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RELATIVE SUBCOPURE-INJECTIVE MODULES

YUSUF ALAGÖZ

Abstract. In this paper, copure-injective modules are examined from an al-
ternative perspective. For two modules A and B, A is called B-subcopure-
injective if for every copure monomorphism f : B → C and homomorphism
g : B → A, there exists a homomorphism h : C → A such that hf = g. The
class CPI−1(A) ={B : A is B-subcopure-injective} is called the subcopure-
injectivity domain of A. We obtain characterizations of copure-injective mod-
ules, right CDS rings and right V-rings with the help of subcopure-injectivity
domains. Since subcopure-injectivity domains clearly contains all copure-
injective modules, studying the notion of modules which are subcopure-injective
only with respect to the class of copure-injective modules is reasonable. We
refer to these modules as sc-indigent. We studied the properties of subcopure-
injectivity domains and of sc-indigent modules and investigated these modules
over some certain rings.

1. Introduction and preliminaries

Throughout this paper, R will denote an associative ring with identity, and
modules will be unital right R-modules, unless otherwise stated. As usual, the
category of right R-modules is denoted by Mod−R.
Some new studies in module theory have focused on to approach to the injectivity

from the point of relative notions. The injectivity domain In−1(A) for a module
A, is the class of all modules B such that A is B-injective [1]. Given A and B
modules, A is called B-subinjective if for every monomorphism f : B → C and
homomorphism g : B → A, there exists a homomorphism h : C → A such that
hf = g. Instead of using the injectivity domain, in latest articles, authors have
proposed to consider an alternative sight so-called subinjectivity domain In−1(A),
contains of modules B such that A is B-subinjective ([2]). It is clear that injectivity
of A is equivalent to that In−1(A) = Mod−R. If B is injective, then A is exactly B-
subinjective. So by [2, Proposition 2.3], the class of injective modules is the smallest
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possible subinjectivity domain. The recent studies of non-injective modules have
been made to figure out the notion of modules that are subinjective only with
respect to the class of injective modules. This kind of non-injective modules are
called indigent in [2]. So far, it is not known whether the existence of indigent
modules for an arbitrary ring, but a positive answer is known for some rings, such
as Noetherian rings ([3, Proposition 3.4]).
A submodule A of a right R-module B is said to be pure if for every left R-module

K the natural induced map i⊗ 1K : A⊗K → B ⊗K is a monomorphism. Recall
that a module A is said to be B-pure-injective if for every pure monomorphism
f : C → B and every homomorphism g : C → A, there exists a homomorphism
h : B → A such that hf = g. A module A is said to be pure-injective if it is B-pure-
injective for every module B. As an analogue to the injectivity profile of [12], the
pure-injectivity profile of a ring is introduced in [5]. The pure-injectivity domain
PI−1(A) of a moduleA, consists of those modulesB such thatA isB-pure-injective.
Inspired by the notion of subinjectivity, the notion of pure-subinjectivity introduced
in [11]. A module A is called B-pure-subinjective if for every pure monomorphism
f : B → C and homomorphism g : B → A, there exists a homomorphism h : C → A
such that hf = g. The pure-subinjectivity domain of a module A is the class
PI−1(A) = {B : A is B-pure-subinjective}. If B is pure-injective, then A is exactly
B-pure-subinjective. So by [11, Theorem 2.4], for a module A, the class PI−1(A)
must contain the class of pure-injective modules at least. In [11], modules whose
pure-subinjectivity domain consists of only pure-injective modules is called pure-
subinjectively poor (ps-poor for short).
AnR-moduleA is said to be finitely embedded (or cofinitely generated) if E(A) =

E(S1)⊕ E(S2)⊕ ...⊕ E(Sn), where S1, S2, ..., Sn are simple R-modules (see [16]).
If an R-module A is isomorphic to

