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RELATIVE SUBCOPURE-INJECTIVE MODULES

YUSUF ALAGOZ

ABSTRACT. In this paper, copure-injective modules are examined from an al-
ternative perspective. For two modules A and B, A is called B-subcopure-
injective if for every copure monomorphism f : B — C and homomorphism
g: B — A, there exists a homomorphism h : C — A such that hf = g. The
class ¢PI~1(A) ={B : A is B-subcopure-injective} is called the subcopure-
injectivity domain of A. We obtain characterizations of copure-injective mod-
ules, right CDS rings and right V-rings with the help of subcopure-injectivity
domains. Since subcopure-injectivity domains clearly contains all copure-
injective modules, studying the notion of modules which are subcopure-injective
only with respect to the class of copure-injective modules is reasonable. We
refer to these modules as sc-indigent. We studied the properties of subcopure-
injectivity domains and of sc-indigent modules and investigated these modules
over some certain rings.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, R will denote an associative ring with identity, and
modules will be unital right R-modules, unless otherwise stated. As usual, the
category of right R-modules is denoted by Mod — R.

Some new studies in module theory have focused on to approach to the injectivity
from the point of relative notions. The injectivity domain Jn~*(A) for a module
A, is the class of all modules B such that A is B-injective [I]. Given A and B
modules, A is called B-subinjective if for every monomorphism f : B — C and
homomorphism g : B — A, there exists a homomorphism h : C' — A such that
hf = g. Instead of using the injectivity domain, in latest articles, authors have
proposed to consider an alternative sight so-called subinjectivity domain Jn~'(A),
contains of modules B such that A is B-subinjective ([2]). It is clear that injectivity
of A is equivalent to that Jn~" (A) = Mod—R. If B is injective, then A is exactly B-
subinjective. So by [2, Proposition 2.3], the class of injective modules is the smallest
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possible subinjectivity domain. The recent studies of non-injective modules have
been made to figure out the notion of modules that are subinjective only with
respect to the class of injective modules. This kind of non-injective modules are
called indigent in [2]. So far, it is not known whether the existence of indigent
modules for an arbitrary ring, but a positive answer is known for some rings, such
as Noetherian rings ([3, Proposition 3.4]).

A submodule A of a right R-module B is said to be pure if for every left R-module
K the natural induced map i ® 1x : A® K — B ® K is a monomorphism. Recall
that a module A is said to be B-pure-injective if for every pure monomorphism
f + C — B and every homomorphism g : C — A, there exists a homomorphism
h: B — Asuch that hf = g. A module A is said to be pure-injective if it is B-pure-
injective for every module B. As an analogue to the injectivity profile of [I2], the
pure-injectivity profile of a ring is introduced in [5]. The pure-injectivity domain
DA (A) of amodule A, consists of those modules B such that A is B-pure-injective.
Inspired by the notion of subinjectivity, the notion of pure-subinjectivity introduced
n [II]. A module A is called B-pure-subinjective if for every pure monomorphism
f: B — C and homomorphism g : B — A, there exists a homomorphism h : C — A
such that hf = g. The pure-subinjectivity domain of a module A is the class
PI~H(A) = {B : Ais B-pure-subinjective}. If B is pure-injective, then A is exactly
B-pure-subinjective. So by [II, Theorem 2.4], for a module A, the class gfl(A)
must contain the class of pure-injective modules at least. In [I1], modules whose
pure-subinjectivity domain consists of only pure-injective modules is called pure-
subinjectively poor (ps-poor for short).

An R-module A is said to be finitely embedded (or cofinitely generated) if E(A) =
E(S1) ® E(S2) @ ... ® E(S,,), where S1, S, ..., S are simple R-modules (see [16]).
If an R-module A is isomorphic to [[{ E(Ss)|Sais a simple right R-module, « € I},
where I is some index set, then A is called a cofree module (see [6]). A right R-
module A is said to be cofinitely related if there is an exact sequence 0 — A — B —
C — 0 of R-modules with B finitely embedded, cofree and C finitely embedded
(see [6]). As a dual notion of purity, by using cofinitely related modules, the notion
of copurity is introduced in [7]. An exact sequence of R-modules 0 - A — B —
C — 0 is called a copure exact sequence if every cofinitely related right R-module
is injective relative to this sequence.

