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 Abstract  
In this paper, we give multiple attribute decision-making (MADM) method where both the 

attribute value and attribute weight of alternatives are single-valued trapezoidal neutrosophic 

numbers (SVTN-numbers). In spite of existing ranking methods, no one can rank SVTN-

numbers with human intuition consistently in all cases. Therefore, we introduce a novel 

defuzzification method for ranking SVTN-numbers. To do this, some basic definitions and 

operations on the concepts of fuzzy set, fuzzy number, intuitionistic fuzzy set, intuitionistic 

fuzzy number, single-valued neutrosophic set, SVTN-number are presented. Then, concepts 

of 𝑰. score function and 𝑰𝑰. score function to reduce the SVTN-numbers to fuzzy numbers are 

defined. Finally, multiple criteria decision-making (MCDM) method for multiple criteria 

decision-making problems by using the concept of 𝑰. score function and 𝑰𝑰. score function of 

SVTN-numbers and defuzzification of fuzzy numbers are developed. Also, we have used a 

numerical example to verify the feasibility and the superiority of the proposed method 

compared to the existing methods. 

 

Article info 
History:  
Received:10.06.2019 

Accepted:31.01.2020 

Keywords:  
Neutrosophic set, 

single-valued 

trapezoidal 

neutrosophic number, 

score function, 

defuzzification, 

multiple attribute 

decision-making. 

 

1. Introduction 

 

Multi-criteria decision-making (MCDM) problems with uncertainty and fuzziness information are discussed by 

many authors such as fuzzy set [1], intuitionistic fuzzy set [2] and neutrosophic set [3]. To describe uncertainty 

and fuzziness information more flexibly and effectively in the real life, the theory of single-valued neutrosophic 

sets initially introduced by Wang et al. [4] by flexible degrees of truth-membership, degrees of indeterminacy 

membership and degrees of falsity-membership which is the generalization of the classical set, the fuzzy set, the 

intuitionistic fuzzy set and so on. Also, the academic community has witnessed growing research interests on the 

set theories in [5-9]. Because of the complexity and ambiguity involved in real-life situations, the theories are 

extended to fuzzy number [10-13], intuitionistic fuzzy number [14-19] and neutrosophic number [20-27] on ∈
ℝ. Concept of the single-valued neutrosophic number including single-valued trapezoidal neutrosophic number 

and single-valued triangular neutrosophic number that is a special neutrosophic set on ∈ ℝ is first proposed by 

Şubaş [26].  

 

However, few studies have focused on an extension of the neutrosophic numbers within the neutrosophic 

environment. Currently, there has been little research on decision-making methods on MCDM problems with 

neutrosophic numbers, and thus, it is necessary to pay attention to this issue. Many authors have developed some 

methods such as: on neutrosophic AHP-Delphi group decision-making model based on trapezoidal neutrosophic 

numbers [28], on aggregation of triangular fuzzy neutrosophic numbers [26,29], on value and ambiguity of single-

valued trapezoidal neutrosophic numbers [20,22,26], on computation of shortest path problem in a network with 

of single-valued trapezoidal-triangular neutrosophic numbers [21-30], on operators with single-valued 

trapezoidal-triangular neutrosophic numbers [23,24,26,27,31], on multi-criteria group decision-making method 
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based on interdependent inputs of single-valued trapezoidal neutrosophic information [32], on single-valued 

trapezoidal neutrosophic preference relations with complete weight information [33], and so on. 

Also, many useful defuzzification methods have been proposed to solve various MCDM problems on fuzzy 

numbers and intuitionistic fuzzy numbers in [6,11-15,19], but very few methods take into account the 

perspectives of both the defuzzification and the SVTN-numbers.  Therefore, we proposed an MCDM method 

based on the concept of 𝐼. and 𝐼𝐼. score function of SVTN-numbers and defuzzification of fuzzy numbers. The 

remainder of this paper is organised as follows. Section 2 briefly introduces the basic definitions and operations 

on the concepts of fuzzy set, fuzzy number, intuitionistic fuzzy set, intuitionistic fuzzy number, single-valued 

neutrosophic set, single-valued neutrosophic number (SVN-number). Section 3 first develops the concept of 𝐼. 
score function and 𝐼𝐼. score function of SVTN-numbers to reduce the SVTN-numbers to fuzzy numbers and 

investigates some essential properties. Section 4 applies the proposed definitions and operations to an MCDM 

method for MCDM problems. Section 5 presents a numerical example to demonstrate how to apply the proposed 

method. Section 6 includes certain comparative discussions to verify the effectiveness and advantages of the 

developed approach with comparative analysis. The final section contains the conclusions. The present expository 

paper is a condensation of part of the dissertation [25]. 

 

2. Preliminary Definitions 

This section reviews some basic concepts related to fuzzy sets, intuitionistic fuzzy sets and neutrosophic sets that 

are used throughout this paper. 

Definition 1. [1] A fuzzy set A on universe set E is given by  

A = {〈μA(x)/x〉: x ∈ E} 

where the functions μA: E → [0,1] define the degree of membership x ∈ E. 

 

Definition 2. [13] Let 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑  such that 𝑎 , 𝑏 , 𝑐 , 𝑑 ∈ ℝ. A generalized fuzzy number is a special fuzzy 

set on the real number set ℝ, whose membership function 𝜇𝐴: ℝ → [0,𝑤𝐴] can generally be defined as 

 𝜇𝐴(𝑥) = {

𝑓𝜇𝑙(𝑥)

𝑤𝐴
𝑓𝜇𝑟(𝑥)

0

𝑎 ≤ 𝑥 < 𝑏
𝑏 ≤ 𝑥 < 𝑐
𝑐 ≤ 𝑥 < 𝑑
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑤𝐴 ∈ [0,1] is a constant, 𝑓𝜇𝑙(𝑥): [𝑎, 𝑏] → [0,𝑤𝐴] and 𝑓𝜇𝑟(𝑥): [𝑐, 𝑑] → [0,𝑤𝐴] are two strictly monotonical 

and continuous mappings from ℝ to the closed interval [0, 𝑤𝐴]. If the membership function 𝜇𝐴(𝑥) is piecewise 

linear, then �̂� is referred to as a trapezoidal generalized fuzzy number and is usually denoted by �̂� =
(𝑎, 𝑏, 𝑐, 𝑑; 𝑤𝐴). 