∏
{E(Sα)|Sαis a simple right R-module, α ∈ I},

where I is some index set, then A is called a cofree module (see [6]). A right R-
module A is said to be cofinitely related if there is an exact sequence 0→ A→ B →
C → 0 of R-modules with B finitely embedded, cofree and C finitely embedded
(see [6]). As a dual notion of purity, by using cofinitely related modules, the notion
of copurity is introduced in [7]. An exact sequence of R-modules 0 → A → B →
C → 0 is called a copure exact sequence if every cofinitely related right R-module
is injective relative to this sequence.
Following idea on pure-injectivity profile of [5], in [15], the copure-injectivity

profile of a ring is introduced. For two modules A and B, A is called B-copure-
injective if for every copure monomorphism f : C → B and a homomorphism
g : C → A, there exists a homomorphism h : B → A such that hf = g. A
is copure-injective if it is injective with respect to every copure exact sequences
(see [8]). The copure-injectivity domain CPI−1(A) of A is the class of modules
B such that A is B-copure-injective. In [15], copure-injectively-poor (shortly copi-
poor) modules introduced as modules with minimal copure-injectivity domain and
studied properties of copi-poor modules. The existence of copi-poor modules are
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studied and investigated over some certain rings, but we do not know whether
copi-poor modules exist over arbitrary rings (see [15]).
Inspired by the notion of pure-subinjectivity from [11], in this paper we initiate

the study of an alternative perspective on the analysis of the copure-injectivity of
a module, as we introduce the notions of relative subcopure-injectivity and assign
to every module its subcopure-injectivity domain. The aim of this paper is to
investigate the viability of obtaining valuable information about a ring R from the
perspective of subcopure-injectivity domain.
In Section 2, relative subcopure-injectivity and subcopure-injectivity domains

of modules introduced. We investigate the properties of the notion of subcopure-
injectivity and we compare subcopure-injectivity domains with (copure-)injectivity
domains. We obtain characterizations of copure-injective modules, right CDS rings
and right V-rings with the help of subcopure-injectivity domains.
In section 3, we introduced and studied the concept of cc-injective modules in

terms of relative subcopure-injective modules. We give examples of cc-injective
modules and compare cc-injective modules with cotorsion modules in Example 19.
We prove that R is a right V-ring if and only if every cc-injective right R-module is
injective. We investigate when the class of B-subcopure-injective modules is closed
under extensions.
An R-module is copure-injective if and only if its subcopure-injectivity domain

consists ofMod−R. Since subcopure-injectivity domains clearly contain all copure-
injective modules, it is reasonable to investigate modules which are subcopure-
injective only with respect to the class of copure-injective modules. It is thus to
keep in line with [11], we refer to these modules as sc-indigent. In Section 4 of this
paper, we studied and investigated sc-indigent modules over some certain rings. We
compared sc-indigent modules with indigent modules and ps-poor modules.

2. Relative subcopure-injective modules

In this section, we study the B-subcopure-injective modules for a module B and
examine its fundamental properties.

Definition 1. For two modules A and B, A is called B-subcopure-injective if for
every copure monomorphism f : B → C and homomorphism g : B → A, there
exists a homomorphism h : C → A such that hf = g. The class CPI−1(A) ={B :
A is B-subcopure-injective} is called the subcopure-injectivity domain of A.

Hiremath proved in [8, Theorem 7] that every module can be embedded as a
copure submodule in a direct product of cofinitely related modules. By [8, Proposi-
tion 3], every cofinitely related module is copure-injective and every direct product
of copure-injective modules is copure-injective. This gives the below result that we
use frequently in the sequel.

Lemma 2. For every module A, there exists a copure monomorphism α : A → C
with C is copure-injective.
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Our next Lemma gives a characterization of the B-subcopure-injective modules
for a module B.

Lemma 3. Let A and B be two modules. The following conditions are equivalent:
(1) A is B-subcopure-injective.
(2) For every homomorphism g : B → A and every copure monomorphism

α : B → C with C copure-injective, there exists h : C → A such that
hα = g.

(3) For every homomorphism g : B → A and every copure monomorphism
α : B → C with C direct product of cofinitely related modules, there exists
h : C → A such that hα = g.

(4) For every g : B → A there exist a copure monomorphism α : B → C with
C copure-injective and h : C → A such that hα = g.

Proof. (1)⇒ (2) Obvious. (2)⇒ (3) It follows from [8, Proposition 3].
(3) ⇒ (4) Let g : B → A be a homomorphism. By Lemma 2, there exists a

copure monomorphism α : B → C with C copure-injective, whence C is a direct
summand of F where F =

∏
i∈I Fi with each Fi cofinitely related by [8, Theorem

8]. So iα : B → F is copure monomorphism where i : C → F . By (3), there exists
h : F → A such that (hi)α = h(iα) = g ,where iα : B → F .

