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A NOVEL HETEROGENEOUS MODEL OF LAYERED STRUCTURES FOR NUMERICAL 
MODELING AND SIMULATION AT MICROWAVE FREQUENCIES VIA FDTD 

Ummu SAHIN SENER1*and Sebahattin EKER2 

Numerous destructive and nondestructive techniques using different energy 
sources have been offered for material characterization. Among the non-
destructive testing techniques that suggest monitoring the content of different 
materials and concrete structures, the techniques using microwaves offer 
important advantages because they are not radioactive, provide good 
penetration, provide excellent contrast with rebar and are not affected by 
ambient temperature. In this paper, a non-destructive testing (NDT) 
technique is represented to simulate a novel heterogeneous rectangular 
geometric structures containing different materials such as concrete, 
pavement, mortar, rebar and soil based on their dielectric properties. 
Maxwell wave equations are used to simulate how wave propagates in 
structures with different dielectric properties. For numerical simulation a 
Finite Difference Time Domain (FDTD) is used and Absorbing Boundary 
Conditions (ABCs) is proposed to prevent re-entering of propagating waves 
into the computation domain. 
Key words: FDTD, layered media, microwave, nondestructive testing, wave 
equation. 

1. Introduction

Examination, strengthening and repairing the strength of infrastructures such as roads and 
bridges is an important issue for public safety and effective infrastructure management [1]. Non-
destructive inspection techniques are more advantageous than other inspection techniques since they 
do not destroy the integrity of the examined structure [2-5]. There are many noninvasive techniques to 
detect layers, delamination and defects in the structures, such as acoustic, thermal, radiographic, 
microwave and radar methods. Thanks to using the electromagnetic (EM) waves in examination of the 
structures, natural materials such as soil and rocks, as well as artificial materials such as concrete and 
asphalt can be imaged, in addition, it is one of the most powerful methods used for the detection and 
identification of metallic or non-metallic objects buried in mediums (concrete, mortar, asphalt, soil, 
rock, pavement) [6,7]. When it is desired to non-destructively examine any construction via EM waves 
it is seen that materials with electrically different properties are present together [8-11]. 

Ground Penetrating Radar (GPR) is an important geophysical tool for underground imaging, 
based on the analysis of the propagation and reflection of EM waves at microwave frequencies [12-
14]. The different GPR models based on the same operation principle, the transmitting antenna is 
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located directly above the surface and propagates the short pulse through the ground. It has been 
demonstrated how successful GPR technique is in rigid and flexible pavements, placing dowels, 
detecting voids or loss of support under the boards or detecting any and cracks [15,16]. GPR, which is 
used for overlay thickness estimation, has become one of the most used methods because of its non-
destructive inspection, rapid results, cost-effectiveness and enabling it to be done more efficiently 
without breaking the pavement structure or highway road. When we want to examine an environment 
nondestructively using GPR that based on the microwave propagation technique it is difficult to 
predict what environment to encounter [17-20]. Precisely for this reason, numerical pre-modeling of 
the environments to be examined using GPR both reduces cost and prevents loss of time [21]. 
Numerical modeling of the propagation of the electromagnetic field in heterogeneous environments 
enables us to have information about the environments where interpretation of (GPR) data, 
investigating the causes of reflections and diffractions in GPR maps, analyzing radargrams analysis 
and analyzing wave propagation analytically where analytic analysis of wave propagation is not 
possible [22]. 

The differences in the material properties of the four structural components (concrete, mortar, 
pavement, rebar) create challenging problems in predicting the behavior of the integrated structural 
system since concrete is a heterogeneous structure consisting of water, cement, sand, coarse aggregate 
and air in addition, the heterogeneous structure called mortar consists of water, cement, sand and air 
[23,24]. Simple models, taken as cross-sections of large structures, can provide information about the 
behavior of a system that is lost in the details of more complex models and situations. Materials with 
many different dielectric properties have been successfully modeled in the same geometric structure. 
Therefore, the purpose of this study is to explain how the wave in microwave frequencies emitted from 
three different point sources, in a layered environment composed of materials with different dielectric 
properties and rebar. The response of layered media including pavement, concrete and soil is 
investigated by numerical simulation. In the following section, Maxwell’s curl equations and FDTD 
methods with PML boundary conditions are ensured [25,26]. The geometrical configuration of the 2D 
layered structures described and propagation of the electromagnetic waves in layered media is 
investigated numerically [27]. 