Also, Wang [12] introduce a new definition is called centroid point of the trapezoidal generalized fuzzy number 

�̂� = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤𝐴) as (�̂�) =
∫ 𝑥𝜇�̂�(𝑥)𝑑𝑥
𝑑

𝑎

∫ 𝜇�̂�(𝑥)𝑑𝑥
𝑑

𝑎

 . 

Definition 3. [2]   An intuitionistic fuzzy set 𝐾 on universe set 𝐸 is given by 𝐾 = {〈𝑥, 𝜇𝐾(𝑥), 𝜈𝐾(𝑥)〉: 𝑥 ∈
𝐸} where 𝜇𝐾(𝑥): 𝐸 → [0,1] and 𝜈𝐾(𝑥): 𝐸 → [0,1] satisfy the condition 0 ≤ 𝜇𝐾(𝑥) + 𝜈𝐾(𝑥) ≤ 1, for every 𝑥 ∈
𝐸. The values  𝜇𝐾(𝑥) and 𝜈𝐾(𝑥)  define the degree of membership and degree of non-membership, respectively. 

Definition 4. [7] Let 𝑎𝑖 ≤ 𝑏𝑖 ≤ 𝑐𝑖 ≤ 𝑑𝑖 such that 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 ∈ [0,1] for 𝑖 = 1,2. An intuitionistic fuzzy number 

�̅� = 〈(𝑎1, 𝑏1, 𝑐1, 𝑑1; 𝑤�̅�), (𝑎2, 𝑏2, 𝑐2, 𝑑2; 𝑢�̅�)〉 is a special intuitionistic set on the real number set ℝ, whose 

membership function 
A

 and non-membership function 
A

  are given as follows: 
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𝜇�̄�(𝑥) =

{
  
 

  
 
(𝑥 − 𝑎1)𝑤�̄�
(𝑏1 − 𝑎1)

, 𝑎1 ≤ 𝑥 < 𝑏1

𝑤�̄�, 𝑏1 ≤ 𝑥 < 𝑐1
(𝑑1 − 𝑥)𝑤�̄�
(𝑑1 − 𝑐1)

,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐1 ≤ 𝑥 < 𝑑1

 and 𝜈�̄�(𝑥) =

{
  
 

  
 
(𝑏2 − 𝑥) + (𝑥 − 𝑎2)𝑢�̄�

(𝑏2 − 𝑎2)
, 𝑎2 ≤ 𝑥 < 𝑏2

𝑢�̄�, 𝑏2 ≤ 𝑥 < 𝑐2
(𝑥 − 𝑐2) + (𝑑2 − 𝑥)𝑢�̄�

(𝑑2 − 𝑐2)
, 𝑐2 ≤ 𝑥 < 𝑑2

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If (𝑎1, 𝑏1, 𝑐1, 𝑑1) = (𝑎2, 𝑏2, 𝑐2, 𝑑2) then the intuitionistic fuzzy number is reduced to trapezoidal intuitionistic 

fuzzy numbers A̅ = 〈(𝑎1, 𝑏1, 𝑐1, 𝑑1);𝑤�̅�, 𝑢�̅�〉. 

Definition 5. [3] A single-valued neutrosophic set 𝐴 on universe set 𝐸 is given by 𝐴 =
{〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝐸} where 𝑇𝐴: 𝐸 → [0,1],  𝐼𝐴: 𝐸 → [0,1], and 𝐹𝐴: 𝐸 → [0,1]  satisfy the condition 

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3, for every x ∈ E. The functions  𝑇𝐴,  𝐼𝐴, and 𝐹𝐴 define the degree of truth-

membership function,  indeterminacy-membership function and falsity-membership function,  respectively. 

Definition 6. [26] Let 𝑎1 ≤ 𝑏1 ≤ 𝑐1 ≤ 𝑑1 such that 𝑎1, 𝑏1, 𝑐1, 𝑑1 ∈ [0,1]. A single-valued trapezoidal 

neutrosophic number (SVTN-number) �̃� = ⟨(𝑎1, 𝑏1, 𝑐1, 𝑑1);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ is a special neutrosophic set on the real 

number set ℝ, whose truth-membership function 𝜇�̃�: ℝ → [0,𝑤�̃�],  indeterminacy-membership function 𝜈�̃�: ℝ →
[𝑢�̃�, 1] and falsity-membership function 𝜆�̃�: ℝ → [𝑦�̃�, 1] are given as follows; (An example of SVTN-number is 

given in Fig. 1) 

𝜇�̃�(𝑥) = {

(𝑥 − 𝑎1)𝑤�̃�/(𝑏1 − 𝑎1), 𝑎1 ≤ 𝑥 ≤ 𝑏1
𝑤�̃�, 𝑏1 ≤ 𝑥 ≤ 𝑐1

(𝑑1 − 𝑥)𝑤�̃�/(𝑑1 − 𝑐1), 𝑐1 ≤ 𝑥 ≤ 𝑑1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑣�̃�(𝑥) = {

𝑏1 − 𝑥 + 𝑢𝐴(𝑥 − 𝑎1), 𝑎1 ≤ 𝑥 ≤ 𝑏1
𝑢�̃�, 𝑏1 ≤ 𝑥 ≤ 𝑐1

𝑥 − 𝑐1 + 𝑢�̃�(𝑑1 − 𝑥), 𝑐1 ≤ 𝑥 ≤ 𝑑1
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜆�̃�(𝑥) = {

𝑏1 − 𝑥 + 𝜆�̃�(𝑥 − 𝑎1), 𝑎1 ≤ 𝑥 ≤ 𝑏1
𝑦�̃�, 𝑏1 ≤ 𝑥 ≤ 𝑐1

𝑥 − 𝑐1 + 𝜆�̃�(𝑑1 − 𝑥), 𝑐1 ≤ 𝑥 ≤ 𝑑1
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Note that the set of all SVTN-numbers on ℝ will be denoted by 𝑁ℝ. 