Following idea on pure-injectivity profile of [5], in [I5], the copure-injectivity
profile of a ring is introduced. For two modules A and B, A is called B-copure-
injective if for every copure monomorphism f : C — B and a homomorphism
g : C — A, there exists a homomorphism h : B — A such that hf = g. A
is copure-injective if it is injective with respect to every copure exact sequences
(see [8]). The copure-injectivity domain @PJI~(A) of A is the class of modules
B such that A is B-copure-injective. In [I5], copure-injectively-poor (shortly copi-
poor) modules introduced as modules with minimal copure-injectivity domain and
studied properties of copi-poor modules. The existence of copi-poor modules are



834 YUSUF ALAGOZ

studied and investigated over some certain rings, but we do not know whether
copi-poor modules exist over arbitrary rings (see [15]).

Inspired by the notion of pure-subinjectivity from [I1]], in this paper we initiate
the study of an alternative perspective on the analysis of the copure-injectivity of
a module, as we introduce the notions of relative subcopure-injectivity and assign
to every module its subcopure-injectivity domain. The aim of this paper is to
investigate the viability of obtaining valuable information about a ring R from the
perspective of subcopure-injectivity domain.

In Section 2, relative subcopure-injectivity and subcopure-injectivity domains
of modules introduced. We investigate the properties of the notion of subcopure-
injectivity and we compare subcopure-injectivity domains with (copure-)injectivity
domains. We obtain characterizations of copure-injective modules, right CDS rings
and right V-rings with the help of subcopure-injectivity domains.

In section 3, we introduced and studied the concept of cc-injective modules in
terms of relative subcopure-injective modules. We give examples of cc-injective
modules and compare cc-injective modules with cotorsion modules in Example
We prove that R is a right V-ring if and only if every cc-injective right R-module is
injective. We investigate when the class of B-subcopure-injective modules is closed
under extensions.

An R-module is copure-injective if and only if its subcopure-injectivity domain
consists of Mod— R. Since subcopure-injectivity domains clearly contain all copure-
injective modules, it is reasonable to investigate modules which are subcopure-
injective only with respect to the class of copure-injective modules. It is thus to
keep in line with [I1], we refer to these modules as sc-indigent. In Section 4 of this
paper, we studied and investigated sc-indigent modules over some certain rings. We
compared sc-indigent modules with indigent modules and ps-poor modules.

2. RELATIVE SUBCOPURE-INJECTIVE MODULES

In this section, we study the B-subcopure-injective modules for a module B and
examine its fundamental properties.

Definition 1. For two modules A and B, A is called B-subcopure-injective if for
every copure monomorphism f : B — C and homomorphism g : B — A, there
exists a homomorphism h : C — A such that hf = g. The class &I (A) ={B :

A is B-subcopure-injective} is called the subcopure-injectivity domain of A.

Hiremath proved in [8, Theorem 7] that every module can be embedded as a
copure submodule in a direct product of cofinitely related modules. By [8, Proposi-
tion 3|, every cofinitely related module is copure-injective and every direct product
of copure-injective modules is copure-injective. This gives the below result that we
use frequently in the sequel.

Lemma 2. For every module A, there exists a copure monomorphism o : A — C
with C is copure-injective.
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Our next Lemma gives a characterization of the B-subcopure-injective modules
for a module B.

Lemma 3. Let A and B be two modules. The following conditions are equivalent:

(1) A is B-subcopure-injective.

(2) For every homomorphism g : B — A and every copure monomorphism
a : B — C with C copure-injective, there exists h : C — A such that
ha =g.

(3) For every homomorphism g : B — A and every copure monomorphism
a: B — C with C direct product of cofinitely related modules, there exists
h:C — A such that ha = g.

(4) For every g : B — A there exist a copure monomorphism « : B — C with
C copure-injective and h : C — A such that ha = g.

Proof. (1) = (2) Obvious. (2) = (3) It follows from [8, Proposition 3].

(3) = (4) Let g : B — A be a homomorphism. By Lemma [2| there exists a
copure monomorphism « : B — C with C copure-injective, whence C is a direct
summand of F' where F' = [],.; Fi with each F; cofinitely related by [8, Theorem
8]. So i : B — F is copure monomorphism where i : C' — F. By (3), there exists
h: F — A such that (hi)a = h(ia) = g ,where ia: B — F.

