0 if m≤ 1≤M,

(m−1)2 if 1 < m

and

max
x∈[m,M]

(x−1)2 =



(m−1)2 if M < 1,

max
{
(m−1)2 ,(M−1)2

}
if m≤ 1≤M,

(M−1)2 if 1 < m.

Then

minx∈[m,M] (x−1)2

max{M,1}
=



(M−1)2 if M < 1,

0 if m≤ 1≤M,

(m−1)2

M if 1 < m

= c(m,M)

and

maxx∈[m,M] (x−1)2

min{m,1}
=



(m−1)2

m if M < 1,

1
m max

{
(m−1)2 ,(M−1)2

}
if m≤ 1≤M,

(M−1)2 if 1 < m.

=C (m,M)

Using the inequality (2.5) we have

1
2

ν (1−ν)c(m,M)≤ 1
2

ν (1−ν)
(x−1)2

max{M,1}
(2.6)

≤ 1−ν +νx− xν

≤ 1
2

ν (1−ν)
(x−1)2

min{m,1}

≤ 1
2

ν (1−ν)C (m,M)

for any x ∈ [m,M] and for any ν ∈ [0,1] .
If we use the continuous functional calculus for the positive invertible operator X with mI ≤ X ≤MI, then we have from (2.10) that

1
2

ν (1−ν)c(m,M) I ≤ 1
2

ν (1−ν)

max{M,1}
(X− I)2 (2.7)

≤ (1−ν) I +νX−Xν

≤ 1
2

ν (1−ν)

min{m,1}
(X− I)2

≤ 1
2

ν (1−ν)C (m,M) I

for any ν ∈ [0,1] .
If we multiply (2.1) both sides by A−1/2 we get MI ≥ A−1/2BA−1/2 ≥ mI.
By writing the inequality (2.7) for X = A−1/2BA−1/2 we obtain

1
2

ν (1−ν)c(m,M) I ≤ 1
2

ν (1−ν)

max{M,1}

(
A−1/2BA−1/2− I

)2
(2.8)

≤ (1−ν) I +νA−1/2BA−1/2−
(

A−1/2BA−1/2
)ν

≤ 1
2

ν (1−ν)

min{m,1}

(
A−1/2BA−1/2− I

)2

≤ 1
2

ν (1−ν)C (m,M) I

for any ν ∈ [0,1] .



4 Universal Journal of Mathematics and Applications

If we multiply the inequality (2.8) both sides with A1/2, then we get

1
2

ν (1−ν)c(m,M)A≤ 1
2

ν (1−ν)

max{M,1}
A1/2

(
A−1/2BA−1/2− I

)2
A1/2 (2.9)

≤ (1−ν)A+νB−A1/2
(

A−1/2BA−1/2
)ν

A1/2

≤ 1
2

ν (1−ν)

min{m,1}
A1/2

(
A−1/2BA−1/2− I

)2
A1/2

≤ 1
2

ν (1−ν)C (m,M)A,

and since

A1/2
(

A−1/2BA−1/2− I
)2

A1/2 = A1/2
(

A−1/2 (B−A)A−1/2
)2

A1/2

= A1/2A−1/2 (B−A)A−1/2A−1/2 (B−A)A−1/2A1/2

= (B−A)A−1 (B−A) ,

then by (2.9) we get the desired result (2.2).

When the operators A and B are bounded above and below by constants we have the following result as well:

Corollary 2.2. Let A, B be two positive operators and m, m′, M, M′ be positive real numbers. Put h := M
m and h′ := M′

m′ .
(i) If 0 < mI ≤ A≤ m′I < M′I ≤ B≤MI, then

1
2

ν (1−ν)
(h′−1)2

h
A≤ 1

2
ν (1−ν)

h
(B−A)A−1 (B−A) (2.10)

≤ A∇ν B−A]ν B

≤ 1
2

ν (1−ν)(B−A)A−1 (B−A)

≤ 1
2

ν (1−ν)(h−1)2 A,

and, in particular,

(h′−1)2

8h
A≤ 1

8h
(B−A)A−1 (B−A)≤ A∇B−A]B (2.11)

≤ 1
8
(B−A)A−1 (B−A)≤ 1

8
(h−1)2 A.

(ii) If 0 < mI ≤ B≤ m′I < M′I ≤ A≤MI, then

1
2

ν (1−ν)

(
h′−1

h′

)2
A≤ 1

2
ν (1−ν)(B−A)A−1 (B−A) (2.12)

≤ A∇ν B−A]ν B

≤ 1
2

ν (1−ν)h(B−A)A−1 (B−A)

≤ 1
2

ν (1−ν)
(h−1)2

h
A

and, in particular,

1
8

(
h′−1

h′

)2
A≤ 1

8
(B−A)A−1 (B−A)≤ A∇B−A]B (2.13)

≤ 1
8

h(B−A)A−1 (B−A)≤ (h−1)2

8h
A.

