Available online: April 26, 2020

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 69, Number 1, Pages 832-846 (2020) DOI: 10.31801/cfsuasmas.640331 ISSN 1303-5991 E-ISSN 2618-6470 http://communications.science.ankara.edu.tr

RELATIVE SUBCOPURE-INJECTIVE MODULES

YUSUF ALAGÖZ

ABSTRACT. In this paper, copure-injective modules are examined from an alternative perspective. For two modules A and B, A is called B-subcopureinjective if for every copure monomorphism $f: B \to C$ and homomorphism $g: B \to A$, there exists a homomorphism $h: C \to A$ such that hf = g. The class $\mathfrak{CPT}^{-1}(A) = \{B: A \text{ is } B\text{-subcopure-injective}\}$ is called the subcopureinjectivity domain of A. We obtain characterizations of copure-injective modules, right CDS rings and right V-rings with the help of subcopure-injectivity domains. Since subcopure-injectivity domains clearly contains all copureinjective modules, studying the notion of modules which are subcopure-injective only with respect to the class of copure-injective modules is reasonable. We refer to these modules as sc-indigent. We studied the properties of subcopureinjectivity domains and of sc-indigent modules and investigated these modules over some certain rings.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, R will denote an associative ring with identity, and modules will be unital right R-modules, unless otherwise stated. As usual, the category of right R-modules is denoted by Mod - R.

Some new studies in module theory have focused on to approach to the injectivity from the point of relative notions. The injectivity domain $\Im n^{-1}(A)$ for a module A, is the class of all modules B such that A is B-injective [1]. Given A and Bmodules, A is called B-subinjective if for every monomorphism $f: B \to C$ and homomorphism $g: B \to A$, there exists a homomorphism $h: C \to A$ such that hf = g. Instead of using the injectivity domain, in latest articles, authors have proposed to consider an alternative sight so-called subinjectivity domain $\Im n^{-1}(A)$, contains of modules B such that A is B-subinjective ([2]). It is clear that injectivity of A is equivalent to that $\Im n^{-1}(A) = Mod - R$. If B is injective, then A is exactly Bsubinjective. So by [2, Proposition 2.3], the class of injective modules is the smallest

Received by the editors: October 31, 2019; Accepted: April 17, 2020.

²⁰¹⁰ Mathematics Subject Classification. Primary 16D10, 13C11; Secondary 18G25, 16D80. Key words and phrases. Copure-injective modules, subcopure-injectivity domains, sc-indigent modules, CDS rings.

 $[\]textcircled{\columnation}$ Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

⁸³²

possible subinjectivity domain. The recent studies of non-injective modules have been made to figure out the notion of modules that are subinjective only with respect to the class of injective modules. This kind of non-injective modules are called indigent in [2]. So far, it is not known whether the existence of indigent modules for an arbitrary ring, but a positive answer is known for some rings, such as Noetherian rings ([3, Proposition 3.4]).

A submodule A of a right R-module B is said to be pure if for every left R-module K the natural induced map $i \otimes 1_K : A \otimes K \to B \otimes K$ is a monomorphism. Recall that a module A is said to be B-pure-injective if for every pure monomorphism $f: C \to B$ and every homomorphism $g: C \to A$, there exists a homomorphism $h: B \to A$ such that hf = g. A module A is said to be pure-injective if it is B-pureinjective for every module B. As an analogue to the injectivity profile of [12], the pure-injectivity profile of a ring is introduced in [5]. The pure-injectivity domain $\mathfrak{PI}^{-1}(A)$ of a module A, consists of those modules B such that A is B-pure-injective. Inspired by the notion of subinjectivity, the notion of pure-subinjectivity introduced in [11]. A module A is called B-pure-subinjective if for every pure monomorphism $f: B \to C$ and homomorphism $g: B \to A$, there exists a homomorphism $h: C \to A$ such that hf = q. The pure-subinjectivity domain of a module A is the class $\mathfrak{PT}^{-1}(A) = \{B : A \text{ is } B \text{-pure-subinjective}\}.$ If B is pure-injective, then A is exactly *B*-pure-subinjective. So by [11, Theorem 2.4], for a module A, the class $\mathfrak{PT}^{-1}(A)$ must contain the class of pure-injective modules at least. In [11], modules whose pure-subinjectivity domain consists of only pure-injective modules is called puresubinjectively poor (ps-poor for short).

An *R*-module *A* is said to be finitely embedded (or cofinitely generated) if $E(A) = E(S_1) \oplus E(S_2) \oplus ... \oplus E(S_n)$, where $S_1, S_2, ..., S_n$ are simple *R*-modules (see [16]). If an *R*-module *A* is isomorphic to $\prod \{E(S_\alpha) | S_\alpha$ is a simple right *R*-module, $\alpha \in I\}$, where *I* is some index set, then *A* is called a cofree module (see [6]). A right *R*-module *A* is said to be cofinitely related if there is an exact sequence $0 \to A \to B \to C \to 0$ of *R*-modules with *B* finitely embedded, cofree and *C* finitely embedded (see [6]). As a dual notion of purity, by using cofinitely related modules, the notion of copurity is introduced in [7]. An exact sequence of *R*-modules $0 \to A \to B \to C \to 0$ is called a copure exact sequence if every cofinitely related right *R*-module is injective relative to this sequence.

