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Abstract  
Vertex coloring problem is a well-known NP-Hard problem where the objective is to minimize 

the number of colors used to color vertices of a graph ensuring that adjacent vertices cannot 

have same color. In this paper, we first discuss existing mathematical formulations of the 

problem and then consider two different heuristics, namely HEUR-RA and HEUR-RC, based 

on Lagrangian relaxation of adjacency and coloring constraints. HEUR-RA does not require 

solving any optimization problem through execution whereas at each iteration of HEUR-RC 

another NP-Hard problem, maximal weight stable set problem, is solved. We conduct 

experiments to observe computational performances of these heuristics. The experiments 

reveal that although it requires longer running times, HEUR-RC outperforms HEUR-RA since 

it provides lower optimal gaps as well as upper bound information. 
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1. Introduction 

Let 𝐺 = (𝑉, 𝐸) be a graph where 𝑉 is set of vertices and 𝐸 is set of edges. Two vertices 𝑖, 𝑗 ∈ 𝑉 are called as 

adjacent if 𝑒 = (𝑖, 𝑗) ∈ 𝐸. A vertex coloring of a graph 𝐺 is a mapping 𝑐: 𝑉 → 𝐶 such that 𝑐(𝑖) ≠ 𝑐(𝑗) whenever 

𝑖 and 𝑗 are adjacent. The elements of the set 𝐶 are called colors. A graph 𝐺 is said to be k-colorable if there exist 

a vertex coloring 𝑐: 𝑉 → {1, … , 𝑘} and such 𝑐 is called as k-coloring of 𝐺. The vertex coloring problem (VCP) is 

to determine chromatic number, denoted as 𝜒(𝐺), of a given graph 𝐺 where chromatic number of a graph is the 

smallest number of colors to color it. VCP is an NP-Hard problem according to [1]. 

Aside from its theoretical importance, VCP has many practical applications in scheduling, timetabling, map 

coloring etc. For each instance of these problems, we can construct a graph and solve VCP to find the desired 

solutions. Figure 1 depicts an example graph whose chromatic number is 4.  

 

Figure 1. An example of graph G with χ(G)=4.  

There are many articles and books (such as [2] from which our notation is adapted) on graph theory that include 

VCP. However, in this paper, we will provide only studies with operations research perspective. Although first 

coloring problems were proposed in 19th century, the number of exact approaches of VCP is relatively recent 

compared to heuristic approaches. First exact approach was proposed by [3]. The idea is based on coloring one 

vertex at each step and obtain upper and lower bounds for the optimal value. Their approach for VCP can be seen 
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as an analogous to that of Branch-and-Bound method for solving mixed-integer problems. Later, [4,5] suggested 

improvements for the method such as tie breaking rules and computing initial upper bounds for the optimal value. 

[6] proposed a column generation approach for the problem. Their formulation has exponential number of 

variables; thus, they solve its continuous relaxation with a subset of variables and then solve a pricing problem 

to detect that if a negative reduced cost exists. The pricing problem is a weighted independent set problem which 

is initially solved by a heuristic. If the heuristic does not generate a negative reduced cost values, an exact solution 

of the problem is performed. When LP relaxation of their model has a fractional solution, they perform a 

branching operation to recover integrality. This column generation approach solves VCP problems up to random 

instances of 70 vertices. 

[7,8] proposed some extra constraints to eliminate symmetry (see Section 2) and proposed several valid 

inequalities for the models with these new constraints. With these valid inequalities, they could have solved 

random instances with more than 80 vertices. 

Most of the heuristic approaches for VCP are greedy algorithms, that is ranking vertices (or independent sets) 

based on some criteria, selecting the one with the highest (or smallest rank) and color it either via color which is 

already used or a new color. [9-11] are examples of studies that proposed greedy algorithms for VCP. Some 

metaheuristic approaches were also employed for solving VCP. Local search ([12,13]), tabu search ([14]) and 

simulated annealing algorithms ([15]) enable us to solve VCP problems with 1000 vertices near-optimally. 

VCP lies in the intersection of several disciplines such as graph theory, computer science and optimization. 

Although it attracts attention of researchers from various disciplines, our study is the first to propose heuristic 

methods based on different Lagrangian relaxations of a VCP. Therefore, the contribution of this paper is proposal 

of these methods and a discussion of the results obtained from the computational experiments on randomly 

generated instances.  

The rest of the paper is organized as follows: In Section 2, we provide several existing mathematical models of 

VCP in the literature and give a detailed discussion on these models. In Section 3, we propose two different 

Lagrangian relaxations of a VCP model by relaxing adjacency and coloring constraints. We also discuss how to 

solve these relaxed problems. In Section 4, we propose two heuristics based on the two relaxations discussed in 

Section 3. In Section 5, we conduct a computational experiment on randomly generated VCP instances to observe 

the quality of bounds obtained from the proposed heuristics and discuss the results of the experiment. Finally, in 

Section 6, we present some concluding remarks and possible future extensions of the existing study. 