 
Fig. 1: Example of an SVTN-number 

Definition 7. [26] Let �̃� = ⟨(𝑎1, 𝑏1, 𝑐1, 𝑑1);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ and �̃� = ⟨(𝑎2, 𝑏2, 𝑐2, 𝑑2); 𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ be two SVTN-

numbers and γ ≠ 0. Then, 

i. �̃� + �̃� = ⟨(𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑐1 + 𝑐2, 𝑑1 + 𝑑2);𝑤�̃� ∧ 𝑤�̃�, 𝑢�̃� ∨ 𝑢�̃�, 𝑦�̃� ∨ 𝑦�̃�⟩ 



Deli, K. Öztürk / Cumhuriyet Sci. J., 41(1) (2020) 22-37 

 

25 
 

ii. �̃��̃� = {

⟨(𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2, 𝑑1𝑑2);𝑤�̃� ∧ 𝑤�̃�, 𝑢�̃� ∨ 𝑢�̃� , 𝑦�̃� ∨ 𝑦�̃�⟩, 𝑑1 > 0 𝑎𝑛𝑑 𝑑2 > 0 

⟨(𝑎1𝑑2, 𝑏1𝑐2, 𝑐1𝑏2, 𝑑1𝑎2);𝑤�̃� ∧ 𝑤�̃�, 𝑢�̃� ∨ 𝑢�̃� , 𝑦�̃� ∨ 𝑦�̃�⟩, 𝑑1 < 0 𝑎𝑛𝑑 𝑑2 > 0
⟨(𝑑1𝑑2, 𝑐1𝑐2, 𝑏1𝑏2, 𝑎1𝑎2);𝑤�̃� ∧ 𝑤�̃�, 𝑢�̃� ∨ 𝑢�̃� , 𝑦�̃� ∨ 𝑦�̃�⟩, 𝑑1 < 0 𝑎𝑛𝑑 𝑑2 < 0

 

iii. �̃�/�̃� = {

⟨(𝑎1/𝑑2, 𝑏1/𝑐2, 𝑐1/𝑏2, 𝑑1/𝑎2);𝑤�̃� ∧ 𝑤�̃�, 𝑢�̃� ∨ 𝑢�̃�, 𝑦�̃� ∨ 𝑦�̃�⟩, 𝑑1 > 0 𝑎𝑛𝑑 𝑑2 > 0

⟨(𝑑1/𝑑2, 𝑐1/𝑐2, 𝑏1/𝑏2, 𝑎1/𝑎2);𝑤�̃� ∧ 𝑤�̃�, 𝑢�̃� ∨ 𝑢�̃�, 𝑦�̃� ∨ 𝑦�̃�⟩, 𝑑1 < 0 𝑎𝑛𝑑 𝑑2 > 0
⟨(𝑑1/𝑎2, 𝑐1/𝑏2, 𝑏1/𝑐2, 𝑎1/𝑑2);𝑤�̃� ∧ 𝑤�̃�, 𝑢�̃� ∨ 𝑢�̃�, 𝑦�̃� ∨ 𝑦�̃�⟩, 𝑑1 < 0 𝑎𝑛𝑑 𝑑2 < 0

 

iv. 𝛾�̃� = {
⟨(𝛾𝑎1, 𝜆𝑏1, 𝜆𝑐1, 𝜆𝑑1);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩, 𝛾 > 0
⟨(𝜆𝑑1, 𝜆𝑐1, 𝜆𝑏1, 𝜆𝑎1);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩, 𝛾 < 0

 

v. �̃�𝛾 = {
⟨(𝑎1

𝛾 , 𝑏1
𝛾 , 𝑐1

𝛾, 𝑑1
𝛾);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩, 𝛾 > 0

⟨(𝑑1
𝛾 , 𝑐1

𝛾, 𝑏1
𝛾, 𝑎1

𝛾);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩, 𝛾 < 0
 

Definition 8.  [26] Let �̃� = ⟨(𝑎1, 𝑏1, 𝑐1, 𝑑1);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩  be an SVTN-number. Then, 

i. score function of �̃�, is denoted by 𝑆𝑌(�̃�) , is defined as: 

 𝑆𝑌(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐 + 𝑑] × (2 + 𝜇�̃� − 𝜈�̃� − 𝛾�̃�) 

ii. accuracy function of �̃�, is denoted by 𝐴𝑌(�̃�), is defined as:  

𝐴𝑌(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐 + 𝑑] × (2 + 𝜇�̃� − 𝜈�̃� + 𝛾�̃�) 

Definition 9.  [26] Let �̃�𝑗 = 〈(𝑎𝑗, 𝑏𝑗, 𝑐𝑗, 𝑑𝑗); 𝑤�̃�𝑗 , 𝑢�̃�𝑗 , 𝑦�̃�𝑗〉 (𝑗 = 1,2, … , 𝑛) ∈ 𝑁. Then,  

i. SVTN weighted arithmetic operator N𝑎𝑜 ∶ 𝑁ℝ
𝑛  → 𝑁ℝ is defined as; 

  N𝑎𝑜(�̃�1, �̃�2, … , �̃�𝑛) =∑𝑤𝑗�̃�𝑗

𝑛

𝑗=1

= 〈(∑𝑤𝑗𝑎𝑗

𝑛

𝑗=1

,∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

,∑𝑤𝑗𝑐𝑗

𝑛

𝑗=1

,∑𝑤𝑗𝑑𝑗

𝑛

𝑗=1

) ;⋀𝑤�̃�𝑗

𝑛

𝑗=1

,⋁𝑢�̃�𝑗

𝑛

𝑗=1

,⋁𝑦�̃�𝑗

𝑛

𝑗=1

〉 

where, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 is a weight vector associated with the  N𝑎𝑜 operator, for every 𝑗 ( 𝑗 = 1,2, … , 𝑛)  

𝑤𝑗 ∈ [0,1] ve ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 . 