(4) = (1) Let g : B — A be a homomorphism and & : B — D a copure
monomorphism. By (4), there exists a monic copure map « : B — C with C
copure-injective and a homomorphism h : C — A such that ha = g. So by the
copure-injectivity of C, there exists a homomorphism A : D — C such that a = ha.
Then hh : D — A and hha = ha = g. Hence, A is B-subcopure-injective. O

Proposition 4. Let A be an R-module. The following conditions are equivalent:
(1) A is copure-injective.
(2) ¢PI~1(A) = Mod — R.
(3) A is A-subcopure-injective.

Proof. (1) = (2) For any R-module B and any copure-injective module A, every
copure monomorphism « : B — D and a homomorphism g : B — A, there exists
a homomorphism h : D — A such that ha = g. Hence, A is B-subcopure-injective
and so B € ¢PJI 1 (A). Consequently, €PI ' (A) = Mod — R.

(2) = (3) Obvious. S

(3) = (1) Assume that A is A-subcopure-injective. For any copure monomor-
phism « : A — B with B copure-injective and 14 : A — A, there exists a homo-
morphism g : B — A such that g = 14. Thus « splits. This means that A is
copure-injective. ([l

The next result asserts that subcopure-injectivity domain @‘I}J_l(A) of A how
small can be. It should contain the copure-injective modules at least.

Proposition 5. (<100 r €BI 1 (A) = {C € Mod — R | C is copure-injective}.
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Proof. Suppose that each R-module is B-subcopure-injective for an R-module B.
Then, by Proposition [d] B is copure-injective. Conversely, let A be any R-module
and B a copure-injective module. Let g : B — A be a homomorphism and «: B —
C a copure monomorphism. Since B is copure-injective, the splitting map o : B —
C' gives the homomorphism S : C — B such that fa = 15. So B(ag) = (Ba)g = g.
Hence B € %71(/1) for any R-module A. O

Clearly, €B7 ' (A) contains In~'(A) for any module A. The following example
shows that equality need not hold.

Example 6. Let G = Z(n) be a cyclic group of order n. Since G is finite it
is cofinitely related and so it is copure-injective Z-module [8, Proposition 3]. So
G € ¢PIH(G) by Proposition , But G ¢ In"'(Q), otherwise G would be an
injective Z-module.

It is natural to investigate conditions to get the coincidence of the injectivity, and
subcopure-injectivity domains, either for a certain class of modules or all the mod-
ules in Mod — R. We start by proving that, for all modules, subcopure-injectivity
domains are the same as their subinjectivity domains over a right V-ring. Recall
that a ring R is a right V-ring if and only if all exact sequences in Mod — R are
copure if and only if all copure-injective modules are injective (see [8, Proposition

5]).

Corollary 7. Let R be a ring. The following conditions are equivalent:
(1) R is a right V-ring.
(2) ePIH(A) =In"(A) for each R-module A.
(3) @71(/1) C In(A) for each R-module A.

Proof. (1) = (2) It is easy since for any module A, over a right V-ring its extension
is copure.
(2) = (3) Tt is obvious.
(3) = (1) For a copure injective right R-module A, by Proposition A€ %_1(14).
By (3), A € In"'(A). This says that A is injective, and so R is a right V-ring by
[8, Proposition 5].

(]

Proposition 8. Let A be a module. The following conditions are equivalent:

(1) A is copure-injective.

(2) %_I(A) is closed under copure submodules.

(3) CPI7(A) =PI H(4).

(4) €I (4) C ePTH(A).
Proof. The implications (1) = (2) and (1) = (3) are clear since €PI~'(A) =
EPI(A) = Mod — R.
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(2) = (1) For a copure-injective extension C' of A, C' € &PT1(A), so A is also
in ¢PJ 1(A) v (2). Then by Proposmon A is copure-injective.

(3) = (4) It is clear.

(4) = (1) For a copure-injective extension C of A, C € €I~ (A). This implies
that A is C-copure-injective i.e. C' = A & B for some submodule B of A, whence
A is copure-injective. O

The rings for which every right R-module is copure-injective are called right
CDS, [8, Corollary 18]. As a result of Proposition we get the following Corollary.