2. Mathematical Models 

Let 𝑛 = |𝑉| be the number of vertices. Since any graph with 𝑛 vertices is 𝑛-colorable (because each vertex can 

be colored with a different color), number of colors to color a graph is at most 𝑛. Moreover, we can label vertices 

of the graph from 1 to 𝑛 without loss of generality. 

Let 𝑦ℎ = 1 if color ℎ is used and, 0 otherwise for all ℎ ∈ {1, … , 𝑛}. Also let 𝑥𝑖ℎ = 1 if vertex 𝑖 is colored with 

color ℎ and, 0 otherwise for all 𝑖 ∈ {1, … , 𝑛} and for all ℎ ∈ {1, … , 𝑛}. Then, the following mathematical model 

VCP-1 solves VCP. 

(𝑉𝐶𝑃 − 1)   minimize   ∑𝑛
ℎ=1 𝑦ℎ                                                                                                                        (1)  

                     subject to ∑𝑛
ℎ=1 𝑥𝑖ℎ = 1    ∀𝑖 ∈ {1, … , 𝑛}                                                                                      (2)  

                                           𝑥𝑖ℎ + 𝑥𝑗ℎ ≤ 𝑦ℎ     ∀(𝑖, 𝑗) ∈ 𝐸, ∀ℎ ∈ {1, … , 𝑛}                                                           (3)  

                                        𝑥𝑖ℎ ∈ {0,1}    ∀𝑖 ∈ {1, … , 𝑛}, ∀ℎ ∈ {1, … , 𝑛}       (4)  

                                        𝑦ℎ ∈ {0,1}    ∀ℎ ∈ {1, … , 𝑛}                                                                                         (5) 

Objective function (1) minimizes number of used colors. Constraints (2) and (3) ensure that each vertex is colored 

exactly with one color and adjacent vertices are colored with different colors, respectively. Constraints (4) and 

(5) are domain constraints. 

VCP-1 has two major drawbacks as stated in [16]. The first one is the symmetry due to fact that colors are 

indistinguishable. There are (
𝑛
𝑘

) possible ways to choose 𝑘 colors and once 𝑘 colors are selected, they can be 
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permutated in 𝑘! ways. Thus, given a solution with 𝑘 colors, there exists (
𝑛
𝑘

) 𝑘! equivalent solutions. The second 

drawback is the weakness of LP relaxation of the model. Indeed, LP relaxation of VCP-1 has an optimal value 

of 2 by letting 𝑥𝑖1 = 𝑥𝑖2 = 1/2 for all 𝑖 ∈ {1, … , 𝑛}, 𝑦1 = 𝑦2 = 1, 𝑥𝑖ℎ = 0 for all 𝑖 ∈ {1, … , 𝑛}, ℎ > 2 and 𝑦ℎ =
0 for ℎ > 2. [7,8] tried to overcome these drawbacks. To eliminate symmetry, they proposed adding some extra 

constraints to VCP-1. The first one is: 

𝑦ℎ ≥ 𝑦ℎ+1    ℎ = 1, … , 𝑛 − 1.                                                                                                                               (6) 

Constraints (6) ensure that color ℎ + 1 can be used only if color ℎ is used. An alternative constraint to reduce 

symmetry is using following constraint:  

∑𝑛
𝑖=1 𝑥𝑖ℎ ≥ ∑𝑛

𝑖=1 𝑥𝑖,ℎ+1    ℎ = 1, … , 𝑛 − 1.                                                                                                  (7) 

Constraints (7) ensure that the number of vertices with color ℎ + 1 is not greater than the number of vertices with 

color ℎ. 

Finally, following constraints completely eliminate symmetry of VCP-1:  

𝑥𝑖ℎ = 0    ℎ ≥ 𝑖 + 1,                                                                                                                                             (8)  

𝑥𝑖ℎ ≤ ∑𝑖−1
𝑘=ℎ−1 𝑥𝑘,ℎ−1    ∀𝑖 ∈ {2, … , 𝑛}, 2 ≤ ℎ ≤ 𝑖 − 1.                                                                                        (9) 

Constraints (8) and (9) ensure that independent sets are labeled with the minimum label of its vertices and the 

vertices in this independent set ℎ are colored with color ℎ. 

[6] proposed another formulation of VCP by using independent sets. An independent (or stable) set 𝑆 of a graph 

𝐺 = (𝑉, 𝐸) is a subset of 𝑉 such that whenever 𝑖, 𝑗 ∈ 𝑆 then (𝑖, 𝑗) ∉ 𝐸. Hence, all vertices in an independent set 

can be colored with same color. Let 𝒮 be collection of all independent sets of 𝐺 and 𝑧𝑆 = 1 if all vertices in 𝑆 are 

colored with same color, and 0 otherwise for all 𝑆 ∈ 𝒮. Then, following mathematical model VCP-2 solves VCP. 