Proof. We observe that h, h′ > 1 and if either of the condition (i) or (ii) holds, then h≥ h′.
If (i) is valid, then we have

A < h′A =
M′

m′
A≤ B≤ M

m
A = hA, (2.14)

while, if (ii) is valid, then we have

1
h

A≤ B≤ 1
h′

A < A. (2.15)

If we use the inequality (2.2) and the assumption (i), then we get (2.10).
If we use the inequality (2.2) and the assumption (ii), then we get (2.12).
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3. Bounds in Term of Kantorovich’s Constant

We consider the Kantorovich’s constant defined by

K (h) :=
(h+1)2

4h
, h > 0. (3.1)

The function K is decreasing on (0,1) and increasing on [1,∞) , K (h)≥ 1 for any h > 0 and K (h) = K
( 1

h
)

for any h > 0.
Observe that for any h > 0

K (h)−1 =
(h−1)2

4h
= K

(
1
h

)
−1.

Also, if a,b > 0 then

K
(

b
a

)
−1 =

(b−a)2

4ab
.

Since min{a,b}max{a,b}= ab if a,b > 0, then

(b−a)2

max{a,b}
=

min{a,b}(b−a)2

ab
= 4min{a,b}

[
K
(

b
a

)
−1
]

and

(b−a)2

min{a,b}
=

max{a,b}(b−a)2

ab
= 4max{a,b}

[
K
(

b
a

)
−1
]

and the inequality (1.1) can be written as

2ν (1−ν)min{a,b}
[

K
(

b
a

)
−1
]
≤ (1−ν)a+νb−a1−ν bν (3.2)

≤ 2ν (1−ν)max{a,b}
[

K
(

b
a

)
−1
]

for any a,b > 0 and ν ∈ [0,1] .
For positive invertible operators A,B we define

A∇∞B :=
1
2
(A+B)+

1
2

A1/2
∣∣∣A−1/2 (B−A)A−1/2

∣∣∣A1/2

and

A∇−∞B :=
1
2
(A+B)− 1

2
A1/2

∣∣∣A−1/2 (B−A)A−1/2
∣∣∣A1/2.

If we consider the continuous functions f∞, f−∞ : [0,∞)→ [0,∞) defined by

f∞ (x) = max{x,1}= 1
2
(x+1)+

1
2
|x−1|

and

f−∞ (x) = max{x,1}= 1
2
(x+1)− 1

2
|x−1| ,

then, obviously, we have

A∇±∞B = A1/2 f±∞

(
A−1/2BA−1

)
A1/2. (3.3)

If A and B are commutative, then

A∇±∞B =
1
2
(A+B)± 1

2
|B−A|= B∇±∞A.

Theorem 3.1. Let A, B be positive invertible operators and M > m > 0 such that the condition (2.1) holds. Then we have

2ν (1−ν)g(m,M)A∇−∞B≤ A∇ν B−A]ν B (3.4)

≤ 2ν (1−ν)G(m,M)A∇∞B,

where

g(m,M) :=


K (M)−1 if M < 1,

0 if m≤ 1≤M,

K (m)−1 if 1 < m
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and

G(m,M) :=


K (m)−1 if M < 1,

max{K (m) ,K (M)}−1 if m≤ 1≤M,

K (M)−1 if 1 < m.

In particular,

1
2

g(m,M)A∇−∞B≤ A∇B−A]B≤ 1
2

G(m,M)A∇∞B. (3.5)

Proof. From (3.2) we have for a = 1 and b = x that

2ν (1−ν)min{1,x} [K (x)−1]≤ 1−ν +νx− xν (3.6)

≤ 2ν (1−ν)max{1,x} [K (x)−1]

for any x > 0.
From (3.6) we then have

2ν (1−ν) f−∞ (x) min
x∈[m,M]

[K (x)−1]≤ 1−ν +νx− xν (3.7)

≤ 2ν (1−ν) f∞ (x) max
x∈[m,M]

[K (x)−1]

for any x ∈ [m,M] .

Observe that

max
x∈[m,M]

[K (x)−1] =


K (m)−1 if M < 1,

max{K (m) ,K (M)}−1 if m≤ 1≤M,

K (M)−1 if 1 < m.

= G(m,M)

and

min
x∈[m,M]

[K (x)−1] =


K (M)−1 if M < 1,

0 if m≤ 1≤M,

K (m)−1 if 1 < m.

= g(m,M) .