2. Theoretical Framework and Simulation Experiments

Numerical calculation methods are preferred to solve complex electromagnetic (EM) problems, 
which are difficult or impossible to solve analytically. Since the incident wave encounters 
air/concrete/pavement interface reflection, only part of the energy is transmitted to the concrete or 
pavement and interacts with the media interfaces, delamination, rebar and defects. FDTD is a method, 
which provides convergence to Maxwell's differential equations in time period by dividing the 
calculation region into stepwise rectangular elements. Since Maxwell divergence equations are already 
provided by the developed FDTD updating equations, only Maxwell’s curl equations are needed while 
deriving the FDTD algorithm [7]. Maxwell curl equations in Cartesian coordinates for the linear, 
isotropic, nondispersive and lossy medium is presented below: 

∇×H = ε ∂E
∂t

−σ eE− J i (1) 

∇×E = −µ ∂H
∂t

−σ mH −Mi (2) 
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When components of (1) and (2) are reformulated two decoupled groups of equations are 
obtained. These two groups are TE waves, which contain Ex, Ey and Hz components and TM waves, 
which contains Hx, Hy and Ez components. In Cartesian coordinate system TE waves has three 
components as follows: 

∂Ex
∂t

= 1
ε x

∂Hz

∂y
−σ x

eEx − Jix
⎛
⎝⎜

⎞
⎠⎟

(3) 

∂Ey
∂t

= 1
ε y

∂Hz

∂x
−σ y

eEy − Jiy
⎛
⎝⎜

⎞
⎠⎟

(4) 

∂Hz

∂t
= 1
µz

∂Ex
∂y

−
∂Ey
∂x

−σ z
mHz −Miz

⎛

⎝
⎜

⎞

⎠
⎟ (5) 

These equations can be represented in discrete form both space and time domains, electric and 
magnetic fields are computed at each grid cell iteratively and separately based on the Yee’s algorithm 
by courtesy of the FDTD method [25,27]. First and second central differences are applied to 
approximate the differential forms of Maxwell’s equations. As a result, the equations for TE mode that 
will be used in the 2D simulations are obtained as follows: 

Ex
n+1 i, j( ) =Cexe i, j( )× Exn i, j( )+Cexhz i, j( )× Hz

n+1
2 i, j( )− Hz

n+1
2 i, j −1( )⎛

⎝⎜
⎞

⎠⎟

+Cexj i, j( )× Jix
n+1
2 i, j( )

(6) 

where 

Cexe i, j( ) = 2ε x i, j( )− Δtσ x
e i, j( )

2ε x i, j( )+ Δtσ x
e i, j( ) ,

Cexhz i, j( ) = 2Δt
2ε x i, j( )+ Δtσ x

e i, j( )( )Δy ,

Cexj i, j( ) = 2Δt
2ε x i, j( )+ Δtσ x

e i, j( ) .

Ey
n+1 i, j( ) =Ceye i, j( )× Eyn i, j( )+Ceyhz i, j( )× Hz

n+1
2 i, j( )− Hz

n+1
2 i −1, j( )⎛

⎝⎜
⎞

⎠⎟

+Ceyj i, j( )× Jiy
n+1
2 i, j( )

(7) 

where 

Ceye i, j( ) = 2ε y i, j( )− Δtσ y
e i, j( )

2ε y i, j( )+ Δtσ y
e i, j( ) ,

Ceyhz i, j( ) = 2Δt
2ε y i, j( )+ Δtσ y

e i, j( )( )Δx ,

Ceyj i, j( ) = 2Δt
2ε y i, j( )+ Δtσ y

e i, j( ) .