(4) ⇒ (1) Let g : B → A be a homomorphism and ᾱ : B → D a copure
monomorphism. By (4), there exists a monic copure map α : B → C with C
copure-injective and a homomorphism h : C → A such that hα = g. So by the
copure-injectivity of C, there exists a homomorphism h̄ : D → C such that α = h̄ᾱ.
Then hh̄ : D → A and hh̄ᾱ = hα = g. Hence, A is B-subcopure-injective. �
Proposition 4. Let A be an R-module. The following conditions are equivalent:

(1) A is copure-injective.
(2) CPI−1(A) = Mod−R.
(3) A is A-subcopure-injective.

Proof. (1) ⇒ (2) For any R-module B and any copure-injective module A, every
copure monomorphism α : B → D and a homomorphism g : B → A, there exists
a homomorphism h : D → A such that hα = g. Hence, A is B-subcopure-injective
and so B ∈ CPI−1(A). Consequently, CPI−1(A) = Mod−R.

(2)⇒ (3) Obvious.
(3) ⇒ (1) Assume that A is A-subcopure-injective. For any copure monomor-

phism α : A → B with B copure-injective and 1A : A → A, there exists a homo-
morphism g : B → A such that gα = 1A. Thus α splits. This means that A is
copure-injective. �
The next result asserts that subcopure-injectivity domain CPI−1(A) of A how

small can be. It should contain the copure-injective modules at least.

Proposition 5.
⋂
A∈Mod−R CPI

−1(A) = {C ∈Mod−R | C is copure-injective}.
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Proof. Suppose that each R-module is B-subcopure-injective for an R-module B.
Then, by Proposition 4, B is copure-injective. Conversely, let A be any R-module
and B a copure-injective module. Let g : B → A be a homomorphism and α : B →
C a copure monomorphism. Since B is copure-injective, the splitting map α : B →
C gives the homomorphism β : C → B such that βα = 1B . So β(αg) = (βα)g = g.
Hence B ∈ CPI−1(A) for any R-module A. �

Clearly, CPI−1(A) contains In−1(A) for any module A. The following example
shows that equality need not hold.

Example 6. Let G = Z(n) be a cyclic group of order n. Since G is finite it
is cofinitely related and so it is copure-injective Z-module [8, Proposition 3]. So
G ∈ CPI−1(G) by Proposition 4. But G /∈ In−1(G), otherwise G would be an
injective Z-module.

It is natural to investigate conditions to get the coincidence of the injectivity, and
subcopure-injectivity domains, either for a certain class of modules or all the mod-
ules in Mod− R. We start by proving that, for all modules, subcopure-injectivity
domains are the same as their subinjectivity domains over a right V-ring. Recall
that a ring R is a right V-ring if and only if all exact sequences in Mod − R are
copure if and only if all copure-injective modules are injective (see [8, Proposition
5]).

Corollary 7. Let R be a ring. The following conditions are equivalent:

(1) R is a right V-ring.
(2) CPI−1(A) = In−1(A) for each R-module A.
(3) CPI−1(A) ⊆ In−1(A) for each R-module A.

Proof. (1)⇒ (2) It is easy since for any module A, over a right V-ring its extension
is copure.
(2)⇒ (3) It is obvious.
(3)⇒ (1) For a copure injective rightR-moduleA, by Proposition 4, A ∈ CPI−1(A).
By (3), A ∈ In−1(A). This says that A is injective, and so R is a right V-ring by
[8, Proposition 5].

�

Proposition 8. Let A be a module. The following conditions are equivalent:

(1) A is copure-injective.
(2) CPI−1(A) is closed under copure submodules.
(3) CPI−1(A) = CPI−1(A).
(4) CPI−1(A) ⊆ CPI−1(A).

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) are clear since CPI−1(A) =

CPI−1(A) = Mod−R.
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(2) ⇒ (1) For a copure-injective extension C of A, C ∈ CPI−1(A), so A is also
in CPI−1(A) by (2). Then by Proposition 4, A is copure-injective.

(3)⇒ (4) It is clear.
(4)⇒ (1) For a copure-injective extension C of A, C ∈ CPI−1(A). This implies

that A is C-copure-injective i.e. C = A ⊕ B for some submodule B of A, whence
A is copure-injective. �

The rings for which every right R-module is copure-injective are called right
CDS, [8, Corollary 18]. As a result of Proposition 8, we get the following Corollary.