Following idea on pure-injectivity profile of [5], in [15], the copure-injectivity profile of a ring is introduced. For two modules A and B, A is called B-copureinjective if for every copure monomorphism $f: C \to B$ and a homomorphism $g: C \to A$, there exists a homomorphism $h: B \to A$ such that hf = g. Ais copure-injective if it is injective with respect to every copure exact sequences (see [8]). The copure-injectivity domain $\mathfrak{CPT}^{-1}(A)$ of A is the class of modules B such that A is B-copure-injective. In [15], copure-injectively-poor (shortly copipoor) modules introduced as modules with minimal copure-injectivity domain and studied properties of copi-poor modules. The existence of copi-poor modules are

studied and investigated over some certain rings, but we do not know whether copi-poor modules exist over arbitrary rings (see [15]).

Inspired by the notion of pure-subinjectivity from [11], in this paper we initiate the study of an alternative perspective on the analysis of the copure-injectivity of a module, as we introduce the notions of relative subcopure-injectivity and assign to every module its subcopure-injectivity domain. The aim of this paper is to investigate the viability of obtaining valuable information about a ring R from the perspective of subcopure-injectivity domain.

In Section 2, relative subcopure-injectivity and subcopure-injectivity domains of modules introduced. We investigate the properties of the notion of subcopureinjectivity and we compare subcopure-injectivity domains with (copure-)injectivity domains. We obtain characterizations of copure-injective modules, right CDS rings and right V-rings with the help of subcopure-injectivity domains.

In section 3, we introduced and studied the concept of cc-injective modules in terms of relative subcopure-injective modules. We give examples of cc-injective modules and compare cc-injective modules with cotorsion modules in Example 19. We prove that R is a right V-ring if and only if every cc-injective right R-module is injective. We investigate when the class of B-subcopure-injective modules is closed under extensions.

An *R*-module is copure-injective if and only if its subcopure-injectivity domain consists of Mod-R. Since subcopure-injectivity domains clearly contain all copureinjective modules, it is reasonable to investigate modules which are subcopureinjective only with respect to the class of copure-injective modules. It is thus to keep in line with [11], we refer to these modules as sc-indigent. In Section 4 of this paper, we studied and investigated sc-indigent modules over some certain rings. We compared sc-indigent modules with indigent modules and ps-poor modules.

2. Relative subcopure-injective modules

In this section, we study the B-subcopure-injective modules for a module B and examine its fundamental properties.

Definition 1. For two modules A and B, A is called B-subcopure-injective if for every copure monomorphism $f : B \to C$ and homomorphism $g : B \to A$, there exists a homomorphism $h : C \to A$ such that hf = g. The class $\mathfrak{CPT}^{-1}(A) = \{B :$ A is B-subcopure-injective $\}$ is called the subcopure-injectivity domain of A.

Hiremath proved in [8, Theorem 7] that every module can be embedded as a copure submodule in a direct product of cofinitely related modules. By [8, Proposition 3], every cofinitely related module is copure-injective and every direct product of copure-injective modules is copure-injective. This gives the below result that we use frequently in the sequel.

Lemma 2. For every module A, there exists a copure monomorphism $\alpha : A \to C$ with C is copure-injective.

Our next Lemma gives a characterization of the B-subcopure-injective modules for a module B.

Lemma 3. Let A and B be two modules. The following conditions are equivalent:

- (1) A is B-subcopure-injective.
- (2) For every homomorphism $g : B \to A$ and every copure monomorphism $\alpha : B \to C$ with C copure-injective, there exists $h : C \to A$ such that $h\alpha = g$.
- (3) For every homomorphism $g : B \to A$ and every copure monomorphism $\alpha : B \to C$ with C direct product of cofinitely related modules, there exists $h : C \to A$ such that $h\alpha = g$.
- (4) For every $g: B \to A$ there exist a copure monomorphism $\alpha: B \to C$ with C copure-injective and $h: C \to A$ such that $h\alpha = g$.

Proof. $(1) \Rightarrow (2)$ Obvious. $(2) \Rightarrow (3)$ It follows from [8, Proposition 3].

 $(3) \Rightarrow (4)$ Let $g: B \to A$ be a homomorphism. By Lemma 2, there exists a copure monomorphism $\alpha: B \to C$ with C copure-injective, whence C is a direct summand of F where $F = \prod_{i \in I} F_i$ with each F_i cofinitely related by [8, Theorem 8]. So $i\alpha: B \to F$ is copure monomorphism where $i: C \to F$. By (3), there exists $h: F \to A$ such that $(hi)\alpha = h(i\alpha) = g$, where $i\alpha: B \to F$.

(4) \Rightarrow (1) Let $g : B \to A$ be a homomorphism and $\bar{\alpha} : B \to D$ a copure monomorphism. By (4), there exists a monic copure map $\alpha : B \to C$ with Ccopure-injective and a homomorphism $h : C \to A$ such that $h\alpha = g$. So by the copure-injectivity of C, there exists a homomorphism $\bar{h} : D \to C$ such that $\alpha = \bar{h}\bar{\alpha}$. Then $h\bar{h} : D \to A$ and $h\bar{h}\bar{\alpha} = h\alpha = g$. Hence, A is B-subcopure-injective. \Box

Proposition 4. Let A be an R-module. The following conditions are equivalent:

- (1) A is copure-injective.
- (2) $\mathfrak{CPT}^{-1}(A) = Mod R.$
- (3) A is A-subcopure-injective.

Proof. (1) \Rightarrow (2) For any *R*-module *B* and any copure-injective module *A*, every copure monomorphism $\alpha : B \to D$ and a homomorphism $g : B \to A$, there exists a homomorphism $h : D \to A$ such that $h\alpha = g$. Hence, *A* is *B*-subcopure-injective and so $B \in \mathfrak{CPT}^{-1}(A)$. Consequently, $\mathfrak{CPT}^{-1}(A) = Mod - R$.

 $(2) \Rightarrow (3)$ Obvious.