(𝑉𝐶𝑃 − 2)   minimize   ∑𝑆∈𝒮 𝑧𝑆                                                                                                                        (10) 

                     subject to ∑𝑆∈𝒮:𝑖∈𝑆 𝑧𝑆 ≥ 1    ∀𝑖 ∈ {1, … , 𝑛}   (11)  

                          𝑧𝑆 ∈ {0,1}    ∀𝑆 ∈ 𝒮                                                                                                     (12) 

Objective function (10) minimizes number of selected independent sets. Constraints (11) ensure that each vertex 

is included in some independent set and (12) are domain constraints. Although number of variables, that is |𝒮|, 

is huge, a column generation algorithm can be employed to solve VCP-2. Also, LP relaxation of VCP-2 is as 

good as LP relaxation of VCP-1 due to [17]. 

Another mathematical model was proposed in [18] by manipulating constraint (11) in VCP-2. The following set 

packing model VCP-3 solves VCP.    

(𝑉𝐶𝑃 − 3)   maximize    ∑𝑆∈Ω (|𝑆| − 1)𝑧𝑆                                                                                                      (13) 

                     subject to    ∑𝑆∈Ω:𝑖∈𝑆 𝑧𝑆 ≤ 1    ∀𝑖 ∈ {1, … , 𝑛}    (14)  

                             𝑧𝑆 ∈ {0,1}    ∀𝑆 ∈ Ω                                                                                                  (15) 

where Ω = {𝑆 ∈ 𝒮: |𝑆| ≥ 2}. The number of used colors is 𝑛 − 𝑧∗ where 𝑧∗ is optimal value of VCP-3. [18] also 

showed that LP relaxations of VCP-2 and VCP-3 are equivalent in terms of solution value and proposed valid 

inequalities for VCP-3. VCP-2 and VCP-3 have exponential number of constraints and hence these models cannot 

be solved directly even for moderate size instances. These models can only be considered for the solution methods 

such as column generation and branch-and-cut.  

3. Lagrangian Relaxations for VCP   

In this section, we propose two different Lagrangian relaxations of VCP. 

3.1. Relaxing adjacency constraints  
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Consider VCP-1 with additional constraints (8):  

(𝑉𝐶𝑃 − 1𝑎)   minimize ∑𝑛
ℎ=1 𝑦ℎ                                                                                                                       (1) 

                       subject to ∑𝑛
ℎ=1 𝑥𝑖ℎ = 1    ∀𝑖 ∈ {1, … , 𝑛}                                                                                    (2)  

                             𝑥𝑖ℎ + 𝑥𝑗ℎ ≤ 𝑦ℎ     ∀(𝑖, 𝑗) ∈ 𝐸, ∀ℎ ∈ {1, … , 𝑛}                                                           (3)  

                                                𝑥𝑖ℎ = 0    ℎ ≥ 𝑖 + 1,                                                                                                   (8)  

                             𝑥𝑖ℎ ∈ {0,1}    ∀𝑖 ∈ {1, … , 𝑛}, ∀ℎ ∈ {1, … , 𝑛}                                                           (4)  

                             𝑦ℎ ∈ {0,1}    ∀ℎ ∈ {1, … , 𝑛}                                                                                       (5) 

 

Relaxing adjacency constraints (3) in a Lagrangian manner, we get LR1: 

(𝐿𝑅1)   minimize   ∑𝑛
ℎ=1 𝑦ℎ + ∑(𝑖,𝑗)∈𝐸 ∑𝑛

ℎ=1 𝑢𝑖𝑗ℎ(𝑥𝑖ℎ + 𝑥𝑗ℎ − 𝑦ℎ) (16) 

              subject to (2), (4), (5) and (8). 

LR1 is a relaxation of VCP-1a for any 𝑢 ≥ 0. By rearranging terms of the objective function (16), LR1 becomes: 

(𝐿𝑅1)   minimize   ∑𝑛
ℎ=1 (1 − ∑(𝑖,𝑗)∈𝐸 𝑢𝑖𝑗ℎ)𝑦ℎ + ∑𝑛

𝑖=1 ∑𝑛
ℎ=1 (∑𝑒∈𝛿(𝑖) 𝑢𝑒ℎ)𝑥𝑖ℎ    (17) 

            subject to (2), (4), (5) and (8). 

where 𝛿(𝑖): = {𝑒 ∈ 𝐸: 𝑒 = (𝑖, 𝑗) or 𝑒 = (𝑗, 𝑖) for some 𝑗 ∈ {1, … , 𝑛}} is the set of edges adjacent to 𝑖. 

LR-1 decomposes for each color and vertex. Also, an optimal solution (𝑥∗, 𝑦∗) of LR-1 can be found by 

inspection. Since 𝑦 variables appear only in objective function, 𝑦ℎ
∗ takes value 1 only if its objective value 

coefficient is non-positive for any ℎ ∈ {1, … , 𝑛}. Moreover, constraints (2) and (8) ensures that ∑𝑖
ℎ=1 𝑥𝑖ℎ = 1. 

