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 Abstract  
This research focalized on the gamma ray attenuation charesteristics of real bone and 

manganese substituted Nano hydroxyapatite artificial bone dusts. The current samples were 

excited with using 59.5 keV photons emitted from an 241Am annular radioisotope source with 

50 mCi activity by using a narrow beam transmission geometry and detected with using Ultra 

Low Energy Germanium detector with a resolution 150 eV at 5,95 keV experimentally. The 

gamma-ray attenuation parameters such as linear attenuation coefficient, half value layer, tenth 

value layer and mean free path are also calculated experimentally and theoretically. The 

present results points out that the attenuation values of the manganese substituted 

hydroxyapatite artificial bone dust is very close to the value of the real bone. 
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1. Introduction  

Apatite is a kind of compound consist of calcium and 

phosphor elements charecterized by its ionic 

substitution capability. This facility makes it important 

material for use in medical applications [1].  When the 

hydroxyly group is substituted to apatite the new 

compound is called as hydroxylapatite or 

hydroxyapatite (HAp). It is typically formulated with 

the chemical formula as Ca10(PO4)6(OH)2 or 

Ca5(PO4)3(OH) [2]. It is one of the most important 

characteristics of artificial bone dust that the Ca/P 

molar ratio is 1.667. It is an inorganic compound 

naturally found in bones and teeth of humankind [3, 4].  

HAp is utilized at different applications such as 

implant material in dental and orthopaedic applications 

[5], bone filler material due to its biocompatibility [6, 

7], scaffold [8, 9] and metal coating material [10-12]. 

Even though hydroxyapatite has biocompatible and 

bioactive properties, its poor mechanical properties 

make it hard to utilize in medical areas as an implant 

material. Due to this difficulty, the different elements 

are substituted to hydroxyapatite to obtain the more 

strong mechanical facility. In former investigations, 

there are available works about Mg, Y, Cd, Co, Ta, Ni, 

Zn, Mo, Li elements substituted HAp [13, 14].  

Manganese was added to artificial bone dust to 

increase its density without converting HAp phase for 

this investigation. Besides, it has a positive effect on 

the binding of the bone [15]. It is well known how 

much the real bone absorbs the radiation. Many 

researchers [2, 14, 16-20] have focalized the 

phenomena of attenuation parameters of various 

materials. When referring the former investigations, 

the chemical analysis, morphological and mechanical 

facilities, adsorbing and corrosion were researched by 

different studies for a lot of HAp [21-26]. The gamma 

ray attenuation parameters were not calculated by these 

authors for pure and manganese substituted artificial 
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bone dust. Unfortunately, there is not any information 

on how much radiation it absorbs experimentally. 

In recent century, ionized radiations have been utilized 

particularly in the area of radiation dosimeter [27], 

medical physics [28-30], radiation biophysics [31] and 

radiation shielding [32, 33]. Mass attenuation 

coefficients, effective atomic number and effective 

electron density has a significant role to determine the 

effects of gamma radiations in material [34-38]. The 

attenuation coefficient is a term utilized to clarify the 

possibility of interaction of radiation with matter.  

The goal of this work is to investigate gamma ray 

attenuation charesteristics of the real bone and 

manganese substituted hydroxyapatite artificial bone 

dust. The theoretical and experimental results of linear 

attenution coefficient (LAC, µ), half value layer 

(HVL), tenth value layer (TVL), and mean free path 

(MFP) were calculated to research the gamma-ray 

attenuation charesteristics. Moreover, the obtained 

attenuation parameters of the manganese substituted 

hydroxyapatite have been compared with the value of 

real bone. 

 

2. Theoretical Background And Experimental 

Process  

The measurement was initially performed without any 

absorber. Then the attenuated photon was detected 

through pure hydroxyapatite, real bone dust and 

manganese substituted hydroxyapatite.   