 $(3) \Rightarrow (1)$ Assume that A is A-subcopure-injective. For any copure monomorphism $\alpha : A \to B$ with B copure-injective and $1_A : A \to A$, there exists a homomorphism $g : B \to A$ such that $g\alpha = 1_A$. Thus α splits. This means that A is copure-injective.

The next result asserts that subcopure-injectivity domain $\mathfrak{CPT}^{-1}(A)$ of A how small can be. It should contain the copure-injective modules at least.

Proposition 5. $\bigcap_{A \in Mod-R} \mathfrak{CPI}^{-1}(A) = \{C \in Mod-R \mid C \text{ is copure-injective}\}.$

Proof. Suppose that each *R*-module is *B*-subcopure-injective for an *R*-module *B*. Then, by Proposition 4, *B* is copure-injective. Conversely, let *A* be any *R*-module and *B* a copure-injective module. Let $g: B \to A$ be a homomorphism and $\alpha: B \to C$ a copure monomorphism. Since *B* is copure-injective, the splitting map $\alpha: B \to C$ gives the homomorphism $\beta: C \to B$ such that $\beta \alpha = 1_B$. So $\beta(\alpha g) = (\beta \alpha)g = g$. Hence $B \in \mathfrak{CPT}^{-1}(A)$ for any *R*-module *A*.

Clearly, $\mathfrak{CPT}^{-1}(A)$ contains $\mathfrak{In}^{-1}(A)$ for any module A. The following example shows that equality need not hold.

Example 6. Let G = Z(n) be a cyclic group of order n. Since G is finite it is cofinitely related and so it is copure-injective \mathbb{Z} -module [8, Proposition 3]. So $G \in \mathfrak{CPI}^{-1}(G)$ by Proposition 4. But $G \notin \mathfrak{In}^{-1}(G)$, otherwise G would be an injective \mathbb{Z} -module.

It is natural to investigate conditions to get the coincidence of the injectivity, and subcopure-injectivity domains, either for a certain class of modules or all the modules in Mod - R. We start by proving that, for all modules, subcopure-injectivity domains are the same as their subinjectivity domains over a right V-ring. Recall that a ring R is a right V-ring if and only if all exact sequences in Mod - R are copure if and only if all copure-injective modules are injective (see [8, Proposition 5]).

Corollary 7. Let R be a ring. The following conditions are equivalent:

- (1) R is a right V-ring.
- (2) $\underline{\mathfrak{CPT}}^{-1}(\tilde{A}) = \underline{\mathfrak{In}}^{-1}(A)$ for each *R*-module *A*.
- (3) $\overline{\mathfrak{CPT}}^{-1}(A) \subseteq \mathfrak{In}^{-1}(A)$ for each *R*-module *A*.

Proof. (1) \Rightarrow (2) It is easy since for any module A, over a right V-ring its extension is copure.

 $(2) \Rightarrow (3)$ It is obvious.

(3) \Rightarrow (1) For a copure injective right *R*-module *A*, by Proposition 4, $A \in \mathfrak{CPT}^{-1}(A)$. By (3), $A \in \mathfrak{In}^{-1}(A)$. This says that *A* is injective, and so *R* is a right V-ring by [8, Proposition 5].

Proposition 8. Let A be a module. The following conditions are equivalent:

- (1) A is copure-injective.
- (2) $\mathfrak{CPI}^{-1}(A)$ is closed under copure submodules.
- (3) $\overline{\mathfrak{CPT}}^{-1}(A) = \mathfrak{CPT}^{-1}(A).$
- (4) $\mathfrak{CPT}^{-1}(A) \subseteq \mathfrak{CPT}^{-1}(A).$

Proof. The implications (1) \Rightarrow (2) and (1) \Rightarrow (3) are clear since $\mathfrak{CPT}^{-1}(A) = \mathfrak{CPT}^{-1}(A) = Mod - R.$

 $(2) \Rightarrow (1)$ For a copure-injective extension C of $A, C \in \mathfrak{CPT}^{-1}(A)$, so A is also in $\mathfrak{CPT}^{-1}(A)$ by (2). Then by Proposition 4, A is copure-injective.

 $(3) \Rightarrow (4)$ It is clear.

 $(4) \Rightarrow (1)$ For a copure-injective extension C of $A, C \in \mathfrak{CPT}^{-1}(A)$. This implies that A is C-copure-injective i.e. $C = A \oplus B$ for some submodule B of A, whence A is copure-injective.

The rings for which every right *R*-module is copure-injective are called right CDS, [8, Corollary 18]. As a result of Proposition 8, we get the following Corollary.

Corollary 9. Let R be a ring. The following conditions are equivalent:

- (1) R is right CDS.
- (2) $\mathfrak{CPT}^{-1}(A) = \mathfrak{CPT}^{-1}(A)$ for each *R*-module *A*.
- (3) $\mathfrak{CPT}^{-1}(A) \subseteq \mathfrak{CPT}^{-1}(A)$ for each *R*-module *A*.

Proof. $(2) \Rightarrow (3)$ It is clear.

 $(1) \Rightarrow (2)$ Let A be an R-module. Since R is a right CDS ring, A is copure-injective. The rest follows from Proposition 8.

(3) \Rightarrow (1) For any right *R*-module *A*, $\mathfrak{CPT}^{-1}(A) \subseteq \mathfrak{CPT}^{-1}(A)$ by the hypothesis. Thus every right *R*-module *A* is copure-injective by Proposition 8, whence *R* is right CDS.

Remark 10. If A is R-subcopure-injective, for a ring R and a module A, then $\mathfrak{CPT}^{-1}(A)$ and Mod-R need not be equal. For example if R is copure-injective ring that is not CDS, then for every module A, A is R-subcopure-injective by Proposition 5. But by the definition of right CDS ring, we can find a module A that is not copure-injective.