Corollary 9. Let R be a ring. The following conditions are equivalent:
(1) R is right CDS.
(2) CPI−1(A) = CPI−1(A) for each R-module A.
(3) CPI−1(A) ⊆ CPI−1(A) for each R-module A.

Proof. (2)⇒ (3) It is clear.
(1) ⇒ (2) Let A be an R-module. Since R is a right CDS ring, A is copure-

injective. The rest follows from Proposition 8.
(3)⇒ (1) For any right R-module A, CPI−1(A) ⊆ CPI−1(A) by the hypothesis.

Thus every right R-module A is copure-injective by Proposition 8, whence R is right
CDS. �

Remark 10. If A is R-subcopure-injective, for a ring R and a module A, then
CPI−1(A) andMod−R need not be equal. For example if R is copure-injective ring
that is not CDS, then for every module A, A is R-subcopure-injective by Proposition
5. But by the definition of right CDS ring, we can find a module A that is not
copure-injective.

Proposition 11. Let A be a module. The following conditions are equivalent:
(1) A is injective.
(2) CPI−1(A) = In−1(A).
(3) CPI−1(A) ⊆ In−1(A).

Proof. (1)⇒ (2)⇒ (3) It is clear.
(3)⇒ (1) By the copure-injectivity of E(A), E(A) ∈ CPI−1(A). By (3), E(A) ∈

In−1(A), and hence A is injective. �

Corollary 12. Let R be a ring. The following conditions are equivalent:
(1) R is semisimple.
(2) CPI−1(A) = In−1(A) for each R-module A.
(3) CPI−1(A) ⊆ In−1(A) for each R-module A.

Proof. (2)⇒ (3) It is clear.
(1)⇒ (2) Let A be an R-module. Since R is semisimple, A is injective. The rest

follows from Proposition 11.
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(3) ⇒ (1) For any right R-module A, CPI−1(A) ⊆ In−1(A) by the hypothesis.
Thus every right R-module A is injective by Proposition 11, whence R is semisimple.

�

In general, factors of copure-injective modules need not be copure-injective (see,
[8, Remark 24]). But if R is a Dedekind domain, every copure factor of copure-
injective module is copure-injective by [8, Corollary 28]. Hence, by the following
Proposition, CPI−1(A) is closed under copure homomorphic images over Dedekind
domains for a module A.

Proposition 13. CPI−1(A) is closed under copure quotients for any module A
if and only if every copure homomorphic image of a copure-injective module is
copure-injective.

Proof. Let B be a copure submodule of copure-injective module A. Since A ∈
CPI−1(AB ), by the hypothesis A

B ∈ CPI
−1(AB ), and so A

B is copure-injective. Con-
versely, let A be a module and C a copure submodule of B with B ∈ CPI−1(A).
By Lemma 2, there exists a copure monomorphism α : B → D with D copure-
injective. Let f : BC → A be any homomorphism. Consider the following pushout
diagram:

where π : B → B
C is the natural epimorphism. By commutativity of the following

diagram:

and the pushout diagram property, there exists a map φ : E → D
C such that φπ′ =

π′′ and φα′ = α′′. Since A is B-subcopure-injective, there exists a homomorphism
ϕ : D → A such that ϕα = fπ. Then, ϕ(C) = ϕα(C) = fπ(C) = f(0) = 0. Hence,
Ker(φπ′) ⊆ Kerϕ, and so there exists ψ : DC → A such that ψπ′′ = ϕ. For every
x ∈ B, ψ(x+ C) = ψπ′′(x) = ϕ(x) = fπ(x) = f(x+ C). Thus ψ extends f . Then
by the hypothesis, DC is copure-injective, so by Lemma 3, BC ∈ CPI

−1(A). �
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Proposition 14. CPI−1(
∏
i∈I Ai) =

⋂
i∈I CPI

−1(Ai) for any set of modules
{Ai}i∈I .

Proof. Let B ∈ CPI−1(
∏
i∈I Ai), i ∈ I and f : B → Ai be a homomorphism.