Therefore, the color from set {1, … , 𝑖} with smallest objective value coefficient is used to color vertex 𝑖 ∈

{1, … , 𝑛}. Hence,  

𝑦ℎ
∗ = {

1,  𝑖𝑓   1 − ∑(𝑖,𝑗)∈𝐸 𝑢𝑖𝑗ℎ ≤ 0

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
    ∀ℎ ∈ {1, … , 𝑛}   (18)  

𝑥𝑖ℎ
∗ = {

1,  𝑖𝑓   ℎ = argmin
𝑘∈{1,…,𝑖}

∑𝑒∈𝛿(𝑖) 𝑢𝑒𝑘

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
    ∀𝑖 ∈ {1, … , 𝑛}, ∀ℎ ∈ {1, … , 𝑛} (19) 

 

3.2. Relaxing coloring constraints 

Consider VCP-1: (1)-(5) without anti-symmetry constraints. Relaxing coloring constraints (2) in a Lagrangian 

manner, we get LR2:    

(𝐿𝑅2)   minimize   ∑𝑛
ℎ=1 𝑦ℎ + ∑𝑛

𝑖=1 (1 − ∑𝑛
ℎ=1 𝑥𝑖ℎ)𝑣𝑖 (20) 

             subject to (3) − (5). 

LR2 is a relaxation of VCP for any choice of Lagrangian multipliers 𝑣. By rearranging terms of the objective 

function (20), LR2 becomes:   

(𝐿𝑅2)   minimize ∑𝑛
ℎ=1 (𝑦ℎ − ∑𝑛

𝑖=1 𝑣𝑖𝑥𝑖ℎ) + ∑𝑛
𝑖=1 𝑣𝑖                                                                                     (21) 

              subject to (3) − (5). 

LR2 decomposes for each color such that: 

𝐿𝑅2(𝑣) = ∑𝑛
ℎ=1 𝐿𝑅2ℎ(𝑣) + ∑𝑛

𝑖=1 𝑣𝑖                                                                                                                 (22) 

where 

𝐿𝑅2ℎ(𝑣) = minimize    𝑦ℎ − ∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖ℎ                                                                                                          (23)                     
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                    subject to    𝑥𝑖ℎ + 𝑥𝑗ℎ ≤ 𝑦ℎ     ∀(𝑖, 𝑗) ∈ 𝐸                                                                                      (24)  

                           𝑥𝑖ℎ ∈ {0,1}, 𝑦ℎ ∈ {0,1}    ∀𝑖 ∈ {1, … , 𝑛}                                                                    (25) 

The value of 𝐿𝑅2ℎ(𝑣) depends on whether 𝑦ℎ takes value 0 or 1. If 𝑦ℎ = 0, then 𝑥𝑖ℎ = 0, ∀𝑖 ∈ 𝑉 due to constraint 

(24); otherwise 𝐿𝑅2ℎ(𝑣) takes value of following problem:  

minimize 1 − ∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖                                                                                                                                    (26)  

subject to    𝑥𝑖 + 𝑥𝑗 ≤ 1    ∀(𝑖, 𝑗) ∈ 𝐸                                                                                                                (27)                     

                     𝑥𝑖 ∈ {0,1},    ∀𝑖 ∈ {1, … , 𝑛}.                                                                                                           (28) 

which can equivalently be restated as:  

1 − maximize ∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖                                                                                                                                    (29) 

        subject to (27)  and  (28) 

Hence,  

𝐿𝑅2ℎ(𝑣) = min{0,1 − 𝑓(𝑣)}                                                                                                                             (30) 

where 𝑓(𝑣) is the objective of the maximum weight stable set problem   

 (𝑀𝑊𝑆𝑆𝑃)   maximize   ∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖                                                                                                                   (31) 

                      subject to   (27)  and  (28) 

Let �̃�𝑖, ∀𝑖 ∈ {1, … , 𝑛} be an optimal solution of MWSSP. Based on the value that minimum in (30) is attained, an 

optimal solution of LR2 can be found as:  

𝑦ℎ
∗ = {

0,  𝑖𝑓   𝑓(𝑣) ≤ 1
1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

        ∀ℎ ∈ {1, … , 𝑛}                                                                                                    (32)  

𝑥𝑖ℎ
∗ = {

0,  𝑖𝑓   𝑓(𝑣) ≤ 1
�̃�𝑖,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

        ∀𝑖 ∈ {1, … , 𝑛}, ∀ℎ ∈ {1, … , 𝑛} (33) 

 

Note that in any optimal solution of MWSSP, we have �̃�𝑖 = 0 for any 𝑖 ∈ {1, … , 𝑛} with 𝑣𝑖 < 0 since otherwise 

we can always have feasible solution with a better objective value by changing the value of the variable with a 

strictly negative coefficient to 0. 

 

4. Heuristics   

In this section, we propose two heuristics for VCP based on the Lagrangian relaxations proposed in the previous 

section. The first heuristic is based on the relaxation of adjacency constraint and called as HEUR-RA. The 

outline of HEUR-RA is given below. 

HEUR-RA 

Initialize: Iteration counter 𝑡 ← 1, Lagrangian multipliers 𝑢𝑖𝑗ℎ
𝑡 = 0 for all (𝑖, 𝑗) ∈ 𝐸 and ℎ ∈

{1, … , 𝑛}, step-sizes {𝜇𝑡}𝑡=1
∞ , lower bound 𝐿𝐵 ← −∞. 

while some termination criteria is not met do 

    Compute an optimal solution (𝑥𝑡 , 𝑦𝑡) of the Lagrangian relaxation by (18) and (19). 