Therefore by (3.7) we get

2ν (1−ν) f−∞ (x)g(m,M)≤ 1−ν +νx− xν ≤ 2ν (1−ν) f∞ (x)G(m,M) (3.8)

for any x ∈ [m,M] and ν ∈ [0,1] .
If we use the continuous functional calculus for the positive invertible operator X with mI ≤ X ≤MI, then we have from (3.8) that

2ν (1−ν) f−∞ (X)g(m,M)≤ (1−ν) I +νX−Xν (3.9)

≤ 2ν (1−ν) f∞ (X)G(m,M)

for any x ∈ [m,M] and ν ∈ [0,1] .
By writing the inequality (2.7) for X = A−1/2BA−1/2 we obtain

2ν (1−ν) f−∞

(
A−1/2BA−1/2

)
g(m,M)≤ (1−ν) I +νA−1/2BA−1/2−

(
A−1/2BA−1/2

)ν

(3.10)

≤ 2ν (1−ν) f∞
(

A−1/2BA−1/2
)

G(m,M)

for any ν ∈ [0,1] .
If we multiply (3.10) both sides by A1/2 we get

2ν (1−ν)A1/2 f−∞

(
A−1/2BA−1/2

)
A1/2g(m,M)≤ (1−ν)A+νBA−A1/2

(
A−1/2BA−1/2

)ν

A1/2

≤ 2ν (1−ν)A1/2 f∞
(

A−1/2BA−1/2
)

A1/2G(m,M)

for any ν ∈ [0,1] , which, by (3.3) produces the desired result (3.4).

We have:
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Corollary 3.2. Let A, B be two positive operators and m, m′, M, M′ be positive real numbers. Put h := M
m and h′ := M′

m′ . If either of the
conditions (i) or (ii) from Corollary 2.2 holds, then

2ν (1−ν)
[
K
(
h′
)
−1
]

A∇−∞B≤ A∇ν B−A]ν B (3.11)

≤ 2ν (1−ν) [K (h)−1]A∇∞B.

In particular,

1
2
[
K
(
h′
)
−1
]

A∇−∞B≤ A∇B−A]B≤ 1
2
[K (h)−1]A∇∞B. (3.12)

Proof. If (i) is valid, then we have

A < h′A =
M′

m′
A≤ B≤ M

m
A = hA.

By using the inequality (3.4) we get (3.11).
If (ii) is valid, then we have

1
h

A≤ B≤ 1
h′

A < A.

By using the inequality (3.4) we get

2ν (1−ν)

[
K
(

1
h′

)
−1
]

A∇−∞B≤ A∇ν B−A]ν B

≤ 2ν (1−ν)

[
K
(

1
h

)
−1
]

A∇∞B,

and since K
( 1

h′
)
= K (h′) and K

( 1
h
)
= K (h) , the inequality (3.11) is also obtained.

4. Comparison with Other Additive Inequalities

Kittaneh and Manasrah [9], [10] provided a refinement and a reverse for Young’s scalar inequality as follows:

r
(√

a−
√

b
)2
≤ (1−ν)a+νb−a1−ν bν ≤ R

(√
a−
√

b
)2

, (4.1)

where a,b > 0, ν ∈ [0,1], r = min{1−ν ,ν} and R = max{1−ν ,ν} . The case ν = 1
2 reduces (4.1) to an identity and is of no interest.

In [2] we obtained the following logarithmic upper bound for the Young’s difference

(0≤)(1−ν)a+νb−a1−ν bν ≤ ν (1−ν)(a−b)(lna− lnb) (4.2)

for any a,b > 0 and ν ∈ [0,1], while in the subsequent paper [3] we obtained the following refinement and reverse of Young’s inequality

1
2

ν (1−ν)(lna− lnb)2 min{a,b} ≤ (1−ν)a+νb−a1−ν bν (4.3)

≤ 1
2

ν (1−ν)(lna− lnb)2 max{a,b} ,

for any a,b > 0 and ν ∈ [0,1] .
Consider the following functions of two variables obtained from the upper bounds in inequalities (1.1), (4.1), (4.2) and (4.3) for a = 1,
b = x ∈ (0,∞) and ν = y ∈ (0,1) , namely

U1 (x,y) :=
1
2

y(1− y)
(x−1)2

min{x,1}
,

U2 (x,y) := max{y,1− y}
(√

x−1
)2

,

U3 (x,y) := y(1− y)(x−1) lnx and

U4 (x,y) :=
1
2

y(1− y)max{x,1} ln2 x.

We observe that the 3D plots of the differences U1 (x,y)−U2 (x,y) on (0,10)×(0,1) ,U1 (x,y)−U3 (x,y) on (2,4)×(0,1) ,U2 (x,y)−U3 (x,y)
on (2,4)×(0,1) ,U2 (x,y)−U4 (x,y) on (2,4)×(0,1) and U3 (x,y)−U4 (x,y) on (3,6)×(0,1) show that they take both negative and positive
values, meaning that neither of the corresponding upper bounds are better in general.
It appears that U1 (x,y) > U4 (x,y) on the box (0,10)× (0,1) suggesting that the upper bound in (4.3) is better than the one from (1.1).
However we do not have an analytic proof for it in general.
Similar conclusions may be derived for the lower bounds, however the details are left to the interested reader.
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5. Conclusion

In this paper we obtained some new additive refinements and reverses of Young’s operator inequality via a result of Cartwright and Field.
Comparison with other additive Young’s type inequalities were also provided.
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