 

ii. SVTN weighted geometric operator N𝑔𝑜 ∶ 𝑁ℝ
𝑛  → 𝑁ℝ, is defined as; 

 N𝑎𝑜(�̃�1, �̃�2, … , �̃�𝑛) =∏�̃�𝑗
𝑤𝑗

𝑛

𝑗=1

= 〈(∏𝑎𝑗
𝑤𝑗

𝑛

𝑗=1

,∏𝑏𝑗
𝑤𝑗

𝑛

𝑗=1

,∏𝑐𝑗
𝑤𝑗

𝑛

𝑗=1

,∏𝑑𝑗
𝑤𝑗

𝑛

𝑗=1

) ;⋀𝑤�̃�𝑗

𝑛

𝑗=1

,⋁𝑢�̃�𝑗

𝑛

𝑗=1

,⋁𝑦�̃�𝑗

𝑛

𝑗=1

〉 

where, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 is a weight vector associated with the  N𝑎𝑜 operator, for every 𝑗 ( 𝑗 = 1,2, … , 𝑛)  

𝑤𝑗 ∈ [0,1] ve ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 . 

 

3.   𝐈. Score Function And 𝐈𝐈. Score Function Of SVTN-Numbers  

In this section, the concepts of 𝐼. score function and 𝐼𝐼. score function to reduce the SVTN-numbers to fuzzy 

numbers are defined. Some of the definitions are quoted or inspired by [18,19,25,26]. 

Definition 10. Let �̃� = ⟨(𝑎, 𝑏, 𝑐, 𝑑); 𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ be an SVTN-number by a truth-membership function 𝑇�̃�: ℝ →
[0,𝑤�̃�], an indeterminacy-membership function 𝐼�̃�: ℝ → [𝑢�̃�, 1] and a falsity-membership function 𝐹�̃�: ℝ →
[𝑦�̃�, 1]. Then, 

i. 𝐼. score function of �̃�, denoted by 𝛩𝐼
�̃�:ℝ → [−1,1], defined by 

  
           

 

𝛩𝐼
�̃�(𝑥) =

𝑇�̃�(𝑥) − 𝐼�̃�(𝑥) − 𝐹�̃�(𝑥) + 1

3  

ii. 𝐼𝐼. score function of �̃�, denoted by 𝛩𝐼𝐼
�̃�:ℝ → [0,1], defined by 
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𝛩𝐼𝐼
�̃�(𝑥) =

𝑇�̃�(𝑥) + 𝐼�̃�(𝑥) − 𝐹�̃�(𝑥) + 1

3
 

Theorem 11.  �̃� = ⟨(𝑎, 𝑏, 𝑐, 𝑑); 𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ be an SVTN-number by a truth-membership function 𝑇�̃�: ℝ →
[0,𝑤�̃�], an indeterminacy-membership function 𝐼�̃�: ℝ → [𝑢�̃�, 1] and a falsity-membership function 𝐹�̃�: ℝ →
[𝑦�̃�, 1]. Then, 

𝛩𝐼
�̃�(𝑥) =

{
 
 
 
 
 

 
 
 
 
 𝑥. 𝑘1 + 𝑘2
(𝑏 − 𝑎)

 (𝑎 ≤ 𝑥 < 𝑏),    {
𝑘1 =

𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 2

3
∈ ℝ

𝑘2 =
𝑎. (−𝑤�̃� + 𝑢�̃� + 𝑦�̃� − 1) − 𝑏

3
∈ ℝ

𝑤𝜃1       (𝑏 ≤ 𝑥 ≤ 𝑐),    𝑤𝜃1 =
𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 1

3
∈ ℝ

𝑥. 𝑘3 + 𝑘4
(𝑑 − 𝑐)

 (𝑐 < 𝑥 ≤ 𝑑),    {
𝑘3 =

𝑤�̃� + 𝑢�̃� + 𝑦�̃� − 2

3
∈ ℝ

𝑘4 =
𝑑. (𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 1) + 𝑐

3
∈ ℝ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

𝛩𝐼𝐼
�̃�(𝑥) =

{
 
 
 
 
 

 
 
 
 
 𝑥. 𝑘5 + 𝑘6
(𝑏 − 𝑎)

 (𝑎 ≤ 𝑥 < 𝑏),    {
𝑘5 =

𝑤�̃� + 𝑢�̃� − 𝑦�̃�
3

∈ ℝ

𝑘6 =
𝑎. (𝑤�̃� − 𝑢�̃� − 𝑦�̃� − 1) + 𝑏

3
∈ ℝ

𝑤𝜃2        (𝑏 ≤ 𝑥 ≤ 𝑐),    𝑤𝜃2 =
𝑤�̃� + 𝑢�̃� − 𝑦�̃� + 1

3
∈ ℝ

𝑥. 𝑘7 + 𝑘8
(𝑑 − 𝑐)

 (𝑐 < 𝑥 ≤ 𝑑),    {
𝑘7 =

(−𝑤�̃� − 𝑢�̃� + 𝑦�̃�)

3
∈ ℝ

𝑘8 =
𝑑. (𝑤�̃� + 𝑢�̃� − 𝑦�̃� + 1) − 𝑐

3
∈ ℝ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

are fuzzy numbers. 

Proof: �̃� = ⟨(𝑎, 𝑏, 𝑐, 𝑑);𝑤�̃�, 𝑢𝐴, 𝑦�̃�⟩ be an SVTN-number. Then, from Definition 6 and Definition 10, we have 

 𝛩𝐼
�̃�(𝑥) =

{
 
 
 

 
 
 
(𝑥 − 𝑎)𝑤�̃�
3. (𝑏 − 𝑎)

−
(𝑏 − 𝑥 + 𝑢�̃�(𝑥 − 𝑎))

3. (𝑏 − 𝑎)
−
(𝑏 − 𝑥 + 𝑦�̃�(𝑥 − 𝑎))

3. (𝑏 − 𝑎)
+
1

3
, (𝑎 ≤ 𝑥 < 𝑏)

𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 1

3
,                               (𝑏 ≤ 𝑥 ≤ 𝑐)

(𝑑 − 𝑥)𝑤�̃�
3. (𝑑 − 𝑐)

