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 Abstract  
 

Recently, transition metal dichalcogenides (TMDs) have gained great attention owing to their 

remarkable properties. The electronic structure of TMDs can be modified by substitutional 

doping, which could give rise to novel and exciting properties. In this study, a strategy is 

presented for controlled vanadium (V) doping of MoS2, in which V doped MoS2 films with 

good uniformity are prepared by thermal sulfurization of V-Mo alloy films deposited using 

co-sputtering. The V incorporation in MoS2 induces p type doping, which enhances the 

electrical conductivity of MoS2 by a factor of 35-40. Such doping strategy and consequent 

conductivity improvement may be useful in many applications such as catalysis, 

nanoelectronics and optoelectronics. 
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1. Introduction 

Since the discovery of graphene, there has been a 

growing interest in 2D materials [1–4]. Analogous to 

graphene, TMDs exhibit a layered structure, where 

each layer has a composition of MX2 (M: transition 

metal, X: S, Se or Te) [5]. The transition metal and 

chalcogenide atoms are linked by strong covalent 

bonds whereas individual layers are stacked together 

by weak van der Waals interactions [5]. TMDs have 

been extensively studied for their electronic, 

optoelectronic, sensing, catalytic and tribological 

properties [6–10]. One of the most widely investigated 

TMD material is MoS2. Bulk MoS2 is an indirect 

bandgap semiconductor with a gap value of 1.2 eV 

while single layer MoS2 has a direct bandgap of 1.8 eV 

[11]. Field effect transistors fabricated using single 

layer MoS2 show high on/off current ratios with decent 

carrier mobility, which makes it promising for low 

power and flexible electronics [12,13]. Ultrasensitive 

photodetectors have been fabricated using MoS2 

[14,15]. Low friction MoS2 lubricant coatings have 

been demonstrated [16,17]. MoS2 has also been shown 

to be a promising catalyst for hydrogen evolution 

reaction (HER) [18–22]. 

 

Doping has been used in semiconductor industry for 

many decades to improve device performance. 

Similarly, doping can be utilized to alter the electronic 

structure of MoS2 opening new venues in electronics, 

optoelectronics and catalysis. For example, Se doped 

MoS2 nanosheets with tunable optical properties have 

been synthesized by simultaneous sulfurization and 

selenization of MoO3 powder, in which Se doping 

causes a shift in the bandgap value of MoS2 [23]. 

Nipane et al. demonstrated p-type doping of MoS2 by 

low energy phosphorus implantation [24]. Lateral p-n 

junction devices fabricated by selective regional 

phosphorus doping of MoS2 exhibited nearly ideal and 

air stable diode behavior. Furthermore, chlorine 

doping was shown to reduce the contact resistance of 

MoS2 by 2-3 orders of magnitude, resulting in 

enhanced mobility [25]. Moreover, Pulickel et al. [26], 

Xie et al. [27] and Li et al. [28] investigated the 

electronic transport properties of WxMo1-xS2, 

MoS2xSe2(1-x) and CoxMo1-xS2 alloys.  

 

The catalytic activity of MoS2 is hindered by low 

conductivity and lack of active sites on its basal plane 

[21]. Theoretical studies suggest that substitutional 

doping of MoS2 can increase the conductivity as well 

as alter the binding energy of adsorbed hydrogen on 

sulfur favorably, inducing additional active sites, 

which would in turn enhance HER activity [29,30]. In 

the light of these potential benefits, many doping 

strategies for MoS2 have been developed. Solution 

processing methods have been used to synthesize Zn, 

Ni, Co, Fe, Cu doped MoS2 nanosheets [31–33]. P, Se 
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and V doped MoS2 prepared by high temperature solid 

state reaction techniques have been reported [34–36]. 

In addition, Cr doped MoS2 films and MoS2(1-x)Se2x 

nanobelts have been produced by CVD method 

[37,38]. 