Corollary 9. Let R be a ring. The following conditions are equivalent:
(1) R is right CDS.
(2) €PI 1 (A) =PI '(A) for each R-module A.
(3) €PI~(A) C EPIT(A) for each R-module A.

Proof. (2) = (3) It is clear.

(1) = (2) Let A be an R-module. Since R is a right CDS ring, A is copure-
injective. The rest follows from Proposition

(3) = (1) For any right R-module A, €BI 1 (A) C ¢PI*(A) by the hypothesis.
Thus every right R-module A is copure-injective by Proposition[§] whence R is right
CDS. O

Remark 10. If A is R-subcopure-injective, for a ring R and a module A, then
C‘ijl(A) and Mod— R need not be equal. For example if R is copure-injective ring
that is not CDS, then for every module A, A is R-subcopure-injective by Proposition
[Al But by the definition of right CDS ring, we can find a module A that is not
copure-injective.

Proposition 11. Let A be a module. The following conditions are equivalent:
(1) A is injective.
(2) EPITH(A) =TIn"'(A).
(3) EPI~H(A) C In"H(A).
Proof. (1) = (2) = (3) It is clear.
(3) = (1) By the copure-injectivity of E(A), E(A) € ¢PI~'(A). By (3), B(A) €
Jn~'(A), and hence A4 is injective. O

Corollary 12. Let R be a ring. The following conditions are equivalent:
(1) R is semisimple.
(2) ¢PI~1(A) = In"(A) for each R-module A.
(3) ePIL(A) C In"(A) for each R-module A.

Proof. (2) = (3) It is clear.

(1) = (2) Let A be an R-module. Since R is semisimple, A is injective. The rest
follows from Proposition
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(3) = (1) For any right R-module A, ¢PI~1(A) C In"'(A) by the hypothesis.
Thus every right R-module A is injective by Proposition[11} whence R is semisimple.
O

In general, factors of copure-injective modules need not be copure-injective (see,
[8, Remark 24]). But if R is a Dedekind domain, every copure factor of copure-
injective module is copure-injective by [8, Corollary 28]. Hence, by the following
Proposition, BT _1(A) is closed under copure homomorphic images over Dedekind
domains for a module A.

Proposition 13. (‘I‘ijl(A) is closed under copure quotients for any module A
if and only if every copure homomorphic image of a copure-injective module is
copure-injective.

Proof. Let B be a copure submodule of copure-injective module A. Since A €
%_1(%), by the hypothesis % € %_1(%), and so % is copure-injective. Con-
versely, let A be a module and C' a copure submodule of B with B € ¢3! (A).
By Lemma [2] there exists a copure monomorphism « : B — D with D copure-
injective. Let f : % — A be any homomorphism. Consider the following pushout
diagram:

“D——B 0

B

where 7 : B — Z is the natural epimorphism. By commutativity of the following

diagram:

lg

leq—tn
Q|'U<Tb

"

(a3
-

and the pushout diagram property, there exists a map ¢ : F — g such that ¢r’ =
7' and ¢a’ = o’. Since A is B-subcopure-injective, there exists a homomorphism
¢ : D — A such that pa = fr. Then, (C) = pa(C) = fr(C) = f(0) = 0. Hence,
Ker(¢n') C Kery, and so there exists 9 : % — A such that 7" = . For every
z € B, Y(x+C) =9yr"(x) = p(z) = fr(x) = f(x + C). Thus ¢ extends f. Then
by the hypothesis, g is copure-injective, so by Lemma g € %71(14). O
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Proposition 14. @}3371(]_[1.61 Ai) = Nier EPIH(A;) for any set of modules
{Aitier-

Proof. Let B € %71(1_[%[ A;)), it € T and f: B — A; be a homomorphism.
Then there exists a homomorphism g : C' — [],.; A; such that go = iy, f, where
a: B — C is the monic map with C' copure-injective and i4, : A; — [],c; As is
the inclusion map. Let 74, : [[,c; 4i — A; denote the natural projection. Since
mA, g0 = Ta%4, f = f, [ is extended to m4,9. Therefore B € @_1(142») for any
i€ I. Conversely , let B € €3 ' (A;) foralli € Iand f: B — [I;c; Ai. Hence for
each i € I, there exists g; . C — A; with gioo =ma, f. Now define g: C' — HiGI A;
by x — g;(x). Since ga = f, g extends f. Thus, B € %71(]_[1.61 Ay). O

Corollary 15. Let B be a module. Then B-subcopure-injective modules are closed
under direct summands and finite direct sums.