The mass attenuation coefficients, molecular cross-

section (σt,m), the total electronic cross section 𝜎𝑡,𝑒𝑙, the 

total atomic cross-section (σt, a), effective atomic 

number (𝑍𝑒𝑓𝑓), the electron density Nel were calculated 

by means former publications for pure hydroxyapatite, 

real bone dust and manganese substituted nano-

hydroxyapatite [19, 20].  

The samples of the gamma ray attenuation 

charesteristics can be tested by calculating various 

parameters such as the linear attenuation coefficient 

(LAC), the half value layer (HVL), the tenth value 

layer (TVL) and mean free path (MFP). Linear 

attenuation coefficient (μ (cm−1)) is the probability per 

unit thickness that a photon will interact with the 

specimen. It is formulated by multiplying the mass 

attenuation coefficient and density of the material as 

given below. 

µ = µ𝑚𝜌                                                                                   (1) 

where μm is the mass attenuation coefficient value of 

the material and ρ is the density of the material. The 

mean free path (cm) provides information about the 

gamma ray attenuation. The value of mean free path 

are expressed by means of the following formula [39]. 

𝑀𝐹𝑃 = (1 𝜇⁄ )          (2) 

Half Value Layer (cm) is the thickness of a material 

utilized to half the photon intensity and assess the 

capability of gamma ray attenuation for any material. 

Following formula is used to calculate the half value 

layer [40]. 

𝐻𝑉𝐿 = ln (2 𝜇⁄ )        (3) 

Tenth Value Layer (cm) is the necessary the thickness 

of material to decrease the intensity of the incident 

beam to one-tenth as presented in expression (1) [41]. 

𝑇𝑉𝐿 = 𝑙𝑛(10 𝜇⁄ )         (4) 

where μ is the total linear attenuation coefficient. 

The EDX spectra and SEM images were obtained by 

ZEISS EVO LS 10 and Bruker Quantax 200 Esprit 

1.8.2 for manganese substituted hydroxyapatite.  

The photons with 59.5 keV energy emitted from the 
241Am source were counted by a collimated Ultra 

LEGe (FWHM 150 eV at 5.95 keV, active area 30 mm2 

and Beryllium window thickness 0.4 µm). The 

measurement time is adjusted to 10000 seconds. The 

samples were pressed with a hydraulic press at 10 MPa 

pressure. After that, samples were prepared with a 13 

mm radius at almost the same thickness. The mass was 

adjusted to 2000 mg approximately as mixing with the 

cellulose (0.1g) for all of the samples. The sample 

thickness was selected to satisfy the following ideal 

condition as far as possible. 

 2 < ln(I0/I) ≤ 4 

The experimental set-up consisted of the primary 

incident source (241Am), the sample (S) and the 

detector system (D). The set-up is illustrated in figure 

1. 
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Figure 1. Experimental set-up 

The lineer attenuation coefficients for all the samples 

of hydroxyapatites and real bone were calculated using 

equation 1. The values of mass attenuation coefficients 

were also obtained using the XCOM program at 59.5 

keV energies of current interest theoretically. 

3.   Results And Discussion  

The elemental concentrations and density are 

tabulated at the table 1. The codes of samples are 

related to different concentration of manganese in 

each sample.  

Table 1. EDX Concentration Values for nMnHAp samples 

Sample O Na Ca P K Cl Mn Density (g/cm3) 

Real Bone --- --- --- --- --- --- --- 2.033 

nHAp --- --- --- --- --- --- --- 1.910 

nMnHAp1 68.3±7.3 3.4±0.3 19.6±1.0 7.0±0.4 0.3±0.1 0.7±0.1 0.6±0.1 1.209 

nMnHAp2 65.5±7.8 6.6±0.3 15.6±0.9 10.2±0.6 0.3±0.1 0.7±0.1 1.1±0.2 1.526 

nMnHAp3 60.6±7.3 19.5±1.1 11.5±0.6 6.7±0.4 0.2±0.1 0.3±0.1 1.3±0.2 1.383 

 

The values of the current analysis were used to 

calculate theoretical mass attenuation parameters 

with mixture formula from XCOM NIST for the 

present specimens except for real bone dust [42]. 