Then there exists a homomorphism g : C →
∏
i∈I Ai such that gα = iAi

f , where
α : B → C is the monic map with C copure-injective and iAi

: Ai →
∏
i∈I Ai is

the inclusion map. Let πAi
:
∏
i∈I Ai → Ai denote the natural projection. Since

πAi
gα = πAi

iAi
f = f , f is extended to πAi

g. Therefore B ∈ CPI−1(Ai) for any
i ∈ I. Conversely , let B ∈ CPI−1(Ai) for all i ∈ I and f : B →

∏
i∈I Ai. Hence for

each i ∈ I, there exists gi : C → Ai with giα = πAi
f . Now define g : C →

∏
i∈I Ai

by x 7→ gi(x). Since gα = f , g extends f . Thus, B ∈ CPI−1(
∏
i∈I Ai). �

Corollary 15. Let B be a module. Then B-subcopure-injective modules are closed
under direct summands and finite direct sums.

Proof. Let A be a module with decomposition A = ⊕ni=1Ai. By Proposition 14,
B ∈ CPI−1(A) if and only if B ∈

⋂n
i=1 CPI

−1(Ai). Now the result follows. �

The following shows that Proposition 14 do not hold for infinite direct sums.

Example 16. Let Ki = Zpi and G =
⊕

i∈N Zpi where pi is a prime integer for
all i ∈ N. Since every Zpi is pure-injective, every Zpi is copure-injective by [8,
Proposition 9]. So G ∈ CPI−1(Zpi) for all i ∈ N. But G /∈ CPI−1(G) since G is
not copure-injective by [8, Examples-(ii)].

Proposition 17. If B ∈ CPI−1(A), then every direct summand of B is in CPI−1(A).

Proof. Suppose C is a direct summand ofB, and let f : C → A be a homomorphism.
By Lemma 2, there exist copure monomorphisms i : B → D and j : C → E with
D and E copure-injective. Consider the following diagram:

where iC : C → B the inclusion map. Since D is copure-injective, there exists
h : E → D such that hj = iiC . Let πC : B → C be the projection map. Since
A is B-subcopure-injective, there exists a homomorphism g : D → A such that
gi = fπC . Then, (gh)j = g(hj) = giiC = fπCiC = f , and so by Lemma 3, A is
C-subcopure-injective. �
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3. cc-injective modules

In this section, we introduced and studied the concept of cc-injective modules in
terms of relative subcopure-injective modules.
A module C is said to be co-absolutely co-pure (c.c. in short) if every exact

sequence of modules ending with C is copure, equivalently Ext1R(C,A) = 0 for
every co-finitely related module A. Clearly every projective module is c.c. But the
converse need not be true, for instance, the additive group Q is a c.c. Z-module
but Q is not projective as a Z-module (see, [9, Example on page 290]).

Definition 18. A right module A is called cc-injective if Ext1R(B,A) = 0 for any
c.c. module B.

Recall that a module A is called cotorsion if Ext1R(B,A) = 0 for every flat
module B. A module A is called linearly compact if any family of cosets having
the finite intersection property has a nonempty intersection. A commutative ring
is called classical if the injective hull E(S) of all simple modules S are linearly
compact (see [17, §3]).

Example 19. (1) By definition, any cofinitely related module is cc-injective.
(2) By [9, Remark 15], c.c. modules need not be flat in general. By [9, Corollary
14] c.c. modules are flat over a commutative ring. So, in this case every cotorsion
module is cc-injective.
(3) By [9, Remark 12], flat modules need not be c.c. Over a commutative classical
ring flat modules are c.c. by [9, Proposition 11]. So, in this case every cc-injective
module is cotorsion.

Remark 20. Over a commutative ring R every simple R-module is cotorsion by
[13, Lemma 2.14]. So by Example 19(2), every simple R-module is cc-injective.

Lemma 21. Every copure-injective module is cc-injective.

Proof. Let A be a copure-injective module and B a c.c. module. By [9, Propo-
sition 5], there exists a copure exact sequence 0 → D → P → B → 0 with
P projective. If we apply Hom(−, A) to this sequence, we have Hom(P,A) →
Hom(D,A) → Ext1R(B,A) → Ext1R(P,A) = 0. Since A is copure-injective,
Hom(P,A) → Hom(D,A) is epic, and so Ext1R(B,A) = 0 for any c.c. module
B. Hence A is cc-injective. �

Proposition 22. For a ring R, the following conditions are equivalent:

(1) R is a right V-ring.
(2) Every copure-injective right R-module is injective.
(3) Every cc-injective right R-module is injective.