−
(𝑥 − 𝑐 + 𝑢�̃�(𝑑 − 𝑥))

3. (𝑑 − 𝑐)
−
(𝑥 − 𝑐 + 𝑦�̃�(𝑑 − 𝑥))

3. (𝑑 − 𝑐)
+
1

3
, (𝑐 < 𝑥 ≤ 𝑑)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  =

{
 
 
 

 
 
 
(𝑥 − 𝑎)𝑤�̃� − (𝑏 − 𝑥 + 𝑢�̃�(𝑥 − 𝑎)) − (𝑏 − 𝑥 + 𝑦�̃�(𝑥 − 𝑎)) + (𝑏 − 𝑎)

3. (𝑏 − 𝑎)
, (𝑎 ≤ 𝑥 < 𝑏)

𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 1

3
,                                 (𝑏 ≤ 𝑥 ≤ 𝑐)

(𝑑 − 𝑥)𝑤�̃� − (𝑥 − 𝑐 + 𝑢�̃�(𝑑 − 𝑥)) − (𝑥 − 𝑐 + 𝑦�̃�(𝑑 − 𝑥)) + (𝑑 − 𝑐)

3. (𝑑 − 𝑐)
, (𝑐 < 𝑥 ≤ 𝑑)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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  =

{
 
 
 

 
 
 
𝑥. (𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 2) + 𝑎. (−𝑤�̃� + 𝑢𝐴 + 𝑦�̃� − 1) − 𝑏

3. (𝑏 − 𝑎)
,  (𝑎 ≤ 𝑥 < 𝑏)

𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 1

3
,             (𝑏 ≤ 𝑥 ≤ 𝑐)

𝑥. (𝑤�̃� + 𝑢�̃� + 𝑦�̃� − 2) + 𝑑. (𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 1) + 𝑐

3. (𝑑 − 𝑐)
,  (𝑐 < 𝑥 ≤ 𝑑)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  =

{
 
 
 
 
 

 
 
 
 
 𝑥. 𝑘1 + 𝑘2
(𝑏 − 𝑎)

,  (𝑎 ≤ 𝑥 < 𝑏) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝑘1 =

𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 2

3
∈ ℝ

𝑘2 =
𝑎. (−𝑤�̃� + 𝑢�̃� + 𝑦�̃� − 1) − 𝑏

3
∈ ℝ

𝑤𝜃1 ,       (𝑏 ≤ 𝑥 ≤ 𝑐) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤𝜃1 =
𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 1

3
∈ ℝ

𝑥. 𝑘3 + 𝑘4
(𝑑 − 𝑐)

,  (𝑐 < 𝑥 ≤ 𝑑) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝑘3 =

𝑤�̃� + 𝑢�̃� + 𝑦�̃� − 2

3
∈ ℝ

𝑘4 =
𝑑. (𝑤�̃� − 𝑢�̃� − 𝑦�̃� + 1) + 𝑐

3
∈ ℝ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and similarly, 

 𝛩𝐼𝐼
�̃�(𝑥) =

{
 
 
 

 
 
 
(𝑥 − 𝑎)𝑤�̃�
3. (𝑏 − 𝑎)

+
(𝑏 − 𝑥 + 𝑢�̃�(𝑥 − 𝑎))

3. (𝑏 − 𝑎)
−
(𝑏 − 𝑥 + 𝑦�̃�(𝑥 − 𝑎))

3. (𝑏 − 𝑎)
+
1

3
,  (𝑎 ≤ 𝑥 < 𝑏)

𝑤�̃� + 𝑢�̃� − 𝑦�̃� + 1

3
,                             (𝑏 ≤ 𝑥 ≤ 𝑐)

(𝑑 − 𝑥)𝑤�̃�
3. (𝑑 − 𝑐)

+
(𝑥 − 𝑐 + 𝑢�̃�(𝑑 − 𝑥))

3. (𝑑 − 𝑐)
−
(𝑥 − 𝑐 + 𝑦�̃�(𝑑 − 𝑥))

3. (𝑑 − 𝑐)
+
1

3
,  (𝑐 < 𝑥 ≤ 𝑑)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  

 

=

{
 
 
 

 
 
 
(𝑥 − 𝑎)𝑤�̃� + (𝑏 − 𝑥 + 𝑢�̃�(𝑥 − 𝑎)) − (𝑏 − 𝑥 + 𝑦�̃�(𝑥 − 𝑎)) + (𝑏 − 𝑎)

3. (𝑏 − 𝑎)
, (𝑎 ≤ 𝑥 < 𝑏)

𝑤�̃� + 𝑢�̃� − 𝑦�̃� + 1

3
,                                   (𝑏 ≤ 𝑥 ≤ 𝑐)

(𝑑 − 𝑥)𝑤�̃� + (𝑥 − 𝑐 + 𝑢�̃�(𝑑 − 𝑥)) − (𝑥 − 𝑐 + 𝑦�̃�(𝑑 − 𝑥)) + (𝑑 − 𝑐)

3. (𝑑 − 𝑐)
, (𝑐 < 𝑥 ≤ 𝑑)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  =

{
 
 
 

 
 
 
𝑥. (𝑤�̃� + 𝑢�̃� − 𝑦�̃�) + 𝑎. (𝑤�̃� − 𝑢�̃� − 𝑦�̃� − 1) + 𝑏

3. (𝑏 − 𝑎)
,   (𝑎 ≤ 𝑥 < 𝑏)

𝑤�̃� + 𝑢�̃� − 𝑦�̃� + 1

3
,                      (𝑏 ≤ 𝑥 ≤ 𝑐)

𝑥. (−𝑤�̃� − 𝑢�̃� + 𝑦�̃�) + 𝑑. (𝑤�̃� + 𝑢�̃� − 𝑦�̃� + 1) − 𝑐

3. (𝑑 − 𝑐)
  (𝑐 < 𝑥 ≤ 𝑑)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



Deli, K. Öztürk / Cumhuriyet Sci. J., 41(1) (2020) 22-37 

 

28 
 

  =

{
 
 
 
 
 

 
 
 
 
 𝑥. 𝑘5 + 𝑘6
(𝑏 − 𝑎)

