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 Abstract  
In this paper, a new copula model with given unit marginals is proposed, based on 

Rüschendorf’s Method. A new bivariate copula family is introduced by adding a proper term 

to independence copula. Thus, we avoid the complexity of the proposed copula model. By 

choosing a baseline copula from the same marginal, we derive a new copula that can approach 

from above towards the independence copula. Furthermore, it is established that a bivariate 

copula constructed by this method allows some flexibility in the dependence measure 

according to Spearman’s correlation coefficient. Additionally, tail dependence measures are 

investigated. Illustrative examples are given taking into account the specific choices of a 

baseline copula. 

Article info 

History:  
Received:16.06.2020 

Accepted:18.01.2021 

Keywords: 

Dependence, 

Rüschendorf’s method, 

Bivariate copula,  

Fréchet bounds,  

Spearman’s rho. 

 

1. Introduction  

When creating new bivariate copula models, researchers generally try to obtain models that can express the high 

correlation. Lai and Xie [1] studied on construction of continuous bivariate positive quadrant dependent 

distributions. Bairamov et al. [2] provided an extension of the maximal correlation coefficient for the Farlie-

Gumbel-Morgenstern (FGM) family. Firstly, we discuss the necessary conditions to construct a new copula. 

Secondly, we obtain bounds for dependence measure in accordance with Spearman's rank correlation coefficient. 

At last, the usefulness of this family is discussed by considering illustrative examples. 

The genesis of the proposal is based on both works of [1] and [3]. Accordingly, a function 𝑔(𝑢, 𝑣) can be defined 

on the unit square as 𝑔(𝑢, 𝑣) = 𝑢𝑣 + 𝑘(𝑢, 𝑣), where 𝑘(𝑢, 𝑣) = 0  at the endpoints of the unit square, with 
−𝜕2𝑘(𝑢,𝑣)

𝜕𝑢𝜕𝑣
≤ 1.   

Let 𝐶(𝑢, 𝑣) denote the bivariate copula function. Then, according to the eq. (2) and the condition (3) of [1], and 

Rüschendorf’s method, the function 𝑘(𝑢, 𝑣) is chosen as 𝑘(𝑢, 𝑣) = 𝑢𝑣 𝐶̅(𝑢, 𝑣), where 𝐶̅ denotes survival copula.   

 

The following theorem shows that 𝑔(𝑢, 𝑣) meets the conditions (3)-(5) given in [1].  

 

Theorem 1. 𝐶𝐻(𝑢, 𝑣) = 𝑢𝑣(1 + 𝐶̅(𝑢, 𝑣)) is a well-defined copula function. 

Proof.  According to Definition 2.2.2 of [4], a bivariate copula must satisfy the following properties:  

 

(P1) For every 𝑢, 𝑣 in  [0,1], it is obvious that 

lim
𝑢→0

𝐶𝐻(𝑢, 𝑣) = lim
𝑢→0

𝑢𝑣(1 + 𝐶̅(𝑢, 𝑣)) = 0, lim
𝑣→0

𝐶𝐻(𝑢, 𝑣) = lim
𝑣→0

𝑢𝑣(1 + 𝐶̅(𝑢, 𝑣)) = 0 

and  

lim
𝑢→1

𝐶𝐻(𝑢, 𝑣) = lim
𝑢→1

𝑢𝑣(1 + 𝐶̅(𝑢, 𝑣)) = 𝑣,   lim
𝑣→1

𝐶𝐻(𝑢, 𝑣) = lim
𝑣→1

𝑢𝑣(1 + 𝐶̅(𝑢, 𝑣)) = 𝑢, 

lim
𝑢∧𝑣→1

𝐶𝐻(𝑢, 𝑣) = lim
𝑢∧𝑣→1

𝑢𝑣(1 + 𝐶̅(𝑢, 𝑣)) = 1. 