Proof. Let A be a module with decomposition A = @} A;. By Proposition
B € &PI ' (A) if and only if B € N, &PI~"(A4;). Now the result follows. O

The following shows that Proposition [14] do not hold for infinite direct sums.

Example 16. Let K; = Z,, and G = @, yZp, where p; is a prime integer for
all i € N. Since every Z,, is pure-injective, every Z,, is copure-injective by [8]
Proposition 9]. So G € &PI~(Z,,) for alli € N. But G ¢ EPI~(G) since G is
not copure-injective by [8, Examples-(ii)].

Proposition 17. If B € ¢PI 1 (A), then every direct summand of B is in CPI 1 (A).

Proof. Suppose C'is a direct summand of B, and let f : C — A be a homomorphism.
By Lemma [2] there exist copure monomorphisms ¢ : B — D and j : C' — E with
D and E copure-injective. Consider the following diagram:

C B
o
E D

where ic : C — B the inclusion map. Since D is copure-injective, there exists
h : E — D such that hj = iic. Let m¢ : B — C be the projection map. Since
A is B-subcopure-injective, there exists a homomorphism g : D — A such that
gi = fre. Then, (gh)j = g(hj) = giic = frcic = f, and so by Lemma Ais
C-subcopure-injective. O

ic

0——C——
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3. CC-INJECTIVE MODULES

In this section, we introduced and studied the concept of cc-injective modules in
terms of relative subcopure-injective modules.

A module C is said to be co-absolutely co-pure (c.c. in short) if every exact
sequence of modules ending with C' is copure, equivalently Ezth(C,A) = 0 for
every co-finitely related module A. Clearly every projective module is c.c. But the
converse need not be true, for instance, the additive group Q is a c.c. Z-module
but Q is not projective as a Z-module (see, [9, Example on page 290]).

Definition 18. A right module A is called cc-injective if Exth(B, A) = 0 for any
c.c. module B.

Recall that a module A is called cotorsion if Exth(B, A) = 0 for every flat
module B. A module A is called linearly compact if any family of cosets having
the finite intersection property has a nonempty intersection. A commutative ring
is called classical if the injective hull E(S) of all simple modules S are linearly
compact (see [I7, §3]).

Example 19. (1) By definition, any cofinitely related module is cc-injective.

(2) By |9, Remark 15], c.c. modules need not be flat in general. By [, Corollary
14] c.c. modules are flat over a commutative ring. So, in this case every cotorsion
module is cc-injective.

(8) By [9, Remark 12], flat modules need not be c.c. Over a commutative classical
ring flat modules are c.c. by [9, Proposition 11]. So, in this case every cc-injective
module is cotorsion.

Remark 20. Over a commutative ring R every simple R-module is cotorsion by
[13, Lemma 2.14]. So by Example (2), every simple R-module is cc-injective.

Lemma 21. FEvery copure-injective module is cc-injective.

Proof. Let A be a copure-injective module and B a c.c. module. By [9, Propo-
sition 5], there exists a copure exact sequence 0 — D — P — B — 0 with
P projective. If we apply Hom(—, A) to this sequence, we have Hom(P, A) —
Hom(D,A) — Exth(B,A) — Exth(P,A) = 0. Since A is copure-injective,
Hom(P,A) — Hom(D, A) is epic, and so Ezty(B,A) = 0 for any c.c. module
B. Hence A is cc-injective. O

Proposition 22. For a ring R, the following conditions are equivalent:
(1) R is a right V-ring.
(2) Ewery copure-injective right R-module is injective.
(3) Ewery cc-injective right R-module is injective.

Proof. (1) < (2) It follows by [8, Proposition 5].
(3) = (2) It immediately from Lemma [21]
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(1) = (3) Let A be a cc-injective R-module and B any R-module. Since R is
right V, B is a c.c. module by [9, Proposition 4]. Thus Ezth(B, A) = 0 for any
R-module B, and so A is injective. O

Proposition 23. Let B be an R-module and oo : B — C' a copure monomorphism
with C copure-injective. If C/im(«) is c.c., then every cc-injective module is B-
subcopure-injective.