Proposition 11. Let A be a module. The following conditions are equivalent:

- (1) A is injective.
- (2) $\mathfrak{CPT}^{-1}(A) = \mathfrak{In}^{-1}(A).$
- (3) $\overline{\mathfrak{epg}}^{-1}(A) \subseteq \mathfrak{In}^{-1}(A).$

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ It is clear.

 $(3) \Rightarrow (1)$ By the copure-injectivity of E(A), $E(A) \in \mathfrak{CPT}^{-1}(A)$. By $(3), E(A) \in \mathfrak{In}^{-1}(A)$, and hence A is injective.

Corollary 12. Let R be a ring. The following conditions are equivalent:

- (1) R is semisimple.
- (2) $\mathfrak{CPT}^{-1}(A) = \mathfrak{In}^{-1}(A)$ for each *R*-module *A*.
- (3) $\overline{\mathfrak{CPT}}^{-1}(A) \subseteq \mathfrak{In}^{-1}(A)$ for each *R*-module *A*.

Proof. (2) \Rightarrow (3) It is clear.

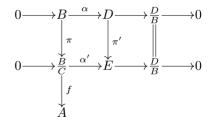
 $(1) \Rightarrow (2)$ Let A be an R-module. Since R is semisimple, A is injective. The rest follows from Proposition 11.

(3) \Rightarrow (1) For any right *R*-module *A*, $\mathfrak{CPI}^{-1}(A) \subseteq \mathfrak{In}^{-1}(A)$ by the hypothesis. Thus every right *R*-module *A* is injective by Proposition 11, whence *R* is semisimple.

In general, factors of copure-injective modules need not be copure-injective (see, [8, Remark 24]). But if R is a Dedekind domain, every copure factor of copure-injective module is copure-injective by [8, Corollary 28]. Hence, by the following Proposition, $\mathfrak{CPT}^{-1}(A)$ is closed under copure homomorphic images over Dedekind domains for a module A.

Proposition 13. $\mathfrak{CPT}^{-1}(A)$ is closed under copure quotients for any module A if and only if every copure homomorphic image of a copure-injective module is copure-injective.

Proof. Let *B* be a copure submodule of copure-injective module *A*. Since $A \in \mathfrak{CPT}^{-1}(\frac{A}{B})$, by the hypothesis $\frac{A}{B} \in \mathfrak{CPT}^{-1}(\frac{A}{B})$, and so $\frac{A}{B}$ is copure-injective. Conversely, let *A* be a module and *C* a copure submodule of *B* with $B \in \mathfrak{CPT}^{-1}(A)$. By Lemma 2, there exists a copure monomorphism $\alpha : B \to D$ with \overline{D} copure-injective. Let $f : \frac{B}{C} \to A$ be any homomorphism. Consider the following pushout diagram:



where $\pi: B \to \frac{B}{C}$ is the natural epimorphism. By commutativity of the following diagram:

$$\begin{array}{c} B \xrightarrow{\alpha} D \\ \downarrow^{\pi} \qquad \downarrow^{\pi'} \\ \frac{B}{C} \xrightarrow{\alpha''} D \\ \end{array}$$

and the pushout diagram property, there exists a map $\phi: E \to \frac{D}{C}$ such that $\phi \pi' = \pi''$ and $\phi \alpha' = \alpha''$. Since A is B-subcopure-injective, there exists a homomorphism $\varphi: D \to A$ such that $\varphi \alpha = f\pi$. Then, $\varphi(C) = \varphi \alpha(C) = f\pi(C) = f(0) = 0$. Hence, $Ker(\phi\pi') \subseteq Ker\varphi$, and so there exists $\psi: \frac{D}{C} \to A$ such that $\psi\pi'' = \varphi$. For every $x \in B$, $\psi(x+C) = \psi\pi''(x) = \varphi(x) = f\pi(x) = f(x+C)$. Thus ψ extends f. Then by the hypothesis, $\frac{D}{C}$ is copure-injective, so by Lemma 3, $\frac{B}{C} \in \mathfrak{CPT}^{-1}(A)$.

Proposition 14. $\underline{\mathfrak{CPI}}^{-1}(\prod_{i\in I} A_i) = \bigcap_{i\in I} \underline{\mathfrak{CPI}}^{-1}(A_i)$ for any set of modules $\{A_i\}_{i\in I}$.

Proof. Let $B \in \mathfrak{EPT}^{-1}(\prod_{i \in I} A_i)$, $i \in I$ and $f : B \to A_i$ be a homomorphism. Then there exists a homomorphism $g : C \to \prod_{i \in I} A_i$ such that $g\alpha = i_{A_i}f$, where $\alpha : B \to C$ is the monic map with C copure-injective and $i_{A_i} : A_i \to \prod_{i \in I} A_i$ is the inclusion map. Let $\pi_{A_i} : \prod_{i \in I} A_i \to A_i$ denote the natural projection. Since $\pi_{A_i}g\alpha = \pi_{A_i}i_{A_i}f = f$, f is extended to $\pi_{A_i}g$. Therefore $B \in \mathfrak{EPT}^{-1}(A_i)$ for any $i \in I$. Conversely, let $B \in \mathfrak{EPT}^{-1}(A_i)$ for all $i \in I$ and $f : B \to \prod_{i \in I} A_i$. Hence for each $i \in I$, there exists $g_i : C \to A_i$ with $g_i\alpha = \pi_{A_i}f$. Now define $g : C \to \prod_{i \in I} A_i$ by $x \mapsto g_i(x)$. Since $g\alpha = f$, g extends f. Thus, $B \in \mathfrak{EPT}^{-1}(\prod_{i \in I} A_i)$.