In this study, a method is reported for controllable V 

doping of MoS2. V doped MoS2 thin films with 

different V/Mo ratios were prepared through co-

sputtering of V-Mo alloy films and subsequent thermal 

sulfurization step. Simultaneous deposition of V and 

Mo atoms by co-sputtering enables to synthesize 

homogeneously doped MoS2 films with good control 

of dopant concentration and thickness. The structural 

properties of the V doped MoS2 films were 

characterized by X-ray diffraction (XRD), Raman 

spectroscopy, scanning electron microscopy (SEM) 

and energy dispersive X-ray spectroscopy (EDX) 

measurements. Four-point probe measurements were 

conducted to reveal the effect of V doping on the sheet 

resistance of MoS2 film. 

 

2. Materials and Methods 

A multi-target magnetron sputtering system (Vaksis 

Angora) was used for the deposition of the V-Mo 

alloys. 20 nm thick V-Mo alloy films were deposited 

on n-type (100) Si substrates by co-sputtering of V and 

Mo targets (99.9% purity, Kurt Lesker) in RF and DC 

mode, respectively. The chamber was evacuated to 

5x10-6 Torr before deposition. The Ar pressure was 

kept at 10 mTorr during the sputtering. Targets were 

cleaned at each run by pre-sputtering for 5 minutes 

while shutters were closed. The substrate holder was 

rotated at 5 rpm during the deposition to ensure 

uniformity. The desired alloy content was obtained by 

varying the sputter rate of each target, which was 

controlled by sputter power. Four different samples of 

VxMo1-xS2 were prepared with increasing amounts of 

x. 

 

The sulfurization was carried out in a tube furnace 

(MTI OTF-1200X-S-NT-LD) with 50.8 mm diameter 

quartz tube. The deposited alloys films were placed at 

the center and 0.5 g sulfur powder (Merck) at the 

upstream side of the furnace. The tube was flashed with 

high purity nitrogen to remove oxygen for 1h prior to 

sulfurization and nitrogen flow with a rate of 100 sccm 

was continued during the sulfurization. The center of 

the furnace was gradually heated up to 800 oC in 80 

min and kept at 800 oC for 1h before cooled down to 

room temperature naturally. The sulfur powder was at 

150 oC (above its melting temperature) during the 

reaction.  

X-ray diffraction measurements were carried out by 

Rigaku D-Max with Cu Kα source. The morphology 

and chemical composition of the films were 

investigated with Zeiss Supra 40VP scanning electron 

microscope. Raman spectroscopy measurements were 

performed on Kaiser Raman Rxn with a laser 

wavelength of 514 nm. The sheet resistance of the 

films was determined by four-point probe 

measurements. 

 

3. Results and Discussions 

XRD measurements were performed in order to 

examine the crystal structure of the V doped MoS2 

films (Figure 1). The XRD patterns of all samples are 

in good agreement with hexagonal MoS2 phase 

(PDF#01-075-1539). The fact that no VS2 phase was 

detected and all samples exhibit hexagonal MoS2 phase 

indicate that V substitutionally doped MoS2 and the 

crystal structure of MoS2 has been preserved. The 

undoped MoS2 film exhibits two pronounced peaks 

originated from (100) and (101) planes due to the 

preferential growth of the film in vertical direction 

[39]. With the increasing V content, the (002) peak 

becomes prominent whereas the intensity of (100) and 

(101) peaks decreases. The intensity ratio of the (002) 

peak to the (100) peak is calculated to be 0.19, 2.24, 

2.59, 5.44 and 25.4 for the MoS2, V0.09Mo0.91S2, 

V0.23Mo0.77S2, V0.33Mo0.67S2 and V0.5Mo0.5S2 films, 

respectively. The increasing ratio of (002) to (100) 

with higher V concentration indicates that V doping 

promotes the horizontal stacking.  Furthermore, the 

interplanar spacing of the doped MoS2 films is close to 

that of the undoped MoS2 film, further suggesting that 

V doping did not alter the crystal structure of the MoS2 

film significantly. 

 

 
Fig. 1. XRD plots of the undoped MoS2 and V doped MoS2 

films. 

 



 

307 

Kuru / Cumhuriyet Sci. J., 41(1) (2020) 305-310 

The Raman spectra of the undoped MoS2 and V doped 

MoS2 films are shown in Figure 2. All the samples 

exhibit the characteristic peaks of MoS2: E1
2g 

originated from the in-plane vibrations of Mo-S atoms 

and A1g resulted from the out-of-plane vibrations of 

Mo-S atoms [40]. Note that both peaks are 

significantly broadened compared to atomically thin 

MoS2 films reported in literature [41, 42], which may 

be resulted from the polycrystalline nature of the films. 