291



European Journal of Technique (EJT) Vol  10, Number 2, 2020 

Copyright © INESEG   ISSN 2536-5010 | e-ISSN 2536-5134  http://dergipark.gov.tr/ejt      

Hz

n+1
2 i, j( ) =Chzh i, j( )× Hz

n−1
2 i, j( )+Chzex i, j( )× Ex

n i, j +1( )− Exn i, j( )( )
+Chzey i, j( )× Ey

n i +1, j( )− Eyn i, j( )( )+Chzm i, j( )×Miz i, j( ),
(8) 

where 

Chzh i, j( ) = 2µz i, j( )− Δtσ z
m i, j( )

2µz i, j( )+ Δtσ z
m i, j( ) ,

Chzex i, j( ) = 2Δt
2µz i, j( )+ Δtσ z

m i, j( )( )Δy ,

Chzey i, j( ) = − 2Δt
2µz i, j( )+ Δtσ z

m i, j( )( )Δx ,

Chzm i, j( ) = − 2Δt
2µz i, j( )+ Δtσ z

m i, j( ) .
To solve the open geometry problems with FDTD, an absorbing boundary condition (ABC) is 

required to permit the EM waves passing out of the problem space without distorting the fields or 
reflecting into the computation domain [26]. The two-dimensional computational domain is divided 
into cells of much smaller size than the wavelength. Four different simulation setup are introduced and 
the entire computational domain is a rectangular region of 0.5× 0.25m . The numerical domain is 
obtained by dividing into 200 grids in the x − axis and 100 grids in the z − axis, Δx = Δz = 0.0025m  
and Δx = Δz ≅ λ 120 . 

Figure 1. Case A: Layered media with pavement, mortar, concrete and horizontal rebar 

In the first numerical experiment namely Case A in Fig. 1, a two-layered rectangular specimen 
with pavement that contain mortar between and concrete including horizontal rebar is used to test the 
method. The thickness of the concrete is 0.13m, the height of the pavement 0.03 m, the height of the 
mortar 0.02m and extend of the free space in the y-axis is 0.09 m. The length of the rebar is 0.4 m. 
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Figure 2. Case B: Layered media with pavement, mortar, concrete and vertical rebar 

In Fig. 2 physical model for Case B is introduced, the characteristics of this physical model are 
the same as the Case A except for the location of the rebar. The diameter of each rebar is 0.015 m, 
distance between rebar and x − axis is equal and 0.05m. The distances of the centers of the rebar to 
each other and to the calculation edge are equal and 0.1 m. 

Figure 3. Case C: Layered media with circular pavement and concrete 

In Fig. 3 the third simulation setup briefly Case C is introduced.  This model contains circular 
pavement on concrete layer, the thickness of the concrete is 0.15 m, the distance between maximum 
point of the pavement and interface of the concrete-pavement is 0.05 m. 

Figure 4. Case D: Layered media with concrete and soil 
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In Fig. 4 the last physical model, Case D is given and this model consists of undulating soil 
surface under concrete layer. The maximum height of the area formed by soil and concrete is 0.125 m 
and the distance between x − axis and peak of the soil is 0.075 m. 

3. Discussion and Results

Since the structures are excited by TE plane wave only Ex, Ey and Hz components are calculated. 
1.5 GHz, 3.0 GHz and 6.0 GHz frequencies, which are the center frequency of the L, S, C bands 
respectively are used for the simulation. At each simulation the sources are pointwise H hard sources 
positioned at three different points in one dimension. The dielectric constants of concrete, pavement, 
mortar and dry soil are εconcrete = 7.2 , ε pavement = 5.0 , εmortar = 4.0 , ε soil = 5.0  respectively. The 

conductivity of concrete, pavement, mortar, soil and rebar are σ concrete = 0.1 S m , σmortar = 0.1 S m , 

σmortar = 0.1 S m , σ soil = 0.1 S m , σ rebar =1×107  S m  respectively [1]. Simulation results for Case 

A, Case B, Case C and Case D care given below respectively. 