Corollary 15. Let B be a module. Then B-subcopure-injective modules are closed under direct summands and finite direct sums.

Proof. Let A be a module with decomposition $A = \bigoplus_{i=1}^{n} A_i$. By Proposition 14, $B \in \mathfrak{CPT}^{-1}(A)$ if and only if $B \in \bigcap_{i=1}^{n} \mathfrak{CPT}^{-1}(A_i)$. Now the result follows. \Box

The following shows that Proposition 14 do not hold for infinite direct sums.

Example 16. Let $K_i = \mathbb{Z}_{p_i}$ and $G = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}_{p_i}$ where p_i is a prime integer for all $i \in \mathbb{N}$. Since every \mathbb{Z}_{p_i} is pure-injective, every \mathbb{Z}_{p_i} is copure-injective by [8, Proposition 9]. So $G \in \mathfrak{CPT}^{-1}(\mathbb{Z}_{p_i})$ for all $i \in \mathbb{N}$. But $G \notin \mathfrak{CPT}^{-1}(G)$ since G is not copure-injective by [8, Examples-(ii)].

Proposition 17. If $B \in \mathfrak{CPT}^{-1}(A)$, then every direct summand of B is in $\mathfrak{CPT}^{-1}(A)$.

Proof. Suppose C is a direct summand of B, and let $f : C \to A$ be a homomorphism. By Lemma 2, there exist copure monomorphisms $i : B \to D$ and $j : C \to E$ with D and E copure-injective. Consider the following diagram:

$$\begin{array}{ccc} 0 & \longrightarrow C & \stackrel{i_C}{\longrightarrow} B \\ & & & \downarrow^j & & \downarrow^i \\ & & & E & D \end{array}$$

where $i_C : C \to B$ the inclusion map. Since D is copure-injective, there exists $h: E \to D$ such that $hj = ii_C$. Let $\pi_C : B \to C$ be the projection map. Since A is B-subcopure-injective, there exists a homomorphism $g: D \to A$ such that $gi = f\pi_C$. Then, $(gh)j = g(hj) = gii_C = f\pi_C i_C = f$, and so by Lemma 3, A is C-subcopure-injective.

3. CC-INJECTIVE MODULES

In this section, we introduced and studied the concept of cc-injective modules in terms of relative subcopure-injective modules.

A module C is said to be co-absolutely co-pure (c.c. in short) if every exact sequence of modules ending with C is copure, equivalently $Ext^{1}_{R}(C, A) = 0$ for every co-finitely related module A. Clearly every projective module is c.c. But the converse need not be true, for instance, the additive group \mathbb{Q} is a c.c. \mathbb{Z} -module but \mathbb{Q} is not projective as a \mathbb{Z} -module (see, [9, Example on page 290]).

Definition 18. A right module A is called cc-injective if $Ext_R^1(B, A) = 0$ for any c.c. module B.

Recall that a module A is called cotorsion if $Ext_R^1(B, A) = 0$ for every flat module B. A module A is called linearly compact if any family of cosets having the finite intersection property has a nonempty intersection. A commutative ring is called classical if the injective hull E(S) of all simple modules S are linearly compact (see [17, §3]).

Example 19. (1) By definition, any cofinitely related module is cc-injective.

(2) By [9, Remark 15], c.c. modules need not be flat in general. By [9, Corollary 14] c.c. modules are flat over a commutative ring. So, in this case every cotorsion module is cc-injective.

(3) By [9, Remark 12], flat modules need not be c.c. Over a commutative classical ring flat modules are c.c. by [9, Proposition 11]. So, in this case every cc-injective module is cotorsion.

Remark 20. Over a commutative ring R every simple R-module is cotorsion by [13, Lemma 2.14]. So by Example 19(2), every simple R-module is cc-injective.

Lemma 21. Every copure-injective module is cc-injective.

Proof. Let A be a copure-injective module and B a c.c. module. By [9, Proposition 5], there exists a copure exact sequence $0 \to D \to P \to B \to 0$ with P projective. If we apply Hom(-, A) to this sequence, we have $Hom(P, A) \to Hom(D, A) \to Ext^1_R(B, A) \to Ext^1_R(P, A) = 0$. Since A is copure-injective, $Hom(P, A) \to Hom(D, A)$ is epic, and so $Ext^1_R(B, A) = 0$ for any c.c. module B. Hence A is cc-injective.

Proposition 22. For a ring R, the following conditions are equivalent:

- (1) R is a right V-ring.
- (2) Every copure-injective right R-module is injective.
- (3) Every cc-injective right R-module is injective.

Proof. (1) \Leftrightarrow (2) It follows by [8, Proposition 5].

 $(3) \Rightarrow (2)$ It immediately from Lemma 21.

 $(1) \Rightarrow (3)$ Let A be a cc-injective R-module and B any R-module. Since R is right V, B is a c.c. module by [9, Proposition 4]. Thus $Ext^{1}_{R}(B, A) = 0$ for any R-module B, and so A is injective.

Proposition 23. Let B be an R-module and $\alpha : B \to C$ a copure monomorphism with C copure-injective. If $C/im(\alpha)$ is c.c., then every cc-injective module is B-subcopure-injective.

Proof. Let A be a cc-injective module and $C/im(\alpha)$ a c.c. module. Applying functor Hom(-, A) to the exact sequence $0 \to B \to C \to C/im(\alpha) \to 0$, we have $Hom(C, A) \to Hom(B, A) \to Ext^1_R(C/im(\alpha), A)$. Since $C/im(\alpha)$ is c.c., $Ext^1_R(C/im(\alpha), A) = 0$ and so $Hom(C, A) \to Hom(B, A)$ is epic. Hence A is B-subcopure-injective by Lemma 3.