,  (𝑎 ≤ 𝑥 < 𝑏) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝑘5 =

𝑤�̃� + 𝑢�̃� − 𝑦�̃�
3

∈ ℝ

𝑘6 =
𝑎. (𝑤�̃� − 𝑢�̃� − 𝑦�̃� − 1) + 𝑏

3
∈ ℝ

𝑤𝜃2 ,        (𝑏 ≤ 𝑥 ≤ 𝑐) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤𝜃2 =
𝑤�̃� + 𝑢�̃� − 𝑦�̃� + 1

3
∈ ℝ

𝑥. 𝑘7 + 𝑘8
(𝑑 − 𝑐)

,  (𝑐 < 𝑥 ≤ 𝑑) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝑘7 =

(−𝑤�̃� − 𝑢�̃� + 𝑦�̃�)

3
∈ ℝ

𝑘8 =
𝑑. (𝑤�̃� + 𝑢�̃� − 𝑦�̃� + 1) − 𝑐

3
∈ ℝ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Finally, 𝐼. and 𝐼𝐼. score of �̃� are fuzzy numbers.  

Definition 12.  Let �̃� = ⟨(𝑎, 𝑏, 𝑐, 𝑑);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ be an SVTN-number and 𝛩𝐼
�̃� and 𝛩𝐼𝐼

�̃� be the 𝐼. score function and 

𝐼𝐼. score function of �̃�, respectively. Then, 

i. The centroid of �̃� based on 𝐼. score function, denoted by 𝐶(𝛩𝐼
�̃�), defined by; 

𝐶(𝛩𝐼
�̃�) =

∫
𝑥.(𝑤�̃�−𝑢�̃�−𝑦�̃�+2)+𝑎.(−𝑤�̃�+𝑢�̃�+𝑦�̃�−1)−𝑏

3.(𝑏−𝑎)
𝑥𝑑𝑥 + ∫

𝑤�̃�−𝑢�̃�−𝑦�̃�+1

3
𝑥𝑑𝑥

𝑐

𝑏

𝑏

𝑎

∫
𝑥.(𝑤�̃�−𝑢�̃�−𝑦�̃�+2)+𝑎.(−𝑤�̃�+𝑢�̃�+𝑦�̃�−1)−𝑏

3.(𝑏−𝑎)
𝑑𝑥 + ∫

𝑤�̃�−𝑢�̃�−𝑦�̃�+1

3
𝑑𝑥

𝑐

𝑏

𝑏

𝑎

 

  
+∫

𝑥.(𝑤�̃�+𝑢�̃�+𝑦�̃�−2)+𝑑.(𝑤�̃�−𝑢�̃�−𝑦�̃�+1)+𝑐

3.(𝑑−𝑐)
𝑥𝑑𝑥

𝑑

𝑐

+∫
𝑥.(𝑤�̃�+𝑢�̃�+𝑦�̃�−2)+𝑑.(𝑤�̃�−𝑢�̃�−𝑦�̃�+1)+𝑐

3.(𝑑−𝑐)
𝑥𝑑𝑥

𝑑

𝑐

 

ii. The centroid of �̃� based on 𝐼𝐼. score function, denoted by 𝐶(𝛩𝐼𝐼
�̃�), defined by; 

𝐶(𝛩𝐼𝐼
�̃�) =

∫
𝑥.(𝑤�̃�+𝑢�̃�−𝑦�̃�)+𝑎.(𝑤�̃�−𝑢�̃�−𝑦�̃�−1)+𝑏

3.(𝑏−𝑎)
𝑥𝑑𝑥 + ∫

𝑤�̃�+𝑢�̃�−𝑦�̃�+1

3
𝑥𝑑𝑥

𝑐

𝑏

𝑏

𝑎

∫
𝑥.(𝑤�̃�+𝑢�̃�−𝑦�̃�)+𝑎.(𝑤�̃�−𝑢�̃�−𝑦�̃�−1)+𝑏

3.(𝑏−𝑎)
𝑑𝑥 + ∫

𝑤�̃�+𝑢�̃�−𝑦�̃�+1

3
𝑑𝑥

𝑐

𝑏

𝑏

𝑎

 

  
+∫

𝑥.(−𝑤�̃�−𝑢�̃�+𝑦�̃�)+𝑑.(𝑤�̃�+𝑢�̃�−𝑦�̃�+1)−𝑐

3.(𝑑−𝑐)
𝑥𝑑𝑥

𝑑

𝑐

+∫
𝑥.(−𝑤�̃�−𝑢�̃�+𝑦�̃�)+𝑑.(𝑤�̃�+𝑢�̃�−𝑦�̃�+1)−𝑐

3.(𝑑−𝑐)
𝑥𝑑𝑥

𝑑

𝑐

 

Theorem 13.  Let �̃� = ⟨(𝑎, 𝑏, 𝑐, 𝑑); 𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩be an SVTN-number and 𝛩𝐼
�̃� and 𝛩𝐼𝐼

�̃� be the 𝐼. score function and 

𝐼𝐼. score function of �̃�, respectively. Then, 

i. The centroid of �̃� based on 𝐼. score function, denoted by 𝐶(𝛩𝐼
�̃�), calculated as 

𝐶(𝛩𝐼
�̃�) =

1

3

[(𝑎3 − 𝑏3). (𝑤�̃� − 𝑢�̃� − 𝑦�̃�) − 2𝑏
3 − 𝑎3 + 3𝑏𝑎2]

[(𝑎2 − 𝑏2). (𝑤�̃� − 𝑢�̃� − 𝑦�̃�) − 2𝑏
2 + 2𝑎𝑏]

 

 
+[(𝑑3 − 𝑐3). (5𝑤�̃� − 𝑢�̃� − 𝑦�̃�) − 2𝑐

3 − 𝑑3 + 3𝑐𝑑2]

+[(𝑑2 − 𝑐2). (3𝑤�̃� − 𝑢�̃� − 𝑦�̃�) − 2𝑐
2 + 2𝑐𝑑]

 

 

ii. The centroid of �̃� based on 𝐼𝐼. score function, denoted by 𝐶(𝛩𝐼𝐼
�̃�), calculated as 