    Update lower bound 

𝐿𝐵𝑡 ← ∑

𝑛

ℎ=1

𝑦ℎ
𝑡 + ∑

(𝑖,𝑗)∈𝐸

∑

𝑛

ℎ=1

𝑢𝑖𝑗ℎ
𝑡 (𝑥𝑖ℎ

𝑡 + 𝑥𝑗ℎ
𝑡 − 𝑦ℎ

𝑡 ) 
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 𝐿𝐵 ← max{𝐿𝐵, 𝐿𝐵𝑡} 

 

    Update Lagrangian multipliers 

𝑢𝑖𝑗ℎ
𝑡+1 ← max{0, 𝑢𝑖𝑗ℎ

𝑡 + 𝜇𝑡(𝑥𝑖ℎ
𝑡 + 𝑥𝑗ℎ

𝑡 − 𝑦ℎ
𝑡 )} for all (𝑖, 𝑗) ∈ 𝐸 and ℎ ∈ {1, … , 𝑛} 

    𝑡 ← 𝑡 + 1 

end 

Return: A lower bound 𝐿𝐵 and an upper bound 𝑈𝐵.   

 

At each iteration of HEUR-RA, an optimal solution of LR1 is found by inspection using equations (18) and (19) 

and a lower bound for VCP is obtained from this solution. The Lagrangian multipliers are also updated in each 

iteration. Since adjacency constraints are relaxed in LR1, a solution of the relaxed problem is only an assignment 

of colors to the vertices. Therefore, it does not provide any information about a feasible coloring and hence an 

upper bound. 

The second heuristic is based on relaxation of coloring constraints and hence called as HEUR-RC. The outline 

of HEUR-RC is given below. 

 

HEUR-RC 

Initialize: Iteration counter 𝑡 ← 1, Lagrangian multipliers 𝑣𝑖
𝑡 = 0 for all 𝑖 ∈ {1, … , 𝑛}, lower 

bound 𝐿𝐵 ← −∞ and upper bound 𝑈𝐵 ← ∞. 

while some termination criteria is not met do 

    Solve MWSSP problem given with given 𝑣𝑖
𝑡, 𝑖 ∈ {1, … , 𝑛} values and compute an optimal       

solution (𝑥𝑡 , 𝑦𝑡) of the Lagrangian relaxation by (32) and (33).  Update lower bound  

 𝐿𝐵𝑡+1 ← max{𝐿𝐵𝑡 , ∑𝑛
ℎ=1 𝑦ℎ

𝑡 + ∑𝑛
𝑖=1 (1 − ∑𝑛

ℎ=1 𝑥𝑖ℎ
𝑡 )𝑣𝑖} 

  

 𝐿𝐵 ← max{𝐿𝐵, 𝐿𝐵𝑡+1} 

 

    Let 𝑥 ← 𝑥𝑡 and 𝑦 ← 𝑦𝑡 be a coloring which does not necessarily satisfy coloring  constraints (2) 

    For vertices 𝑖 ∈ {1, … , 𝑛} such that ∑𝑛
ℎ=1 𝑥𝑖ℎ ≥ 2 only keep the color with smallest index, that 

is, 𝑥𝑖ℎ ← {
1,  𝑖𝑓   ℎ = min{𝑘 ∈ {1, … , 𝑛}: 𝑥𝑖𝑘 = 1}
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

   For vertices 𝑖 ∈ {1, … , 𝑛} such that ∑𝑛
ℎ=1 𝑥𝑖ℎ = 0 assign the color with the smallest index that 

does not create a conflict, that is, 𝑥𝑖ℎ ← {
1,  𝑖𝑓   ℎ = min{{1, … , 𝑛}\𝒞}
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 where 𝒞: =

{ℎ: 𝑥𝑖′ℎ = 𝑥𝑗′ℎ = 1 for some(𝑖′, 𝑗′) ∈ 𝛿(𝑖)} is the set of colors that creates a conflict. 

Update used colors  

 𝑦ℎ
𝑡 ← {

1,  𝑖𝑓   ∃𝑖 ∈ {1, … , 𝑛}s. t. 𝑥𝑖ℎ
𝑡 = 1

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
    ∀ℎ ∈ {1, … , 𝑛} 

 

   Update upper bound  

 𝑈𝐵𝑡+1 ← min{𝑈𝐵𝑡 , ∑𝑛
ℎ=1 𝑦ℎ

𝑡 } 

 

   Update Lagrangian multipliers  

 𝑢𝑖𝑗ℎ
𝑡+1 ← max{0, 𝑢𝑖𝑗ℎ

𝑡 + 𝜇𝑡(𝑥𝑖ℎ
𝑡 + 𝑥𝑗ℎ

𝑡 − 𝑦ℎ
𝑡 )} for all (𝑖, 𝑗) ∈ 𝐸 and ℎ ∈ {1, … , 𝑛} 

   𝑡 ← 𝑡 + 1 

end 
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Return: A feasible coloring, lower and upper bounds. 