Theorem 24. Let A and B be two modules. Consider the following conditions:

- (1) A is B-subcopure-injective.
- (2) For every homomorphism $g : B \to A$, there exist a monomorphism $\alpha : B \to C$ with C copure-injective and a homomorphism $h : C \to A$ such that $h\alpha = q$.
- (3) For every homomorphism $g: B \to A$, there exist a monomorphism $\alpha: B \to C$ with C cc-injective and a homomorphism $h: C \to A$ such that $h\alpha = g$.
- (4) For every homomorphism $g: B \to A$ and for any extension $\alpha: B \hookrightarrow C$ with C/B is c.c., there exists $h: C \to A$ such that $h\alpha = g$.

Then $(1) \Leftrightarrow (2) \Rightarrow (3) \Rightarrow (4)$. Also, if $D/im(\alpha)$ is c.c. for a copure monomorphism $\alpha : B \to D$ with D copure-injective, then $(4) \Rightarrow (1)$.

Proof. $(1) \Rightarrow (2)$ Obvious by Lemma 3.

(2) \Rightarrow (3) It follows from Lemma 21, since every copure-injective module is cc-injective.

(2) \Rightarrow (1) Let $\alpha : B \to C$ be a copure-monomorphism and $g : B \to A$ a homomorphism. By (2), exists a monomorphism $\beta : B \to D$ with D copure-injective and a homomorphism $h : D \to A$ such that $h\beta = g$. Since D is copure-injective, there exists a homomorphism $f : C \to D$ such that $f\alpha = \beta$. Hence, $(hf)\alpha = h\beta = g$, and so (1) follows.

(3) \Rightarrow (4) Let *C* be an extension of *B* with *C*/*B* is c.c. and *g* : *B* \rightarrow *A* a homomorphism. So, $0 \rightarrow B \xrightarrow{\alpha} C \rightarrow C/B \rightarrow 0$ is copure exact. Then consider the exact sequence with *E* cc-injective:

 $0 \to Hom_R(C/B, E) \to Hom_R(C, E) \xrightarrow{\alpha^*} Hom_R(B, E) \to Ext_R^1(C/B, E) = 0$

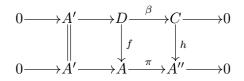
Since, α^* is surjective, by (3), there exists a monomorphism $f: B \to E$ and a homomorphism $h: E \to A$ such that hf = g. Since α^* is surjective, there exists a homomorphism $\beta: C \to E$ such that $\beta \alpha = f$. Hence, $h(\beta \alpha) = hf = g$, and so (4) follows.

 $(4) \Rightarrow (1)$: Let $\alpha : B \to D$ be a copure monomorphism with D copure-injective and $D/im(\alpha)$ is c.c. So, by (4), for any homomorphism $g : B \to A$ there exists $h: D \to A$ such that $h\alpha = g$. Thus A is B-subcopure-injective by Lemma 3. \Box

Now we investigate when the class of B-subcopure-injective modules is closed under extensions.

Proposition 25. Let B be an R-module and $\alpha : B \to C$ a copure monomorphism with C copure-injective. The class of B-subcopure-injective modules is closed under extensions if and only if for every exact sequence $0 \to A' \to A \to C \to 0$ with A' B-subcopure-injective, A is B-subcopure-injective.

Proof. Let $0 \to A' \to A \to C \to 0$ be an exact sequence with A' *B*-subcopureinjective. Since *C* is copure-injective, it is *B*-subcopure-injective. By the hypothesis, *A* is *B*-subcopure-injective. Conversely, let $0 \to A' \to A \xrightarrow{\pi} A'' \to 0$ be an exact sequence with A' and A'' *B*-subcopure-injective. Then by Lemma 3, for every map $g: B \to A$, there exists a map $h: C \to A''$ such that $\pi g = h\alpha$ where $\alpha: B \to C$ is the copure monomorphism with *C* copure-injective. If we consider the pullback diagram:

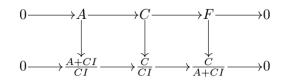


there exists a homomorphism $\gamma: B \to D$ such that $f\gamma = g$ and $\beta\gamma = \alpha$. By hypothesis, D is B-subcopure-injective, so by Lemma 3, there exists a homomorphism $h': C \to D$ such that $h'\alpha = \gamma$. Thus, $fh'\alpha = f\gamma = g$ and so, A is B-subcopure-injective by Lemma 3.

A ring R is said to be right co-noetherian if every homomorphic image of a finitely embedded R-module is finitely embedded, equivalently for each simple right R-module S the injective hull E(S) is Artinian (see [10, Theorem]). Over a commutative noetherian ring, the injective hull of each simple right R-module is Artinian by [14, Exercise 4.17]. Thus every commutative Noetherian ring is co-noetherian. In the following, for an ideal I, we deal with an R-module structure of an R/I-module.

Proposition 26. Let R be a right co-noetherian ring and $f : R \to S$ a ring epimorphism. If A is cc-injective S-module, then A is cc-injective R-module.

Proof. Let A be a cc-injective S-module. Since $f: R \to S$ is a ring epimorphism, $S \cong R/I$ for some ideal I of R and so A can be considered as R/I-module. Let C be an extension of A by a c.c. module F as R-modules. Since F is c.c., the exact sequence $0 \to A \to C \to F \to 0$ is copure. Then $A \cap CI = AI$ for each right ideal I by [7, proposition 16]. Since A is an R/I-module, $A \cap CI = AI = 0$, and so $\frac{A+CI}{CI} \cong A$. Thus we have the following commutative diagram.