𝐶(𝛩𝐼𝐼
�̃�) =

1

3

[𝑎3. (−5𝑤�̃� + 𝑢�̃� + 5𝑦�̃� + 3) + 𝑏
3. (−𝑤�̃� − 𝑢�̃� + 𝑦�̃�) + 6𝑏

2𝑎. (𝑤�̃� − 𝑦�̃�) − 3𝑎
2]

[𝑎2. (3𝑤�̃� + 𝑢�̃� + 3𝑦�̃� + 2) − 𝑏
2. (𝑤�̃� + 𝑢�̃� + 𝑦�̃�) + 4𝑎𝑏. (𝑤�̃� − 𝑦�̃�) − 2𝑎𝑏]

 



Deli, K. Öztürk / Cumhuriyet Sci. J., 41(1) (2020) 22-37 

 

29 
 

 
+[(𝑑3 − 𝑐3). (𝑤�̃� + 𝑢�̃� − 𝑦�̃�) + 3𝑑

3 − 3𝑐𝑑2]

+[(𝑑2 − 𝑐2). (𝑤�̃� + 𝑢�̃� − 𝑦�̃�) + 2𝑑
2 − 2𝑐𝑑]

 

Proof: Assume that �̃� = ⟨(𝑎, 𝑏, 𝑐, 𝑑); 𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ be an SVTN-number and 𝛩𝐼
�̃� and 𝛩𝐼𝐼

�̃� be the 𝐼.  

score function and 𝐼𝐼. score function of �̃�, respectively. Then, 

i. The centroid of �̃� based on 𝐼. score function, denoted by 𝐶(𝛩𝐼
�̃�), calculated as 

𝐶(𝛩𝐼
�̃�) =

∫
𝑥.𝑘1+𝑘2
(𝑏−𝑎)

𝑥𝑑𝑥 + ∫ 𝑤𝜃1 . 𝑥𝑑𝑥 + ∫
𝑥.𝑘3+𝑘4
(𝑑−𝑐)

𝑥𝑑𝑥
𝑑

𝑐

𝑐

𝑏

𝑏

𝑎

∫
𝑥.𝑘1+𝑘2
(𝑏−𝑎)

𝑑𝑥 + ∫ 𝑤𝜃1 . 𝑑𝑥 + ∫
𝑥.𝑘3+𝑘4
(𝑑−𝑐)

𝑑𝑥
𝑑

𝑐

𝑐

𝑏

𝑏

𝑎

 

 =
∫

𝑥.(𝑤�̃�−𝑢�̃�−𝑦�̃�+2)+𝑎.(−𝑤�̃�+𝑢�̃�+𝑦�̃�−1)−𝑏

3.(𝑏−𝑎)
𝑥𝑑𝑥 + ∫

𝑤�̃�−𝑢�̃�−𝑦�̃�+1

3
𝑥𝑑𝑥

𝑐

𝑏

𝑏

𝑎

∫
𝑥.(𝑤�̃�−𝑢�̃�−𝑦�̃�+2)+𝑎.(−𝑤�̃�+𝑢�̃�+𝑦�̃�−1)−𝑏

3.(𝑏−𝑎)
𝑑𝑥 + ∫

𝑤�̃�−𝑢�̃�−𝑦�̃�+1

3
𝑑𝑥

𝑐

𝑏

𝑏

𝑎

 

  
+∫

𝑥.(𝑤�̃�+𝑢�̃�+𝑦�̃�−2)+𝑑.(𝑤�̃�−𝑢�̃�−𝑦�̃�+1)+𝑐

3.(𝑑−𝑐)
𝑥𝑑𝑥

𝑑

𝑐

+∫
𝑥.(𝑤�̃�+𝑢�̃�+𝑦�̃�−2)+𝑑.(𝑤�̃�−𝑢�̃�−𝑦�̃�+1)+𝑐

3.(𝑑−𝑐)
𝑥𝑑𝑥

𝑑

𝑐

 

 =
(
(𝑤�̃�−𝑢�̃�−𝑦�̃�+2)

9.(𝑏−𝑎)
𝑥3 +

𝑎.(−𝑤�̃�+𝑢�̃�+𝑦�̃�−1)−𝑏

6.(𝑏−𝑎)
𝑥2)|

𝑎

𝑏

+ (
𝑤�̃�−𝑢�̃�−𝑦�̃�+1

6
)𝑥2|

𝑏

𝑐

(
(𝑤�̃�−𝑢�̃�−𝑦�̃�+2)

6.(𝑏−𝑎)
𝑥2 +

𝑎.(−𝑤�̃�+𝑢�̃�+𝑦�̃�−1)−𝑏

3.(𝑏−𝑎)
𝑥)|

𝑎

𝑏

+ (
𝑤�̃�−𝑢�̃�−𝑦�̃�+1

3
)𝑥|

𝑏

𝑐
 

   
+ (

(𝑤�̃�+𝑢�̃�+𝑦�̃�−2)

9.(𝑑−𝑐)
𝑥3 +

𝑑.(𝑤�̃�−𝑢�̃�−𝑦�̃�+1)+𝑐

6.(𝑑−𝑐)
𝑥2)|

𝑐

𝑑

+(
(𝑤�̃�+𝑢�̃�+𝑦�̃�−2)

6.(𝑑−𝑐)
𝑥2 +

𝑑.(𝑤�̃�−𝑢�̃�−𝑦�̃�+1)+𝑐

3.(𝑑−𝑐)
𝑥)|

𝑐

𝑑
 

 =
(
−𝑏3𝑤�̃�+𝑏

3𝑢�̃�+𝑏
3𝑦�̃�−2𝑏

3

18.(𝑏−𝑎)
) + (

𝑎3𝑤�̃�−𝑎
3𝑢�̃�−𝑎

3𝑦�̃�−𝑎
3+3𝑏𝑎2

18.(𝑏−𝑎)
)