The experimental and predicted values of lineer 

attenuation coefficients are presented in table 2 for 

manganese substituted HAp, pure HAp, and real 

animal bone. 

 

Table 2. The experimental and theoretical linear attenuation coefficient (cm-1) of the samples at various energies (keV) for 

nMnHAp, nHAp and animal bone. 

Samples µ (XCOM) µ (Experimental) 

Real Bone --- 0.65±0.05 

nHAp 0.79 0.74±0.06 

nMnHAp1 0.37 0.36±0.03 

nMnHAp2 0.45 0.44±0.04 

nMnHAp3 0.36 0.30±0.02 
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When looking at the table 2 it is seen that that 

experimental values of gamma-ray attenuation 

charesteristics are in good agreement with the 

predicted values from XCOM NIST. Fig. 2 

illustrates the variation of the linear attenuation 

coefficient (LAC) for the available specimens.  

 

Figure 2. The variation of the theoretical and experimental lineer attenuation coefficient with the samples 

As seen in this figure, the experimental and 

theoretical values of the attenuation coefficient for 

manganese substituted artificial bone dust is lower 

than the values of real bone and pure artificial 

bone dust. The reason is that the concentration of 

calcium element decreases when the concentration 

of manganese increase and this situation causes 

decreasing the lineer attenuation coefficient. It 

substitutes calcium atoms susbtitutes with 

substituted manganese when metal is added to 

artificial bone dust [43, 44].  

Table 3. The theoretical and experimental mean free path (MFP,cm), half value layer (HVL,cm) and tenth value layer 

(TVL,cm) of the samples at various energies (keV) for nMnHAp and nHAp 

Samples Theo. MFP Exp. MFP Theo. HVL Exp. HVL Theo. TVL Exp. TVL 

Real Bone --- 1.54±0.12 --- 1.12±0.09 --- 2.73±0.22 

nHAp 1.27 1.35±0.11 0.88 0.99±0.08 2.55 2.60±0.21 

nMnHAp1 2.69 2.81±0.23 1.87 1.73±0.14 3.30 3.33±0.27 

nMnHAp2 2.20 2.25±018 1.52 1.51±0.12 3.10 3.12±0.25 

nMnHAp3 2.63 3.33±0.27 1.81 1.90±0.15 3.26 3.51±0.28 
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Figure 3. The half and tenth value layer versus samples 

 

Figure 4. The variation of theoretical and experimental mean free path with the samples 

The substituted atoms are affected to half value 

layer (HVL), tenth value layer (TVL) and mean 

free path (MFP) when looking at the table 3, figure 

3 and 4.  As manganese is added to 

hydroxyapatite, more calcium has left the 

structure. This situation prevented a serious shot 

in the attenution parameters such as HVL, TVL 

and MFP. 

The variation between experimental and predicted 

values of gamma ray attenuation appears to be 

about 8 %. This difference is the quadrature sum 

of uncertainties in the various phonemena utilized 

to assess the incident and transmitted gamma ray 

intensity  (%5), The thickness of specimen %2 and 

counting statistics %2. The attenuation 

coefficients of the manganese substituted artificial 

bone dust differ from the theoretical attenuation 

coefficient by % 1-8. The data obtained results 

approve that the experimental value is acceptable 

when compared to the theoretical values.   

4. Conclusion 

The values of lineer attaneution coefficient was 

calculated at 59.5 keV using experimentally. 

Besides the values were determined by using 

XCOM program semi theoretical. The values of 

gamma ray attenution parameters such as the 
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HVL, the TVL, the MFP, Zeff and Nel were 

obtained. Moreover, the gamma ray attenution 

values of manganese substituted artificial bone 

dust were compared with the natural animal bone. 

The natural animal bone has the almost same value 

of current parameters for manganese substituted 

hydroxyapatites. This is due to the displacement 

of manganese substituted with calcium atoms. On 

the other hand, it can be also concluded that 

MnHAps can be candidate treatment materials for 

medical radiation properties due to their radiation 

attenuation facilities. 
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