Proof. Let A be a cc-injective module and C/im(«) a c.c. module. Applying
functor Hom(—, A) to the exact sequence 0 — B — C — C/im(a) — 0, we
have Hom(C,A) — Hom(B,A) — FEaxth(C/im(a),A). Since C/im(a) is c.c.,
Exth(C/im(a),A) = 0 and so Hom(C,A) — Hom(B, A) is epic. Hence A is
B-subcopure-injective by Lemma (I

Theorem 24. Let A and B be two modules. Consider the following conditions:

(1) A is B-subcopure-injective.

(2) For every homomorphism g : B — A, there exist a monomorphism « :
B — C with C copure-injective and a homomorphism h : C — A such that
ha=g.

(3) For every homomorphism g : B — A, there exist a monomorphism o : B —
C with C cc-injective and a homomorphism h : C — A such that ha = g.

(4) For every homomorphism g : B — A and for any extension o : B — C
with C/B is c.c., there exists h : C'— A such that ha = g.

Then (1) & (2) = (3) = (4). Also, if D/im(«) is c.c. for a copure monomor-
phism « : B — D with D copure-injective, then (4) = (1).

Proof. (1) = (2) Obvious by Lemma [3|

(2) = (3) It follows from Lemma since every copure-injective module is
cc-injective.

(2) = (1) Let @« : B — C be a copure-monomorphism and g : B — A a
homomorphism. By (2), exists a monomorphism 5 : B — D with D copure-
injective and a homomorphism h : D — A such that h5 = g. Since D is copure-
injective, there exists a homomorphism f : C — D such that fa = . Hence,
(hf)a = hB = g, and so (1) follows.

(3) = (4) Let C be an extension of B with C/B is cc. and g : B — A a
homomorphism. So, 0 — B % C — C/B — 0 is copure exact. Then consider the
exact sequence with E cc-injective:

0 — Homg(C/B,E) — Homg(C, E) *~ Homg(B, E) — ExtL(C/B,E) =0
Since, «* is surjective, by (3), there exists a monomorphism f : B — FE and a
homomorphism h : £ — A such that hf = g. Since o* is surjective, there exists a
homomorphism 8 : C — E such that Sa = f. Hence, h(Ba) = hf = g, and so (4)
follows.
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(4) = (1) : Let a : B — D be a copure monomorphism with D copure-injective
and D/im(«) is c.c. So, by (4), for any homomorphism g : B — A there exists
h: D — A such that ha = g. Thus A is B-subcopure-injective by Lemma O

Now we investigate when the class of B-subcopure-injective modules is closed
under extensions.

Proposition 25. Let B be an R-module and o : B — C' a copure monomorphism
with C' copure-injective. The class of B-subcopure-injective modules is closed under
extensions if and only if for every exact sequence 0 — A’ — A — C — 0 with A’
B-subcopure-injective, A is B-subcopure-injective.

Proof. Let 0 - A’ - A — C — 0 be an exact sequence with A’ B-subcopure-
injective. Since C' is copure-injective, it is B-subcopure-injective. By the hypothe-
sis, A is B-subcopure-injective. Conversely, let 0 — A’ — A s A” — 0 be an exact
sequence with A’ and A” B-subcopure-injective. Then by Lemma [3] for every map
g : B — A, there exists a map h : C — A” such that 7g = ha where o : B — C
is the copure monomorphism with C' copure-injective. If we consider the pullback
diagram:

Dﬁ(]—m

An’
Ll
A’ z

s A A" 5()

0

there exists a homomorphism v : B — D such that fyv = g and 8y = a. By hy-
pothesis, D is B-subcopure-injective, so by Lemma[3] there exists a homomorphism
h' : C — D such that h’a = . Thus, fh'a = fy = g and so, A is B-subcopure-
injective by Lemma [3] O

A ring R is said to be right co-noetherian if every homomorphic image of a fi-
nitely embedded R-module is finitely embedded, equivalently for each simple right
R-module S the injective hull E(S) is Artinian (see [I0, Theorem]). Over a commu-
tative noetherian ring, the injective hull of each simple right R-module is Artinian
by [14, Exercise 4.17]. Thus every commutative Noetherian ring is co-noetherian. In
the following, for an ideal I, we deal with an R-module structure of an R/I-module.