 

(P2) We prove the continuous case only.  
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𝑐𝐻(𝑢, 𝑣) =
𝜕2𝐶𝐻(𝑢, 𝑣)

𝜕𝑢𝜕𝑣
= 1 + 𝐶̅(𝑢, 𝑣) + 𝑣

𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑣
+ 𝑢

𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑢
+ 𝑢𝑣

𝜕2𝐶̅(𝑢, 𝑣)

𝜕𝑢𝜕𝑣
.                                     (1) 

 

Now, by noting that 𝐶̅(𝑢, 𝑣) = 1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣), 
𝜕𝐶̅(𝑢,𝑣)

𝜕𝑢
= −1 +

𝜕𝐶(𝑢,𝑣)

𝜕𝑢
  and  

𝜕2𝐶̅(𝑢,𝑣)

𝜕𝑢𝜕𝑣
= 𝑐(𝑢, 𝑣) ≥ 0. Then 

eq. (1) can be rewritten as  

𝑐𝐻(𝑢, 𝑣) = 1 − 𝑢 − 𝑣 + 𝐶̅(𝑢, 𝑣) + 𝑣
𝜕𝐶(𝑢, 𝑣)

𝜕𝑣
+ 𝑢

𝜕𝐶(𝑢, 𝑣)

𝜕𝑢
+ 𝑢𝑣𝑐(𝑢, 𝑣).                                                         (2) 

 

Assume that the copula 𝐶(𝑢, 𝑣) belongs to the class of negative dependent copulas, and then it is easy to conclude 

that from corollary 5.2.6 of [4], each of the inequalities below holds: 

𝑢
𝜕𝐶(𝑢, 𝑣)

𝜕𝑢
≥ 𝐶(𝑢, 𝑣), 

and  

    

𝑣
𝜕𝐶(𝑢, 𝑣)

𝜕𝑣
≥ 𝐶(𝑢, 𝑣). 

Using both inequalities, a lower bound can be achieved as  

 

𝑐𝐻(𝑢, 𝑣) ≥ 1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣) + 𝐶̅(𝑢, 𝑣) + 𝐶(𝑢, 𝑣) + 𝑢𝑣𝑐(𝑢, 𝑣) 
= 2𝐶̅(𝑢, 𝑣) + 𝐶(𝑢, 𝑣) + 𝑢𝑣𝑐(𝑢, 𝑣) 
≥ 0. 

Hence, under the assumption of the negative dependence, it is showed that (P2) holds. 

Now, assume that the copula 𝐶(𝑢, 𝑣) belongs to the class of positive dependent copulas. Thus, the eq. (1) can be 

rewritten as follows: 

 

𝑐𝐻(𝑢, 𝑣) = (1 + 𝑢
𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑢
) (1 + 𝑣

𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑣
) − 𝑢𝑣

𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑢

𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑣
+ 𝐶̅(𝑢, 𝑣) + 𝑢𝑣𝑐(𝑢, 𝑣).                   (3) 

According to Definition 1.2 of [5], and Theorem 5.2.10 and Theorem 5.2.15 of [4], the positive dependence 

implies  

𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑢

𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑣
≤ 𝑐(𝑢, 𝑣)𝐶̅(𝑢, 𝑣). 

 

Then by applying the latter inequality in eq. (3), we have the following lower bound   

 

𝑐𝐻(𝑢, 𝑣) ≥ (1 + 𝑢
𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑢
) (1 + 𝑣

𝜕𝐶̅(𝑢, 𝑣)

𝜕𝑣
) + 𝐶̅(𝑢, 𝑣) + 𝑢𝑣𝑐(𝑢, 𝑣)(1 − 𝐶̅(𝑢, 𝑣)).                                     (4) 

 

Note that each summand in eq. (4) is nonnegative thus 𝑐𝐻(𝑢, 𝑣) ≥ 0 is obtained. This completes the proof. 

 

Remark 1.  Copula family 𝐶𝐻(𝑢, 𝑣) = 𝑢𝑣(1 + 𝐶̅(𝑢, 𝑣)) belongs to the class of positive dependent copulas since 

𝑢𝑣 ≤ 𝑢𝑣(1 + 𝐶̅(𝑢, 𝑣))  for all (𝑢, 𝑣) ∈ [0,1]2.  