 

At each iteration of HEUR-RC, a solution of LR2 is obtained by solving MWSSP as discussed in the previous 

section. Unlike LR1, the adjacency requirement is maintained in LR2, it is possible to generate a feasible solution 

to VCP using 𝑥𝑖ℎ
∗  in equation (33). However, some vertices are colored more than once and some of them are not 

colored since coloring constraint (2) does not appear in LR2. If a vertex has been colored more than once, only 

the color with the smallest index is maintained and other colors are discarded. If a vertex has not been colored, 

then any color which does not violate adjacency requirement can be assigned to that vertex. Such color with the 

smallest index is used to color any uncolored vertex. Therefore, a feasible coloring and hence an upper bound for 

VCP is obtained. Finally, Lagrangian multipliers are updated. 

 

5. Computational Study  

In order to observe the efficiency of the proposed heuristics, some computational experiments are conducted on 

randomly generated instances. Random class on Java 1.6.023 running on NetBeans IDE 6.9.1 is used to generate 

random values. IBM ILOG CPLEX Optimization Studio 12.6 is used to solve optimization problems on a PC 

with specifications Intel(R) Core (TM)2 Duo CPU P7450 2 x 2.13GHz. with 4.00 GB RAM. Five instances are 

generated for each |𝑉| = 𝑛 ∈ {10,20,30,40} and edge density coefficient 𝑓 ∈ {0.2,0.5,0.8} pair. Edge density 

coefficient indicates the probability of existence of an edge between each edge pairs. 

The classical subgradient algorithm discussed in [19] is used to solve Lagrangian dual problems with stepsize 

rule 𝜇𝑡 = 1/𝑡 for HEUR-RA (due to absence of upper bound information) and 𝜇𝑡 =
𝑈𝐵−𝑧𝑡

||𝑖𝑛𝑓𝑒𝑎||2 for HEUR-RC 

where ||𝑖𝑛𝑓𝑒𝑎|| indicates the Euclidean norm of the infeasibility vector of the relaxed constraint, UB indicates 

current upper bound and 𝑧𝑡 is the value of Lagrangian relaxation at iteration 𝑡. The algorithm terminates if no 

improvement is made in last 10𝑛 iterations in LB so as to prevent memory errors. 

Table 1 summarizes optimal values and required CPU seconds for solving VCP-1 with anti-symmetry constraints 

(8) and (9) of all five instances for each parameter settings (𝑛, 𝑓). Although all instances with 𝑛 ≤ 30 are able to 

be solved less than 10 seconds, instances with 𝑛 = 40 require higher CPU times. For the instances with 𝑛 > 40, 

memory errors occur due to the fact that the Branch-and-Bound tree is quite large.  

Required CPU time and optimality gap percentage of HEUR-RA on each instance are summarized in Table 2. 

Since LR1 can only be solved by inspection, CPU times are under 36 seconds for all instances. On the other hand, 

lower bounds obtained by LR1 is not tight with average optimality gap of 40.48%. Also, no upper bound 

information is obtained during execution of HEUR-RA. Therefore, the optimality gap for these instances are 

cacluated as 𝐺𝑎𝑝 % = 100
𝑂𝑏𝑗.𝑣𝑎𝑙𝑢𝑒−𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝑏𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 
. 

Table 3 summarizes lower and upper bounds, optimality gaps, number of iterations and CPU times of execution 

o HEUR-RC. For 53 out of 60 instances the heurıstic is able to find optimal solution. These instances are indicated 

with bolded upper bound values in Table 3. For the instances with 𝑛 = 40 and 𝑓 = 0.5 or 0.8 CPU times of 

Lagrangian dual problem is smaller than CPU times required to solve VCP-1 with constraints (8) and (9). Also, 

the average optimality gap of the instances in Table 3 is 2%. 

HEUR-RC is also tested with larger instances presented in Table 4. For six out of 20 instances, the heuristic 

yields optimal solutions (these instances are indicated with bolded upper bound values in Table 4). Also, average 

gap for the instances in Table 4 is 11.18 %. Although, VCP-1 with constraints (8) and (9) cannot find optimal 

values for the instances in Table 4, the algorithm figures out reasonable bounds even though CPU times are high. 

In Tables 3 and 4, the optimality gaps are calculated as 𝐺𝑎𝑝 % = 100
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑−𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 
 since both lower 

and upper bounds are available in HEUR-RC.  
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6. Conclusion 

In this study, two different Lagrangian relaxations of VCP are investigated and then we propose two heuristics 

based on these relaxations. First, adjacency constraints (3) in VCP-1a are relaxed in Lagrangian manner. 

Although corresponding relaxed problem can be solved by easily, corresponding lower bounds are not tight. A 

possible improvement in lower bound can be obtained by adding inequalities that are valid for VCP-1a to LR1. 