No peaks corresponding to VS2 has been detected, 

confirming the substitutional doping of V in MoS2. The 

undoped MoS2 film shows an ambiguous E1
2g peak and 

a strong A1g peak pointing out the vertically grown 

MoS2 layers [43]. However, as the V concentration is 

increased, the intensity ratio of E1
2g to A1g grows 

dramatically, which implies a transition from vertical 

to horizontal growth with increasing V/Mo ratio. These 

results are also consistent with the XRD outcome.  
 

 
Fig. 2. Raman spectra of the undoped MoS2 and V doped 

MoS2 films. 

 

 
Fig. 3. Scanning electron microscopy images of (a, b) 

V0.09Mo0.91S2, (c, d) V0.23Mo0.77S2, (e, f) V0.33Mo0.67S2 and (g, 

h) V0.5Mo0.5S2 films. 

Figure 3 shows the SEM images of 20 nm thick V-Mo 

alloys sulfurized at 800 oC for 1 h, in which 

V0.09Mo0.91S2, V0.23Mo0.77S2 and V0.33Mo0.67S2 have a 

granular morphology (50 nm average grain size) while 

V0.5Mo0.5S2 exhibits more like a layered structure. 

Additionally, nanoribbon-like structures with widths 

down to 20 nm and lengths up to 6 µm were detected 

in V0.09Mo0.91S2 and V0.23Mo0.77S2 films (Figure 3a, c 

and d). The EDX mapping results confirm the presence 

of S, V and Mo elements and indicate that their 

distribution is homogeneous throughout the films 

(Figure 4).  

 

 
Fig. 4. EDX mapping results of the V doped MoS2 films. 

 

Four-point probe measurements were conducted in 

order to reveal the effect of V doping on the electrical 

characteristics of MoS2. Figure 5 shows the sheet 

resistance values of the undoped and doped films, in 

which the doped films exhibit 35-40 times lower sheet 

resistance compared to undoped MoS2. The lowest 

sheet resistance value of 1.96 kohm/sq has been 

achieved at 33 at. % V doping. As  𝑅𝑠 = 𝜌. 𝑡  𝑎𝑛𝑑 𝜎 =
1/𝜌 (𝑅𝑠 sheet resistance, 𝜌 resistivity, 𝑡 thickness and 

𝜎 conductivity), it can be concluded that V doping has 

increased the conductivity of the MoS2 film by a factor 

of 35-40. The conductivity of a semiconductor is given 

by 𝜎 = 𝑞(𝑛𝜇𝑒 + 𝑝𝜇ℎ), where 𝑞 is the elemental 

charge, 𝑛 and 𝑝 are the electron and hole carrier 

concentration, 𝜇𝑒 and 𝜇ℎ are the electron and hole 

mobility. Thus, the conductivity enhancement in the V 

doped MoS2 films can be attributed to the increase of 

carrier concentration. Since V has one less valance 

electron than Mo, the incorporation of V atoms in the 

MoS2 crystal causes an electron deficiency in the 

bonding orbitals; hence p-type doping is induced in 

MoS2. 
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Fig. 5. The effect of V dopant concentration on the sheet 

resistance of the MoS2 film. 

 

4. Conclusions 

In summary, V doped MoS2 films with varying V/Mo 

ratios have been successfully prepared by sulfurization 

of sputter deposited V-Mo alloys. The doping 

concentration is adjusted by changing the relative 

deposition rates of V and Mo. The structural 

characterization results show that MoS2 hexagonal 

structure is maintained upon V doping, V doping is 

uniform throughout the films and horizontal layer 

stacking becomes preferred with increasing V content. 

The V doped MoS2 films exhibit greatly enhanced 

conductivity, which could be useful for catalysis 

applications such as hydrogen evolution or oxygen 

reduction reactions. Moreover, this method can be 

extended to synthesize various ternary TMD alloys, 

where controlled doping, thickness and morphology 

may be beneficial to study fundamental properties of 

such alloyed materials. 
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