 

2. Lower and Upper Bounds on Spearman’s Rho Measure for 𝑪𝑯 

This section is about obtaining the lower and upper bounds of the measure of dependency for the proposed 

bivariate copula family. According to [6] and [7], for any bivariate copula defined on the unit square contains 

Fréchet lower and upper bounds, which respectively are defined by 

𝐶−(𝑥, 𝑦) = max{𝑢 + 𝑣 − 1,0}                                                                                                                                            (5) 

𝐶+(𝑥, 𝑦) = min{𝑢, 𝑣}.                                                                                                                                                           (6) 
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For 𝐶(𝑢, 𝑣),  Spearman’s rho can be expressed as 

𝜌 = 12 ∫ ∫{𝐶(𝑢, 𝑣) − 𝑢𝑣}𝑑𝑣𝑑𝑢

1

0

1

0

                                                                                                                                      (7) 

(see, [8]). The coefficient of Spearman’s rho for the new family can be obtained by 

𝜌𝐶 𝐻
= 12 ∫ ∫ 𝑢𝑣𝐶̅(𝑢, 𝑣)𝑑𝑣𝑑𝑢

1

0

1

0

                                                                                                                                         (8) 

= 12 ∫ ∫ 𝑢𝑣[1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣)]𝑑𝑣𝑑𝑢

1

0

1

0

. 

Hence, by using eq. (5), the lower bound is as follows  

𝜌𝐶 𝐻
≥ −1 + 12 ∬ 𝑢𝑣[𝑢 + 𝑣 − 1]𝑑𝑣𝑑𝑢

𝑢+𝑣−1>0

=
1

10
. 

As we expect from Corollary 1, this lower bound must be positive. We can say that 𝐶𝐻 achieves weakly positive 

dependence from its lower bound. To obtain the upper bound, we use eq. (6) then 

𝜌𝐶 𝐻
≤ −1 + 12 ∬ 𝑢2𝑣𝑑𝑣𝑑𝑢

𝑣>𝑢

+ ∬ 𝑢𝑣2𝑑𝑣𝑑𝑢

𝑢>𝑣

=
3

5
. 

As a result, 𝜌𝐶 𝐻
 lies in the interval [

1

10
,

3

5
 ]. The proposed copula 𝐶𝐻 can only detect positive dependence. 

Furthermore, 𝐶𝐻 can achieve a high correlation through positive dependence. 

 

3. Tail Dependence Measures of 𝑪𝑯  

The tail dependence measures can detect how likely both components jointly exceed extreme quantiles. It is 

useful in determining the common behavior of random variables in the upper and lower quadrants. Upper and 

lower tail dependence coefficients are defined by     

𝜆𝑢 = 2 − lim
𝑡→1

1 − 𝐶(𝑡, 𝑡)

1 − 𝑡
, 𝜆𝐿 = lim

𝑡→0

𝐶(𝑡, 𝑡)

𝑡
 

 

(see [4], subsection 5.4). Accordingly, after some algebraic calculation, the upper and the lower dependence 

coefficients for 𝐶𝐻(𝑢, 𝑣) are respectively equal to 𝜆𝑢 = lim
𝑡→1

−𝑑𝐶̅(𝑡,𝑡)

𝑑𝑡
 and 𝜆𝐿 = 0.  

Next, an example is given to illustrate this family. 

 

4. Illustrative Examples  

 

In this section, we compare in terms of Spearman’s rho correlation coefficient the proposed copula with respect 

to its baseline copula chosen from the most used copulas in modeling real data. 

 

Example 1. (FGM copula) The Farlie-Gumbel-Morgenstern (FGM) family of a bivariate copula is given by 

C(𝑢, 𝑣) = 𝑢𝑣[1 + 𝜃 (1 − 𝑢)(1 − 𝑣)], for 𝜃 ∈  [−1,1] (see [9] and [10]). Then, the copula  𝐶𝐻(𝑢, 𝑣) is given by  

 

𝐶𝐻(𝑢, 𝑣) = 𝑢𝑣[1 + (1 − 𝑢)(1 − 𝑣)(1 + 𝜃 𝑢𝑣)]. 
 