For example,  

𝑥𝑖ℎ ≤ 𝑦ℎ     𝑖 ∈ {1, … , 𝑛}, ℎ ∈ {1, … , 𝑛}                                                                                                               (34) 

 or  

|𝐾| ≤ ∑𝑛
ℎ=1 𝑦ℎ                                                                                                                                                    (35) 

where 𝐾 ⊆ 𝑉 is a maximum cardinality clique of 𝐺. Adding (34) and/or (35) to LR1 definitely improves quality 

of the lower bound. However, solving the relaxed problem with (34) or finding a maximum cardinality clique 

prohibit color-wise decomposition of LR1. This trade off should be investigated by conducting computational 

experiments. 

Second, coloring constraints (2) are relaxed in Lagrangian manner. The lower bounds obtained by Lagrangian 

dual problem induced by LR2 are much tighter than the previous relaxation with a computational cost of solving 

another NP-Hard problem, namely weighted stable set problem, at each iteration. Also, an upper bound can also 

be obtained by a heuristic whose input is optimal solution of the relaxed problem. Indeed, optimal solution is 

attained for 58 of 80 instances with average gap is 4%. An improvement for the bound of this relaxation can be 

achieved solving weighted stable set problem at each iteration more efficiently. 
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Table 1.  Computational performance of VCP-1 with constraints (8) and (9) 

 𝑛 10 20 30 40 

# 𝑓 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 

1 

 

Opt. 

value 
3 3 5 4 5 9 4 7 12 5 8 15 

CPU 

time 
0.016 0.016 0.031 0.031 0.109 0.141 0.764 2.293 3.073 14.274 292.516 656.012 

2 

Opt. 

value 
3 4 7 3 5 10 4 7 12 5 8 15 

CPU 

time 
0.016 0.046 0.015 0.141 0.156 0.156 0.671 3.417 5.819 11.279 1303.49 647.323 

3 

Opt. 

value 
3 4 5 4 6 10 4 7 12 5 9 15 

CPU 

time 
0.01 0.312 0.374 0.124 0.203 0.063 0.39 3.026 1.7 0.92 830.14 19.032 

4 

Opt. 

value 
3 5 6 4 6 10 4 8 13 5 8 16 

CPU 

time 
0.01 0.015 0 0.047 0.109 0.046 0.234 0.562 0.749 4.431 505.581 235.139 

5 

 

Opt. 

value 
3 3 5 4 5 10 4 7 13 5 9 14 

CPU 

time 
0.01 0.031 0.031 0.094 0.562 0.125 0.92 7.316 0.858 5.054 632.956 3.37 

Average 

Opt. value 
0.012 0.084 0.09 0.087 0.228 0.106 0.596 3.323 2.44 7.192 712.937 312.175 

 Max CPU 

time 
0.016 0.312 0.374 0.141 0.562 0.156 0.92 7.316 5.819 14.274 1303.49 656.012 
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Table 2.  Computational performance of HEUR-RA 

 𝑛 10 20 30 40 

# 𝑓 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 

1 

Opt. 

Value 
3 3 5 4 5 9 4 7 12 5 8 15 

Lower 

Bound 
2 3 4 3 3 5 3 3 5 3 3 4 

Gap 

% 
33.3 0 20 25 40 44.4 25 57.1 58.3 40 62.5 73.3 

CPU 

time 
0.016 0.078 0.047 1.123 0.405 1.201 8.829 1.607 1.467 25.334 5.179 3.759 

2 

Opt. 

Value 
3 4 7 3 5 10 4 7 12 5 8 15 

Lower 

Bound 
3 3 4 3 3 6 3 3 5 3 3 5 

Gap 

% 
0 25 42.9 0 40 40 25 57.1 58.3 40 62.5 66.7 

CPU 

time 
0.047 0.016 0.016 1.747 0.156 1.185 9.594 1.779 3.916 11.372 2.231 17.971 

3 

Opt. 

Value 
3 4 5 4 6 10 4 7 12 5 9 15 

Lower 

Bound 
3 3 4 3 3 4 3 3 4 3 3 4 

Gap 

% 
0 25 20 25 50 60 25 57.1 66.7 40 66.7 73.3 

CPU 

time 
0.109 0.063 0.53 0.842 0.562 0.358 1.186 0.936 0.936 23.291 8.643 4.758 

4 

Opt. 

Value 
3 5 6 4 6 10 4 8 13 5 8 16 

Lower 

Bound 
3 3 4 3 3 6 3 3 4 3 3 5 

Gap 

% 
0 40 33.3 25 50 40 25 62.5 69.2 40 62.5 68.8 

CPU 

time 
0.249 0.016 0.046 0.39 0.328 0.889 1.778 1.076 0.717 10.608 1.794 9.454 

5 

Opt. 