Proposition 26. Let R be a right co-noetherian ring and f : R — S a ring
epimorphism. If A is cc-injective S-module, then A is cc-injective R-module.

Proof. Let A be a cc-injective S-module. Since f : R — S is a ring epimorphism,
S = R/I for some ideal I of R and so A can be considered as R/I-module. Let C
be an extension of A by a c.c. module F' as R-modules. Since F' is c.c., the exact
sequence 0 - A — C — F — 0 is copure. Then AN CI = AI for each right ideal
I by [7, proposition 16]. Since A is an R/I-module, AN CI = AI = 0, and so

Ag?q = A. Thus we have the following commutative diagram.
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> A v I\[ +0
0 A+CT . C . C 5()
TCI CI TA+CI ’
Since % ® ? & ﬁ is c.c. as an R/I-module, so the second exact sequence splits

and so does the first. Hence Ext}%(F, A) =0, and A is cc-injective R-module. [

4. SC-INDIGENT MODULES

Indigent (resp. ps-poor) modules were introduced and some results about them
were obtained in [2] (resp. [I1I]). Proposition [5| says that subcopure-injectivity
domain of any module A contains all copure-injective modules, so studying the
notion of modules which are subcopure-injective only with respect to the class of
copure-injective modules is reasonable. It is thus to keep in line with [2], we refer
to these modules as subcopure-injectively indigent (sc-indigent for short). In this
section, sc-indigent modules investigated over certain rings and compared these
modules with indigent modules and ps-poor modules.

Definition 27. A module A is said to be subcopure-injectively indigent (sc-indigent
for short), if CPI~L(A) consists of only copure-injective modules.

Remark 28. Let A be a module with decomposition A = B&C'. If B is sc-indigent,
then so is A, by Proposition [L]}

Proposition 29. For a ring R, the following conditions are equivalent:

(1) R is right CDS.

(2) Ewvery R-module is sc-indigent.

(3) There exists a copure-injective sc-indigent R-module.

(4) 0 is an sc-indigent R-module.

(5) R has an sc-indigent module and every sc-indigent R-module is copure-

injective.

(6) R has an sc-indigent module and every factor of an sc-indigent R-module
is sc-indigent.

(7) R has an sc-indigent module and every summand of an sc-indigent R-
module is sc-indigent.

3
4
5

Proof. The implications (1) = (2) and (1) = (5) are clear since every R-module is
copure-injective.

The implications (2) = (4) and (2) = (6) = (7) are clear.

(4) = (2) It immediately from Remark

(2) = (3) The copure-injective extension C' of any module A is sc-indigent.

(3) = (1) Let C be a copure-injective sc-indigent module and A a module. Since
C is A-subcopure-injective, A is copure-injective. Then R is a right CDS ring.
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(5) = (1) By (5), there exist an sc-indigent module B. Then A @ B is also sc-
indigent for any module A by Remark So A is copure-injective by (5). Also A
is copure-injective. Thus R is a right CDS ring.

(7) = (2) Let A be an R-module. Then A @ B is an sc-indigent module for some
sc-indigent module B. Hence, A is sc-indigent by the hypothesis. O

Remark 30. Over a commutative uniserial ring R, every R-module is sc-indigent
since such rings are CDS by [4, Theorem 10.4].

Remark 31. An sc-indigent module need not be indigent. Consider the ring R =
7.)p*Z, for some prime integer p. R is an artinian principal ideal ring. Hence it is
a CDS-ring by [4, Theorem 10.4]. So every R-module is sc-indigent. Since Z/p*Z is
injective 7./ p*Z-module, In~*(Z/p*Z) = Mod— R. But since R is not a semisimple
ring, Z/p*7Z is not an indigent R-module.