Since $\frac{C}{A} \otimes \frac{R}{I} \cong \frac{C}{A+CI}$ is c.c. as an R/I-module, so the second exact sequence splits and so does the first. Hence $Ext_R^1(F, A) = 0$, and A is cc-injective R-module. \Box

4. SC-INDIGENT MODULES

Indigent (resp. ps-poor) modules were introduced and some results about them were obtained in [2] (resp. [11]). Proposition 5 says that subcopure-injectivity domain of any module A contains all copure-injective modules, so studying the notion of modules which are subcopure-injective only with respect to the class of copure-injective modules is reasonable. It is thus to keep in line with [2], we refer to these modules as subcopure-injectively indigent (sc-indigent for short). In this section, sc-indigent modules investigated over certain rings and compared these modules with indigent modules and ps-poor modules.

Definition 27. A module A is said to be subcopure-injectively indigent (sc-indigent for short), if $\mathfrak{CPT}^{-1}(A)$ consists of only copure-injective modules.

Remark 28. Let A be a module with decomposition $A = B \oplus C$. If B is sc-indigent, then so is A, by Proposition 14.

Proposition 29. For a ring R, the following conditions are equivalent:

- (1) R is right CDS.
- (2) Every R-module is sc-indigent.
- (3) There exists a copure-injective sc-indigent R-module.
- (4) 0 is an sc-indigent R-module.
- (5) R has an sc-indigent module and every sc-indigent R-module is copureinjective.
- (6) R has an sc-indigent module and every factor of an sc-indigent R-module is sc-indigent.
- (7) R has an sc-indigent module and every summand of an sc-indigent Rmodule is sc-indigent.

Proof. The implications $(1) \Rightarrow (2)$ and $(1) \Rightarrow (5)$ are clear since every *R*-module is copure-injective.

The implications $(2) \Rightarrow (4)$ and $(2) \Rightarrow (6) \Rightarrow (7)$ are clear.

 $(4) \Rightarrow (2)$ It immediately from Remark 28.

 $(2) \Rightarrow (3)$ The copure-injective extension C of any module A is sc-indigent.

 $(3) \Rightarrow (1)$ Let C be a copure-injective sc-indigent module and A a module. Since

C is A-subcopure-injective, A is copure-injective. Then R is a right CDS ring.

 $(5) \Rightarrow (1)$ By (5), there exist an sc-indigent module *B*. Then $A \oplus B$ is also sc-indigent for any module *A* by Remark 28. So *A* is copure-injective by (5). Also *A* is copure-injective. Thus *R* is a right CDS ring.

 $(7) \Rightarrow (2)$ Let A be an R-module. Then $A \oplus B$ is an sc-indigent module for some sc-indigent module B. Hence, A is sc-indigent by the hypothesis.

Remark 30. Over a commutative uniserial ring R, every R-module is sc-indigent since such rings are CDS by [4, Theorem 10.4].

Remark 31. An sc-indigent module need not be indigent. Consider the ring $R = \mathbb{Z}/p^2\mathbb{Z}$, for some prime integer p. R is an artinian principal ideal ring. Hence it is a CDS-ring by [4, Theorem 10.4]. So every R-module is sc-indigent. Since $\mathbb{Z}/p^2\mathbb{Z}$ is injective $\mathbb{Z}/p^2\mathbb{Z}$ -module, $\underline{\mathfrak{In}}^{-1}(\mathbb{Z}/p^2\mathbb{Z}) = Mod - R$. But since R is not a semisimple ring, $\mathbb{Z}/p^2\mathbb{Z}$ is not an indigent R-module.

Remark 32. An indigent module need not be sc-indigent. Let R be a commutative Noetherian ring which is not CDS and Γ a complete set of representatives of finitely presented right R-modules. Set $F := \bigoplus_{S_i \in \Gamma} S_i$. Thus the character module F^+ of F is a pure-injective indigent R-module by [3, Proposition 3.4]. Since R is commutative, F^+ is copure-injective by [8, Proposition 9], and so $\mathfrak{CPT}^{-1}(F^+) =$ Mod - R. But since R is not a CDS-ring, F^+ is not an sc-indigent \overline{R} -module.

Proposition 33. Indigent modules and sc-indigent modules coincide over a right V-ring R.

Proof. Let R be a right V-ring. Then by Corollary 7, $\underline{\mathfrak{CPS}}^{-1}(A) = \underline{\mathfrak{In}}^{-1}(A)$ for any R-module A. Hence A is indigent if and only if A is sc-indigent by [8, Proposition 5].

Proposition 34. A module A is sc-indigent if and only if $\prod_{i \in I} A_i$ is sc-indigent where $A_i = A$ for all $i \in I$.

Proof. Clear by Proposition 14.

By Remark 28 and Proposition 34, sc-indigent rings are characterized as follows:

Corollary 35. For a ring R, the following are equivalent:

- (1) R_R is sc-indigent.
- (2) Any direct product of copies of R is sc-indigent.
- (3) Every free *R*-module is sc-indigent.
- (4) There exists a cyclic projective sc-indigent R-module.

Theorem 36. Let R be a ring, B an R-module and A an R/I-module for any ideal I of R. If $B/BI \in \mathfrak{CPI}^{-1}(A_{R/I})$, then $B \in \mathfrak{CPI}^{-1}(A_R)$.