Hence, 𝜌𝐶𝐻
=

1

12
(𝜃 + 4). Since 𝜃 ∈ [−1,1], 

1

4
≤ 𝜌𝐶𝐻

≤
5

12
. One can conclude that this family can model weakly 

positive dependence as FGM does. Furthermore, tail dependence coefficients of 𝐶𝐻(𝑢, 𝑣) are equal to zero as 

FGM has. Hence, 𝐶𝐻(𝑢, 𝑣) has no tail dependence in both directions. 
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Example 2. (Gumbel-Hougaard copula) The bivariate version of the Gumbel-Hougaard family copula is 

given by 

𝐶(𝑢, 𝑣) = 𝑒−[(− log(𝑢))𝜃+(− log(𝑣))𝜃]
1
𝜃

, 

where 𝜃 lies in the interval [1, ∞) (see, [10-13]). Since the Gumbel–Hougaard copula can detect positive 

dependence, it is used in modeling bivariate flood frequency, storm, drought, etc. (see, [14]). [15] claimed that 

no closed-form expression exists for Spearman’s rho. [16] obtained an integral form for Spearman’s rho as  

𝜌𝐺𝐻 =
12

𝜃
∫

[𝑡(1 − 𝑡)]
1

𝜃
−1

[1 + 𝑡
1

𝜃 + (1 − 𝑡)
1

𝜃]
2 𝑑𝑡

1

0

− 3. 

Calculated values of Spearman’s rho for the base model (Gumbel–Hougaard copula) and 𝐶𝐻(𝑢, 𝑣) are given in 

Table 1. 

Table 1. Calculated values of Spearman’s rho of Gumbel-Hougaard and 𝐶𝐻 copulas for some values of 𝜃   

θ 1.1 1.3 1.5 1.7 1.9 2.1 3 5 15 

ρGH 0.1353 0.3368 0.4767 0.5773 0.6520 0.7088 0.8488 0.9432 0.9935 

ρCH
 0.3729 0.4300 0.4683 0.4951 0.5147 0.5293 0.5644 0.5870 0.5986 

 

As can be seen from Table 1, when 𝜃 is close to 1, 𝐶𝐻  seems slightly more dominant than Gumbel-Hougaard in 

terms of Spearman’s rho. However, Gumbel-Hougaard is more dominant in the large values of the 𝜃. 

Gumbel-Hougaard copula family has upper tail dependence measured as 𝜆𝑈 = 2 − 2
1

𝜃 (see, [4] p.215).  After 

some algebraic calculation, 𝐶𝐻 is similarly found to have the same upper tail dependency measure. 

 

Example 3. (Ali-Mikhail-Haq copula) Ali-Mikhail-Haq (AMH) copula is given by 

 

𝐶(𝑢, 𝑣) =
𝑢𝑣

1 − 𝜃(1 − 𝑢)(1 − 𝑣)
, 

 

where 𝜃 ∈ [−1,1] (see, [17, 18]). Spearman’s rho coefficient for this family is given below: 

 

𝜌𝐴𝑀𝐻 =
12(1 + 𝜃)𝑑𝑖𝑙𝑜𝑔(1 − 𝜃) − 24(1 − 𝜃)log (1 − 𝜃)

𝜃2
−

3(𝜃 + 12)

𝜃
, 

 

where 𝑑𝑖𝑙𝑜𝑔(∙) represents the dilogarithm function defined as 𝑑𝑖𝑙𝑜𝑔(𝑥) = ∫
log(𝑡)

1−𝑡
𝑑𝑡

𝑥

1
 (see, [4] p. 172 and [19]). 

They also reported that ρAMH ∈ [−0.2711, 0.4784]. We use the geometric series representation for 1/(1 −

𝜃(1 − 𝑢)(1 − 𝑣)) to calculate the correlation coefficient numerically for 𝐶𝐻(𝑢, 𝑣). Then, we have  

 

𝜌𝐶𝐻
= 48 ∑

𝜃𝑗

((𝑗 + 3)(𝑗 + 2)(𝑗 + 1))2

∞

𝑗=0

− 1. 

 

Calculated approximate values of Spearman’s rho for the base model AMH copula and 𝐶𝐻(𝑢, 𝑣) are tabulated as 

in Table 2. 