Proof. (1)⇔ (2) It follows by [8, Proposition 5].
(3)⇒ (2) It immediately from Lemma 21.
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(1) ⇒ (3) Let A be a cc-injective R-module and B any R-module. Since R is
right V , B is a c.c. module by [9, Proposition 4]. Thus Ext1R(B,A) = 0 for any
R-module B, and so A is injective. �

Proposition 23. Let B be an R-module and α : B → C a copure monomorphism
with C copure-injective. If C/im(α) is c.c., then every cc-injective module is B-
subcopure-injective.

Proof. Let A be a cc-injective module and C/im(α) a c.c. module. Applying
functor Hom(−, A) to the exact sequence 0 → B → C → C/im(α) → 0, we
have Hom(C,A) → Hom(B,A) → Ext1R(C/im(α), A). Since C/im(α) is c.c.,
Ext1R(C/im(α), A) = 0 and so Hom(C,A) → Hom(B,A) is epic. Hence A is
B-subcopure-injective by Lemma 3. �

Theorem 24. Let A and B be two modules. Consider the following conditions:

(1) A is B-subcopure-injective.
(2) For every homomorphism g : B → A, there exist a monomorphism α :

B → C with C copure-injective and a homomorphism h : C → A such that
hα = g.

(3) For every homomorphism g : B → A, there exist a monomorphism α : B →
C with C cc-injective and a homomorphism h : C → A such that hα = g.

(4) For every homomorphism g : B → A and for any extension α : B ↪→ C
with C/B is c.c., there exists h : C → A such that hα = g.

Then (1) ⇔ (2) ⇒ (3) ⇒ (4). Also, if D/im(α) is c.c. for a copure monomor-
phism α : B → D with D copure-injective, then (4)⇒ (1).

Proof. (1)⇒ (2) Obvious by Lemma 3.
(2) ⇒ (3) It follows from Lemma 21, since every copure-injective module is

cc-injective.
(2) ⇒ (1) Let α : B → C be a copure-monomorphism and g : B → A a

homomorphism. By (2), exists a monomorphism β : B → D with D copure-
injective and a homomorphism h : D → A such that hβ = g. Since D is copure-
injective, there exists a homomorphism f : C → D such that fα = β. Hence,
(hf)α = hβ = g, and so (1) follows.

(3) ⇒ (4) Let C be an extension of B with C/B is c.c. and g : B → A a
homomorphism. So, 0 → B

α−→ C → C/B → 0 is copure exact. Then consider the
exact sequence with E cc-injective:

0→ HomR(C/B,E)→ HomR(C,E)
α∗−−→ HomR(B,E)→ Ext1R(C/B,E) = 0

Since, α∗ is surjective, by (3), there exists a monomorphism f : B → E and a
homomorphism h : E → A such that hf = g. Since α∗ is surjective, there exists a
homomorphism β : C → E such that βα = f . Hence, h(βα) = hf = g, and so (4)
follows.
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(4)⇒ (1) : Let α : B → D be a copure monomorphism with D copure-injective
and D/im(α) is c.c. So, by (4), for any homomorphism g : B → A there exists
h : D → A such that hα = g. Thus A is B-subcopure-injective by Lemma 3. �
Now we investigate when the class of B-subcopure-injective modules is closed

under extensions.

Proposition 25. Let B be an R-module and α : B → C a copure monomorphism
with C copure-injective. The class of B-subcopure-injective modules is closed under
extensions if and only if for every exact sequence 0 → A′ → A → C → 0 with A′

B-subcopure-injective, A is B-subcopure-injective.

Proof. Let 0 → A′ → A → C → 0 be an exact sequence with A′ B-subcopure-
injective. Since C is copure-injective, it is B-subcopure-injective. By the hypothe-
sis, A is B-subcopure-injective. Conversely, let 0→ A′ → A

π−→ A′′ → 0 be an exact
sequence with A′ and A′′ B-subcopure-injective. Then by Lemma 3, for every map
g : B → A, there exists a map h : C → A′′ such that πg = hα where α : B → C
is the copure monomorphism with C copure-injective. If we consider the pullback
diagram:

there exists a homomorphism γ : B → D such that fγ = g and βγ = α. By hy-
pothesis, D is B-subcopure-injective, so by Lemma 3, there exists a homomorphism
h′ : C → D such that h′α = γ. Thus, fh′α = fγ = g and so, A is B-subcopure-
injective by Lemma 3. �
A ring R is said to be right co-noetherian if every homomorphic image of a fi-

nitely embedded R-module is finitely embedded, equivalently for each simple right
R-module S the injective hull E(S) is Artinian (see [10, Theorem]). Over a commu-
tative noetherian ring, the injective hull of each simple right R-module is Artinian
by [14, Exercise 4.17]. Thus every commutative Noetherian ring is co-noetherian. In
the following, for an ideal I, we deal with an R-module structure of an R/I-module.