3.1. Simulation results for Case A: 

Figure 5. Simulation result for Case A: Ex for 1.5 GHz at 500-time step 

Figure 6. Simulation result for Case A: Ex for 3.0 GHz at 500-time step 
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Figure 7. Simulation result for Case A: Ex for 3.0 GHz at 500-time step 
In Fig. 5, Fig. 6 and Fig. 7 Ex field distributions at 500-time steps are obtained at 1.5 GHz, 3.0 

GHz and 6.0 GHz respectively and these results are related to physical model expressed in Fig.1. In all 
the figures air gap between pavements can be seen but in Fig. 6 the air gap is clearer. In Fig. 5 mortar 
layer is more noticeable than the other results and in Fig. 7 horizontal cross-sectional rebar is more 
distinguishable. In this instance, lower frequencies are more convenient for material characterization 
and higher frequencies are suitable for rebar detection. 

3.2. Simulation results for Case B: 

Figure 8. Simulation result for Case B: Ex for 1.5 GHz at 400-time step 

Figure 9. Simulation result for Case B: Ex for 3.0 GHz at 400-time step 
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Figure 10. Simulation result for Case B: Ex for 6.0 GHz at 400-time step 

In Fig. 8, Fig. 9 and Fig. 10 Ex field distributions at 400 time steps are obtained at 1.5 GHz, 3.0 
GHz and 6.0 GHz respectively and these results are related to physical model expressed in Fig. 2. 
Since everything else is the same as the position and number of rebar results for Fig.1 is similar for 
Fig. 2. Since in Fig. 2 the electromagnetic wave provides less interaction with the iron in terms of the 
cross-sectional area less time steps needed. Fig. 9 is the best result for mortar and pavement detection 
and 6.0 GHz is the most suitable frequency for rebar detection as showed in Fig. 10. 

3.3. Simulation results for Case C: 

Figure 11. Simulation result for Case C: Ex for 1.5 GHz at 250-time step 

Figure 12. Simulation result for Case C: Ex for 3.0 GHz at 250-time step 
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Figure 13. Simulation result for Case C: Ex for 6.0 GHz at 250-time step 
In Fig. 11, Fig. 12 and Fig. 13 Ex field distributions at 250-time steps are obtained at 1.5 GHz, 

3.0 GHz and 6.0 GHz respectively and these results are related to physical model expressed in Fig. 3. 
In this physical model, there is no further layer and rebar under the concrete, so no more time steps are 
needed. Since lower frequencies are more suitable for material characterization Fig. 11 is the best 
result for this physical model. 

3.4. Simulation results for Case D: 

Figure 14. Simulation result for Case D: Ex for 1.5 GHz at 400-time step 

Figure 15. Simulation result for Case D: Ex for 3.0 GHz at 400-time step 
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Figure 16. Simulation result for Case D: Ex for 6.0 GHz at 400-time step 
In Fig. 14, Fig. 15 and Fig. 16 Ex field distributions at 400-time steps are obtained at 1.5 GHz, 

3.0 GHz and 6.0 GHz respectively and these results are related to physical model expressed in Fig. 4. 
Since the layered part examined by sending electromagnetic wave is thinner than other physical 
models, the time step is shorter. In the fourth model, a structure consisting of two different materials is 
examined. In this model, more time steps are required than the Case C because the material to be 
simulated is deeper. As a result, in Fig. 15 and Fig. 16 the soil layer is clearer. 

4. Conclusion

The layered media may be encountered in bridge, road or different structures are designed as a 
numerical simulation experiment. The capability of the FDTD method for simulation of layered media 
containing pavement, mortar concrete rebar and even soil is investigated. The layers of the rectangular 
structure with pavement, concrete and the rebar inside it are successfully viewed. Since the first and 
second physical models contain rebar, the rebar can be displayed better at higher frequency in a word 
at 6.0 GHz. Also, different pavement and concrete surfaces are observed in such a way that the 
thickness of the layers is noticeable, and the best simulation results is obtained at 1.5 GHz and 3.0 
GHz frequencies for microwave radar NDT technique. 
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