 

Table 2. Calculated values of Spearman’s rho of AMH and 𝐶𝐻 copulas for some values of 𝜃   

θ -1 -.7 -.4 -0.1 0.1 0.4 0.7 1 

ρAMH -0.2711 -0.2004 -0.1216 -0.0325 0.0342 0.1490 0.2896 0.4784 

ρCH
 0.2608 0.2806 0.3019 0.32513 0.3418 0.3691 0.3997 0.4353 



 

205 

 

Yılmaz, Bekçi / Cumhuriyet Sci. J., 42(1) (2021) 201-208 
 

 

As can be seen from Table 2, for nonnegative small values of  𝜃, 𝐶𝐻 seems more dominant than the AMH copula 

in terms of Spearman’s rho. However, the AMH copula is more dominant in the large positive values of the 𝜃. 

For negative values of 𝜃, 𝐶𝐻 produces a positive correlation, unlike AMH copula does.  

AMH copula family has lower tail dependence as 𝜆𝐿 =
1

2
 for 𝜃 = 1 reported by [19].  After some algebraic 

calculation, 𝐶𝐻 has no tail dependency measure. 

 

Example 4. (Clayton copula) The Clayton copula is first introduced by [20]. The bivariate version of the Clayton 

copula is given by 

𝐶𝐶𝑙𝑎𝑦𝑡𝑜𝑛(𝑢, 𝑣) = (𝑢−
1

𝜃 + 𝑣−
1

𝜃 − 1)
−𝜃

, 

 

where 𝜃 > 0. This copula can only model positively associated variables. Spearman’s rho coefficient for the 

Clayton copula is more complex. We calculate numerically to obtain these coefficients for both Clayton and 𝐶𝐻  

copulas. Table 3 tabulates Spearman’s rho coefficients for various values of 𝜃.   

 

Table 3. Calculated values of Spearman’s rho of Clayton and 𝐶𝐻 copulas for some values of 𝜃 

θ 0.1 0.3 0.6 0.9 3 5 8 10 

ρClayton 0.9583 0.8100 0.6300 0.5095 0.2124 0.1356 0.0881 0.0714 

ρCH
 0.5798 0.5254 0.4732 0.4427 0.3763 0.3605 0.3509 0.3475 

 

As can be seen from Table 3, while 𝜃 increases, the correlation coefficient of both copula decreases. In terms of 

Spearman's rho, while Clayton copula is dominant for the small values of 𝜃, the 𝐶𝐻 is dominant for the large 

values. 

Clayton copula family has lower tail dependence measured as 𝜆𝐿 = 2
−1

𝜃  (see, [4], p.215).  After some algebraic 

calculation, 𝐶𝐻 has no tail dependency measure. 

 

Example 5. (Frank copula) The Frank copula is given by 

 

𝐶𝐹𝑟𝑎𝑛𝑘(𝑢, 𝑣) =
−1

𝜃
𝑙𝑜𝑔 (1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

(𝑒−𝜃 − 1)
), 

 

where 𝜃 ∈ (−∞, +∞) (see, [21]). This copula can symmetrically model both directions of dependence. 

Spearman’s  rho coefficient for the Frank copula is given as  

𝜌𝐹𝑟𝑎𝑛𝑘 = 1 −
12

𝜃
[𝐷1(𝜃)−𝐷2(𝜃)], 

where 𝐷𝑘(𝑥) is the Debye function which is defined by 
𝑘

𝑥𝑘 ∫
𝑧𝑘

𝑒𝑧−1
𝑑𝑧

𝑥

0
 for any positive integer 𝑘 (see [4], p. 171). 

To obtain this coefficient for both Frank and 𝐶𝐻 copulas, we compute numerically. Table 4 gives tabulated values 

of Spearman’s  rho coefficients for various values of 𝜃.   

 

Table 4. Calculated values of Spearman’s rho of Frank and 𝐶𝐻 copulas for some values of 𝜃 

θ -10 -8 -5 -0.8 -0.3 0.3 0.8 5 8 10 

ρFrank -.8602 -.8035 -.6435 -.1322 -.0499 .0499 .1322 .6435 .8035 .8602 

ρCH
 .1283 .1407 .1772 .3005 .3209 .3458 .3666 .4990 .5425 .5584 

 

As can be seen from Table 4, while the 𝐶𝐻 copula is dominant for the small values of the 𝜃 ≥ 0, the Frank copula 

is dominant for the positively large values of 𝜃 in terms of Spearman's rho. 
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Frank copula has no tail dependence measure (see, [4],  p.215).  After some algebraic calculation, 𝐶𝐻 has also no 

tail dependence measure. 