Value 
3 3 5 4 5 10 4 7 13 5 9 14 

Lower 

Bound 
3 3 4 3 3 4 3 3 4 3 3 5 

Gap 

% 
0 0 20 25 40 60 25 57.1 69.2 40 66.7 64.3 

CPU 

time 
0.25 0.062 0.016 1.06 1.357 0.219 20.031 1.965 2.745 4.836 10.342 35.256 

Avg CPU 

time 
0.134 0.047 0.131 1.032 0.562 0.77 8.284 1.473 1.956 15.088 5.638 14.24 

Max CPU 

time 
0.25 0.078 0.53 1.747 1.357 1.201 20.031 1.965 3.916 25.334 10.342 35.256 

Average 

Gap % 
6.7 18 27.2 20 44 48.9 25 58.2 64.4 40 64.2 69.3 

Max Gap  

 % 
33.3 40 42.9 25 50 60 25 62.5 69.2 40 66.7 73.3 
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Table 3.  Computational performance of HEUR-RC 

 𝑛 10 20 30 40 

# 𝑓 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 

1 

Lower 

Bound 
3 3 5 4 5 9 4 7 12 5 8 14 

Upper 

Bound 
3 3 5 4 5 9 4 7 12 5 8 15 

Gap % 0 0 0 0 0 0 0 0 0 0 0 6.7 

 # iter 12 9 16 27 22 39 49 214 299 487 569 49 

CPU 

time 
0.23 0.187 0.234 0.671 0.734 0.84 1.55 20.015 44.444 85.207 210.725 17.394 

2 

Lower 

Bound 
3 4 7 3 5 10 4 7 12 4 8 15 

Upper 

Bound 
3 4 7 3 5 10 4 7 12 5 9 15 

Gap % 0 0 0 0 0 0 0 0 0 20 11.1 0 

 # iter 9 14 14 15 23 35 53 50 48 1346 1032 854 

CPU 

time 
0.03 0.078 0.39 0.093 0.265 0.47 0.66 4.29 4.103 230.29 333.513 467.298 

3 

Lower 

Bound 
3 4 5 4 6 10 4 7 12 5 9 15 

Upper 

Bound 
3 5 6 4 6 10 4 8 12 5 9 15 

Gap % 0 20 16.7 0 0 0 0 12.5 0 0 0 0 

 # iter 12 207 139 95 69 92 35 757 71 40 26 224 

CPU 

time 
0.19 1.342 0.765 1.545 1.248 1.58 0.34 111.74 7.114 1.731 1.779 72.634 

4 

Lower 

Bound 
3 5 6 4 6 10 4 8 13 5 8 16 

Upper 

Bound 
3 5 6 4 7 10 4 8 13 5 9 16 

Gap % 0 0 0 0 14.3 0 0 0 0 0 11.1 0 

 # iter 12 14 22 33 482 38 33 126 418 459 1312 195 

CPU 

time 
0.05 0.078 0.125 0.234 4.103 0.39 0.28 9.142 12.183 55.817 404.166 29.141 

5 

Lower 

Bound 
3 3 5 4 5 10 4 7 13 5 8 14 

Upper 

Bound 
3 3 5 4 5 10 4 7 13 5 10 14 

Gap % 0 0 0 0 0 0 0 0 0 0 20 0 

 # iter 11 10 11 30 22 44 30 444 107 29 625 585 

CPU 

time 
0.02 0.031 0.046 0.14 0.171 0.62 0.42 65.941 7.114 0.843 177.949 214.594 

Avg CPU 

time 
0.1 0.343 0.312 0.537 1.304 0.78 0.65 42.226 14.992 74.777 225.626 160.212 

Max CPU 

time 
0.23 1.342 0.765 1.545 4.103 1.58 1.55 111.74 44.444 230.29 404.166 467.298 

Average 

Gap % 
0 4 3.3 0 2.9 0 0 2.5 0 4 8.4 1.3 

Max Gap  

 % 
0 20 16.7 0 14.3 0 0 12.5 0 20 20 6.7 
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Table 4.  Computational performance of HEUR-RC on larger instances 

 𝑛 50 60 

# 𝑓 0.2 0.5 0.8 0.2 

1 

Lower Bound 4 9 16 5 

Upper Bound 4 11 19 7 

Gap % 0 18.2 15.8 28.6 

 # iter 64 1024 1211 1944 

CPU time 9.02 511.38 474.12 1204.85 

2 

Lower Bound 5 9 16 7 

Upper Bound 5 11 17 8 

Gap % 0 18.2 5.9 12.5 

 # iter 553 812 1763 1603 

CPU time 140.65 380.61 680.82 1574.36 

3 

Lower Bound 4 10 16 8 

Upper Bound 4 10 19 8 

Gap % 0 0 15.8 0 

 # iter 66 526 1018 1056 

CPU time 10.17 244.33 411.79 1008.83 

4 

Lower Bound 5 6 17 6 

Upper Bound 5 6 19 7 

Gap % 0 0 10.5 14.3 

 # iter 236 38 1097 2615 

CPU time 65.83 7.64 462.06 1876.73 

5 

Lower Bound 5 8 17 6 

Upper Bound 6 11 20 8 

Gap % 16.7 27.3 15 25 

 # iter 1153 1268 1040 1862 

CPU time 376.23 584.85 402.54 1755.13 

Avg CPU time 120.38 345.76 486.27 1483.98 

Max CPU time 376.23 584.85 680.82 1876.73 

Average Gap % 3.3 12.7 12.6 16.1 

Max Gap % 16.7 27.3 15.8 28.6 
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