Proof. Let $B/BI \in \mathfrak{CPT}^{-1}(A_{R/I})$, and C be a copure extension of B and $g : B \to A$ an R-homomorphism. Since copure short exact sequences of R-modules form a proper class by [7, Proposition 8], B/BI can be embedded in C/CI as

a copure submodule via $f: B/BI \to C/CI$ defined by f(b+BI) = b+CI for any $b \in B$. Since $BI \subseteq Ker(g)$, there exists a homomorphism $h: B/BI \to A$ such that $h\pi_B = g$ where $\pi_B : B \to B/BI$. By assumption, there exists an R/I-homomorphism $\bar{h}: C/CI \to A$ such that $\bar{h}f = g$. Since h is also an Rhomomorphism and $\bar{h}\pi_C i_B = g$ where $\pi_C: C \to C/CI$ and $i_B: B \to C$ is the inclusion. Thus $B \in \mathfrak{CPI}^{-1}(A_R)$.

Corollary 37. Let I be an ideal of a ring R and A and B be R/I-modules. Then the following statements hold:

- (1) $B \in \mathfrak{CPT}^{-1}(A_R)$ if and only if $B \in \mathfrak{CPT}^{-1}(A_{R/I})$.
- (2) A is a copure-injective R-module if and only if A is a copure-injective R/Imodule.
- (3) A is an sc-indigent R-module if and only if A is an sc-indigent R/I-module.

Proof. (1) If A_R is *B*-subcopure-injective, then clearly it is a *B*-subcopure-injective R/I-module. The converse follows by Theorem 36.

(2) By using Proposition 4, (2) follows from (1).

(3) Clear by (1) and (2).

Recall [11] that a module A is called ps-poor if pure-subinjectivity domain of A consists of only pure-injective modules. Over a commutative classical ring R, by [8, Corollary 17], pure-injective modules and copure-injective modules coincide. Hence, the following result is immediate.

Proposition 38. Let R be a commutative classical ring. Then an R-module A is sc-indigent if and only if A is ps-poor.

Since by [16, Theorem 2] and [17, Proposition 4.1], every commutative (co-)noetherian ring is classical, we have the following result.

Corollary 39. Let R be a commutative (co-)noetherian ring. Then an R-module A is sc-indigent if and only if A is ps-poor.

Remark 40. *ps-poor abelian groups and sc-indigent abelian groups coincide by Corollary 39.*

Corollary 41. Every finitely embedded \mathbb{Z} -module is copure-injective but not sc-indigent.

Proof. Let A be a finitely embedded \mathbb{Z} -module. Then A is cofinitely related by [6, Proposition 17]. So A is copure-injective by [8, Proposition 3]. Since \mathbb{Z} is not a CDS ring, by Proposition 29, A is not an sc-indigent module.

Proposition 42. If a ring R has an sc-indigent cc-injective module B, then every module with its copure injective extension has c.c cokernel is copure-injective.

Proof. Let A be an R-module with the exact sequence $0 \to A \to C \to C/A \to 0$, where $A \to C$ is a copure extension of A with C is copure-injective. Consider the sequence $0 \to Hom(C/A, B) \to Hom(C, B) \to Hom(A, B) \to Ext^1(C/A, B)$. Since C/A is c.c., $Ext^1(C/A, B) = 0$. So by Lemma 3, $A \in \mathfrak{CPT}^{-1}(B)$, that is A is copure-injective.

Acknowledgement. The author is very grateful to the anonymous referees for carefully reading the original version of this paper and for providing several very helpful comments and suggestions.

References

- Anderson, F. W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1974.
- [2] Aydoğdu, P., López-Permouth, S. R., An alternative perspective on injectivity of modules, J. Algebra, 338 (2011) 207-219.
- [3] Durğun, Y., An alternative perspective on flatness of modules, J. Algebra Appl., 15(8) (2016) 1650145, 18.
- [4] Fieldhouse, D. J., Pure theories, Math. Ann., 184 (1969) 1-18.
- [5] Harmanci, A., López-Permouth, S. R., Üngör, B., On the pure-injectivity profile of a ring, Comm. Algebra, 43(11) (2015) 4984-5002.
- [6] Hiremath, V. A., Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39 (1982), 1-9.
- [7] Hiremath (Madurai), V. A., Copure Submodules, Acta Math. Hung., 44(1-2) (1984) 3-12.
- [8] Hiremath (Madurai), V. A., Copure-injective modules, Indian J. Pure Appl. Math., 20(3) (1989) 250-259.
- Hiremath (Madurai), V. A., Co-absolutely co-pure modules, Proceedings of the Edinburgh Mathematical Society, 29 (1986), 289-298.
- [10] Jans, J. P., On co-noetherian rings, J. London Math. Soc., 1 (1969), 588-590.
- [11] López-Permouth, S. R., Mastromatteo, J., Tolooei, Y., Üngör, B., Pure-injectivity from a different perspective, *Glasg. Math. J.*, 60(1) (2018), 135–151.
- [12] López-Permouth, S. R., Simental-Rodriguez, J. E., Characterizing rings in terms of the extent of the injectivity and projectivity of their modules, J. Algebra, 362 (2012), 56-69.
- [13] Mao, L., Ding, N., Notes On Cotorsion Modules, Comm. Algebra, 33 (2005), 349-360.
- [14] Sharpe, D. W., Vamos, P., Injective Modules, (Cambridge Tracts in Mathematics and Mathematical Physics, 62), Cambridge, 1972.
- [15] Toksoy, S. E., Modules with minimal copure-injectivity domain, J. Algebra Appl., 18(11) (2019), 195-201.
- [16] Vamos, P., The dual of the notion of finitely generated, J. London Math. Soc., 43 (1968), 643-646.
- [17] Vamos, P., Classical rings, J. Algebra, 34 (1975), 114-129.

Current address: Yusuf ALAGOZ: Siirt University, Department of Mathematics, Siirt, Turkey. E-mail address: yusuf.alagoz@siirt.edu.tr

ORCID Address: https://orcid.org/0000-0002-2535-4679