Proposition 26. Let R be a right co-noetherian ring and f : R → S a ring
epimorphism. If A is cc-injective S-module, then A is cc-injective R-module.

Proof. Let A be a cc-injective S-module. Since f : R → S is a ring epimorphism,
S ∼= R/I for some ideal I of R and so A can be considered as R/I-module. Let C
be an extension of A by a c.c. module F as R-modules. Since F is c.c., the exact
sequence 0 → A → C → F → 0 is copure. Then A ∩ CI = AI for each right ideal
I by [7, proposition 16]. Since A is an R/I-module, A ∩ CI = AI = 0, and so
A+CI
CI

∼= A. Thus we have the following commutative diagram.
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Since C
A ⊗

R
I
∼= C

A+CI is c.c. as an R/I-module, so the second exact sequence splits
and so does the first. Hence Ext1R(F,A) = 0, and A is cc-injective R-module. �

4. sc-indigent modules

Indigent (resp. ps-poor) modules were introduced and some results about them
were obtained in [2] (resp. [11]). Proposition 5 says that subcopure-injectivity
domain of any module A contains all copure-injective modules, so studying the
notion of modules which are subcopure-injective only with respect to the class of
copure-injective modules is reasonable. It is thus to keep in line with [2], we refer
to these modules as subcopure-injectively indigent (sc-indigent for short). In this
section, sc-indigent modules investigated over certain rings and compared these
modules with indigent modules and ps-poor modules.

Definition 27. A module A is said to be subcopure-injectively indigent (sc-indigent
for short), if CPI−1(A) consists of only copure-injective modules.

Remark 28. Let A be a module with decomposition A = B⊕C. If B is sc-indigent,
then so is A, by Proposition 14.

Proposition 29. For a ring R, the following conditions are equivalent:
(1) R is right CDS.
(2) Every R-module is sc-indigent.
(3) There exists a copure-injective sc-indigent R-module.
(4) 0 is an sc-indigent R-module.
(5) R has an sc-indigent module and every sc-indigent R-module is copure-

injective.
(6) R has an sc-indigent module and every factor of an sc-indigent R-module

is sc-indigent.
(7) R has an sc-indigent module and every summand of an sc-indigent R-

module is sc-indigent.

Proof. The implications (1)⇒ (2) and (1)⇒ (5) are clear since every R-module is
copure-injective.
The implications (2)⇒ (4) and (2)⇒ (6)⇒ (7) are clear.
(4)⇒ (2) It immediately from Remark 28.
(2)⇒ (3) The copure-injective extension C of any module A is sc-indigent.
(3) ⇒ (1) Let C be a copure-injective sc-indigent module and A a module. Since
C is A-subcopure-injective, A is copure-injective. Then R is a right CDS ring.
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(5) ⇒ (1) By (5), there exist an sc-indigent module B. Then A ⊕ B is also sc-
indigent for any module A by Remark 28. So A is copure-injective by (5). Also A
is copure-injective. Thus R is a right CDS ring.
(7) ⇒ (2) Let A be an R-module. Then A ⊕ B is an sc-indigent module for some
sc-indigent module B. Hence, A is sc-indigent by the hypothesis. �
Remark 30. Over a commutative uniserial ring R, every R-module is sc-indigent
since such rings are CDS by [4, Theorem 10.4].

Remark 31. An sc-indigent module need not be indigent. Consider the ring R =
Z/p2Z, for some prime integer p. R is an artinian principal ideal ring. Hence it is
a CDS-ring by [4, Theorem 10.4]. So every R-module is sc-indigent. Since Z/p2Z is
injective Z/p2Z-module, In−1(Z/p2Z) = Mod−R. But since R is not a semisimple
ring, Z/p2Z is not an indigent R-module.