Remark 32. An indigent module need not be sc-indigent. Let R be a commutative
Noetherian ring which is not CDS and I' a complete set of representatives of finitely
presented right R-modules. Set F' := g . Si- Thus the character module Ft
of F is a pure-injective indigent R-module by [3, Proposition 3.4]. Since R is
commutative, F'T is copure-injective by [8, Proposition 9], and so @‘BJ_l(FJr) =
Mod — R. But since R is not a CDS-ring, F™ is not an sc-indigent R-module.

Proposition 33. Indigent modules and sc-indigent modules coincide over a right
V-ring R.
Proof. Let R be a right V-ring. Then by Corollary 6‘43371(14) = Jn"'(A) for any

R-module A. Hence A is indigent if and only if A is sc-indigent by [8, Proposition
5]. O

Proposition 34. A module A is sc-indigent if and only if ||
where A; = A for alli € I.

Proof. Clear by Proposition O

ier Ai is sc-indigent

By Remark 28 and Proposition [34] sc-indigent rings are characterized as follows:

Corollary 35. For a ring R, the following are equivalent:
(1) Rg is sc-indigent.
(2) Any direct product of copies of R is sc-indigent.
(3) Ewery free R-module is sc-indigent.
(4) There exists a cyclic projective sc-indigent R-module.

Theorem 36. Let R be a ring, B an R-module and A an R/I-module for any ideal
I of R. If B/BI € ¢PI " (Ag)r), then B € EPI " (Ag).

Proof. Let B/BI € @‘BJ_I(AR/I), and C be a copure extension of B and g :
B — A an R-homomorphism. Since copure short exact sequences of R-modules
form a proper class by [7, Proposition 8], B/BI can be embedded in C/CIT as
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a copure submodule via f : B/BI — C/CI defined by f(b+ BI) = b+ CI for
any b € B. Since BI C Ker(g), there exists a homomorphism h : B/BI — A
such that hmp = g where 7 : B — B/BI. By assumption, there exists an
R/I-homomorphism h : C/CI — A such that hf = g. Since h is also an R-
homomorphism and hrcip = g where 7¢ : C — C/CI and ig : B — C is the
inclusion. Thus B € ¢PI~"(Ag). O

Corollary 37. Let I be an ideal of a ring R and A and B be R/I-modules. Then
the following statements hold:
(1) B € ¢BI~"(AR) if and only if B € EPI " (Ag/1).
(2) A is a copure-injective R-module if and only if A is a copure-injective R/I-
module.
(3) A is an sc-indigent R-module if and only if A is an sc-indigent R/I-module.

Proof. (1) If AR is B-subcopure-injective, then clearly it is a B-subcopure-injective
R/I-module. The converse follows by Theorem

(2) By using Proposition |4} (2) follows from (1).

(3) Clear by (1) and (2). O

Recall [II] that a module A is called ps-poor if pure-subinjectivity domain of
A consists of only pure-injective modules. Over a commutative classical ring R,
by [8, Corollary 17], pure-injective modules and copure-injective modules coincide.
Hence, the following result is immediate.

Proposition 38. Let R be a commutative classical ring. Then an R-module A is
sc-indigent if and only if A is ps-poor.

Since by [I6], Theorem 2] and [I7, Proposition 4.1], every commutative (co-
)Jnoetherian ring is classical, we have the following result.

Corollary 39. Let R be a commutative (co-)noetherian ring. Then an R-module
A is sc-indigent if and only if A is ps-poor.

Remark 40. ps-poor abelian groups and sc-indigent abelian groups coincide by
Corollary[39

Corollary 41. Every finitely embedded Z-module is copure-injective but not sc-
indigent.

Proof. Let A be a finitely embedded Z-module. Then A is cofinitely related by [6]
Proposition 17]. So A is copure-injective by [8, Proposition 3]. Since Z is not a
CDS ring, by Proposition A is not an sc-indigent module. (I

Proposition 42. If a ring R has an sc-indigent cc-injective module B, then every
module with its copure injective extension has c.c cokernel is copure-injective.
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Proof. Let A be an R-module with the exact sequence 0 - A — C — C/A — 0,
where A — C is a copure extension of A with C' is copure-injective. Consider
the sequence 0 — Hom(C /A, B) — Hom(C,B) — Hom(A, B) — Ext'(C/A, B).
Since C/A is c.c., Ext'(C/A, B) = 0. So by Lemma Ac e¢PI!(B), that is A is
copure-injective. S ([l
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