 

Example 6. (Bivariate Gumbel-Exponential (BGE) copula) The bivariate version of the Gumbel-Exponential 

(BGE) copula is given by  

𝐶(𝑢, 𝑣) = 𝑢 + 𝑣 − 1 + (1 − 𝑢)(1 − 𝑣)𝑒−𝜃log (1−𝑢)log (1−𝑣), 

 

for 𝜃 ∈  [0,1]. This copula is also known as Gumbel-Barnett copula (see, [10, 22] and [4], p. 23). BGE copula 

can model only negative dependence. According to [23], the Spearman’s rho coefficient of BGE copula is 

 

𝜌𝐵𝐺𝐸 = 12 [−
𝑒

4
𝜃

𝜃
𝐸𝑖 (−

4

𝜃
) −

1

4
], 

 

where 𝐸𝑖(·) is the exponential integral function. After some algebraic manipulation, 𝜌𝐶𝐻
 can be obtained as 

 

𝜌𝐶𝐻
= 12

𝑒
4

𝜃

𝜃
[−𝐸𝑖 (−

4

𝜃
) + 2𝑒

2

𝜃𝐸𝑖 (−
6

𝜃
) − 𝑒

5

𝜃𝐸𝑖 (−
9

𝜃
)]. 

 

Calculated values of Spearman’s rho for the base model BGE copula and 𝐶𝐻(𝑢, 𝑣) are tabulated as in Table 5. 

 

Table 5. Calculated values of Spearman’s rho of BGE and 𝐶𝐻 copulas for some values of 𝜃 

θ 0.1 0.3 0.5 0.7 0.9 1 

ρBGE -0.0715 -0.1972 -0.3053 -0.4002 -0.4848 -0.5239 

ρCH
 0.3119 0.2769 0.2494 0.2270 0.2083 0.2000 

As can be seen from Table 5, both BGE and 𝐶𝐻 decreases in 𝜃 in terms of Spearman’s rho. Note that, when 𝜃 

goes to zero,  𝜌𝐶 𝐻
 approaches to 1/3.  Note also that both BGE and 𝐶𝐻 have no tail dependence. In this case, we 

can say that both positive and negative associated random variables can be modeled by a mixture of copulas 𝐶𝐻 

and 𝐶𝐵𝐺𝐸. According to Subsection 3.2.4 of [4],  for 𝛿 ∈ [0,1], we can write a convex combination of 𝐶𝐵𝐺𝐸 and 

𝐶𝐻 as follows 

𝐶∗(𝑢, 𝑣) = 𝛿𝐶𝐻(𝑢, 𝑣) + (1 − 𝛿)𝐶𝐵𝐺𝐸(𝑢, 𝑣). 
Hence, 𝜌∗ lies in interval [-.52, 0.33].  

 

4. Conclusion 

In this study, based on Rüschendorf’s Method, we proposed a new bivariate copula distorting independence 

copula by adding the baseline copula. The baseline copula with a negatively correlated structure certainly 

transforms into a positively correlated structure in the proposed copula according to the different copula families. 

However, there may be differences in the direction of change of the correlation coefficients of the proposed 

copula constructed from baseline copulas with positively correlated structure. This situation is influenced by the 

presence or absence of lower and upper tail dependencies of the copulas. If we pay attention to the upper and 

lower bounds of 𝜌𝐶𝐻
, the values of the Spearman’s rho correlation coefficient for this copula family lie in the 

interval [0.1, .60]. Besides, as a result of illustrative examples, it can be said that except for the extreme value 

copulas, generated copulas using this method achieve reasonable correlations considering some baseline copulas 

of which correlation coefficients less than 0.6. 
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In particular, as illustrated in Example 6, if mixing the proposed copula with a copula that can only model the 

negative dependence is made, a mixture copula that can model both positive and negative dependencies can be 

created. 
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