Remark 32. An indigent module need not be sc-indigent. Let R be a commutative
Noetherian ring which is not CDS and Γ a complete set of representatives of finitely
presented right R-modules. Set F :=

⊕
Si∈Γ Si. Thus the character module F

+

of F is a pure-injective indigent R-module by [3, Proposition 3.4]. Since R is
commutative, F+ is copure-injective by [8, Proposition 9], and so CPI−1(F+) =

Mod−R. But since R is not a CDS-ring, F+ is not an sc-indigent R-module.

Proposition 33. Indigent modules and sc-indigent modules coincide over a right
V-ring R.

Proof. Let R be a right V-ring. Then by Corollary 7, CPI−1(A) = In−1(A) for any
R-module A. Hence A is indigent if and only if A is sc-indigent by [8, Proposition
5]. �
Proposition 34. A module A is sc-indigent if and only if

∏
i∈I Ai is sc-indigent

where Ai = A for all i ∈ I.
Proof. Clear by Proposition 14. �
By Remark 28 and Proposition 34, sc-indigent rings are characterized as follows:

Corollary 35. For a ring R, the following are equivalent:
(1) RR is sc-indigent.
(2) Any direct product of copies of R is sc-indigent.
(3) Every free R-module is sc-indigent.
(4) There exists a cyclic projective sc-indigent R-module.

Theorem 36. Let R be a ring, B an R-module and A an R/I-module for any ideal
I of R. If B/BI ∈ CPI−1(AR/I), then B ∈ CPI−1(AR).

Proof. Let B/BI ∈ CPI−1(AR/I), and C be a copure extension of B and g :
B → A an R-homomorphism. Since copure short exact sequences of R-modules
form a proper class by [7, Proposition 8], B/BI can be embedded in C/CI as
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a copure submodule via f : B/BI → C/CI defined by f(b + BI) = b + CI for
any b ∈ B. Since BI ⊆ Ker(g), there exists a homomorphism h : B/BI → A
such that hπB = g where πB : B → B/BI. By assumption, there exists an
R/I-homomorphism h̄ : C/CI → A such that h̄f = g. Since h is also an R-
homomorphism and h̄πCiB = g where πC : C → C/CI and iB : B → C is the
inclusion. Thus B ∈ CPI−1(AR). �

Corollary 37. Let I be an ideal of a ring R and A and B be R/I-modules. Then
the following statements hold:

(1) B ∈ CPI−1(AR) if and only if B ∈ CPI−1(AR/I).
(2) A is a copure-injective R-module if and only if A is a copure-injective R/I-

module.
(3) A is an sc-indigent R-module if and only if A is an sc-indigent R/I-module.

Proof. (1) If AR is B-subcopure-injective, then clearly it is a B-subcopure-injective
R/I-module. The converse follows by Theorem 36.

(2) By using Proposition 4, (2) follows from (1).
(3) Clear by (1) and (2). �

Recall [11] that a module A is called ps-poor if pure-subinjectivity domain of
A consists of only pure-injective modules. Over a commutative classical ring R,
by [8, Corollary 17], pure-injective modules and copure-injective modules coincide.
Hence, the following result is immediate.

Proposition 38. Let R be a commutative classical ring. Then an R-module A is
sc-indigent if and only if A is ps-poor.

Since by [16, Theorem 2] and [17, Proposition 4.1], every commutative (co-
)noetherian ring is classical, we have the following result.

Corollary 39. Let R be a commutative (co-)noetherian ring. Then an R-module
A is sc-indigent if and only if A is ps-poor.

Remark 40. ps-poor abelian groups and sc-indigent abelian groups coincide by
Corollary 39.

Corollary 41. Every finitely embedded Z-module is copure-injective but not sc-
indigent.

Proof. Let A be a finitely embedded Z-module. Then A is cofinitely related by [6,
Proposition 17]. So A is copure-injective by [8, Proposition 3]. Since Z is not a
CDS ring, by Proposition 29, A is not an sc-indigent module. �

Proposition 42. If a ring R has an sc-indigent cc-injective module B, then every
module with its copure injective extension has c.c cokernel is copure-injective.
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Proof. Let A be an R-module with the exact sequence 0 → A → C → C/A → 0,
where A → C is a copure extension of A with C is copure-injective. Consider
the sequence 0 → Hom(C/A,B) → Hom(C,B) → Hom(A,B) → Ext1(C/A,B).
Since C/A is c.c., Ext1(C/A,B) = 0. So by Lemma 3, A ∈ CPI−1(B), that is A is
copure-injective. �
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