(
−𝑏2𝑤�̃�+𝑏

2𝑢�̃�+𝑏
2𝑦�̃�−2𝑏

2

6.(𝑏−𝑎)
) + (

𝑎2𝑤�̃�−𝑎
2𝑢�̃�−𝑎

2𝑦�̃�+2𝑎𝑏

6.(𝑏−𝑎)
)

 

  
+ (

−5𝑐3𝑤�̃�+𝑐
3𝑢�̃�+𝑐

3𝑦�̃�−2𝑐
3

18.(𝑑−𝑐)
) + (

5𝑑3𝑤�̃�−𝑑
3𝑢�̃�−𝑑

3𝑦�̃�−𝑑
3+3𝑐𝑑2

18.(𝑑−𝑐)
)

+(
−3𝑐2𝑤�̃�+𝑐

2𝑢�̃�+𝑐
2𝑦�̃�−2𝑐

2

6.(𝑑−𝑐)
) + (

3𝑑2𝑤�̃�−𝑑
2𝑢�̃�−𝑑

2𝑦�̃�−𝑑
2+2𝑐𝑑

6.(𝑑−𝑐)
)

 

 =
1

3

[(𝑎3 − 𝑏3). (𝑤�̃� − 𝑢�̃� − 𝑦�̃�) − 2𝑏
3 − 𝑎3 + 3𝑏𝑎2]

[(𝑎2 − 𝑏2). (𝑤�̃� − 𝑢�̃� − 𝑦�̃�) − 2𝑏
2 + 2𝑎𝑏]

 

 
+[(𝑑3 − 𝑐3). (5𝑤�̃� − 𝑢�̃� − 𝑦�̃�) − 2𝑐

3 − 𝑑3 + 3𝑐𝑑2]

+[(𝑑2 − 𝑐2). (3𝑤�̃� − 𝑢�̃� − 𝑦�̃�) − 2𝑐
2 + 2𝑐𝑑]

 

Similarly, 

ii. The centroid of �̃� based on 𝐼𝐼. score function, denoted by 𝐶(𝛩𝐼𝐼
�̃�), calculated as 

𝐶(𝛩𝐼𝐼
�̃�) =

∫
𝑥.𝑘5+𝑘6
(𝑏−𝑎)

𝑥𝑑𝑥 + ∫ 𝑤𝜃2 . 𝑥𝑑𝑥 + ∫
𝑥.𝑘7+𝑘8
(𝑑−𝑐)

𝑥𝑑𝑥
𝑑

𝑐

𝑐

𝑏

𝑏

𝑎

∫
𝑥.𝑘5+𝑘6
(𝑏−𝑎)

𝑑𝑥 + ∫ 𝑤𝜃2 . 𝑑𝑥 + ∫
𝑥.𝑘7+𝑘8
(𝑑−𝑐)

𝑑𝑥
𝑑

𝑐

𝑐

𝑏

𝑏

𝑎
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 =
∫

𝑥.(𝑤�̃�+𝑢�̃�−𝑦�̃�)+𝑎.(𝑤�̃�−𝑢�̃�−𝑦�̃�−1)+𝑏

3.(𝑏−𝑎)
𝑥𝑑𝑥 + ∫

𝑤�̃�+𝑢�̃�−𝑦�̃�+1

3
𝑥𝑑𝑥

𝑐

𝑏

𝑏

𝑎

∫
𝑥.(𝑤�̃�+𝑢�̃�−𝑦�̃�)+𝑎.(𝑤�̃�−𝑢�̃�−𝑦�̃�−1)+𝑏

3.(𝑏−𝑎)
𝑑𝑥 + ∫

𝑤�̃�+𝑢�̃�−𝑦�̃�+1

3
𝑑𝑥

𝑐

𝑏

𝑏

𝑎

 

 

+∫
𝑥.(−𝑤�̃�−𝑢�̃�+𝑦�̃�)+𝑑.(𝑤�̃�+𝑢�̃�−𝑦�̃�+1)−𝑐

3.(𝑑−𝑐)
𝑥𝑑𝑥

𝑑

𝑐

+∫
𝑥.(−𝑤�̃�−𝑢�̃�+𝑦�̃�)+𝑑.(𝑤�̃�+𝑢�̃�−𝑦�̃�+1)−𝑐

3.(𝑑−𝑐)
𝑥𝑑𝑥

𝑑

𝑐

 

 =
(
(𝑤�̃�+𝑢�̃�−𝑦�̃�)

9.(𝑏−𝑎)
𝑥3 +

𝑎.(𝑤�̃�−𝑢�̃�−𝑦�̃�−1)+𝑏

6.(𝑏−𝑎)
𝑥2)|

𝑎

𝑏

+ (
𝑤�̃�+𝑢�̃�−𝑦�̃�+1

6
)𝑥2|

𝑏

𝑐

(
(𝑤�̃�+𝑢�̃�−𝑦�̃�)

6.(𝑏−𝑎)
𝑥2 +

𝑎.(𝑤�̃�−𝑢�̃�−𝑦�̃�−1)+𝑏

3.(𝑏−𝑎)
𝑥)|

𝑎

𝑏

+ (
𝑤�̃�+𝑢�̃�−𝑦�̃�+1

3
)𝑥|

𝑏

𝑐
 

 

+(
(−𝑤�̃�−𝑢�̃�+𝑦�̃�)

9.(𝑑−𝑐)
𝑥3 +

𝑑.(𝑤�̃�+𝑢�̃�−𝑦�̃�+1)−𝑐

6.(𝑑−𝑐)
𝑥2)|

𝑐

𝑑

+(
(−𝑤�̃�−𝑢�̃�+𝑦�̃�)

6.(𝑑−𝑐)
𝑥2 +

𝑑.(𝑤�̃�+𝑢�̃�−𝑦�̃�+1)−𝑐

3.(𝑑−𝑐)
𝑥)|

𝑐

𝑑
 

 =
(
−𝑏3𝑤�̃�−𝑏

3𝑢�̃�+𝑏
3𝑦�̃�+6𝑏

2𝑎𝑤�̃�−6𝑏
2𝑎𝑦�̃�

18.(𝑏−𝑎)
) + (

−5𝑎3𝑤�̃�+𝑎
3𝑢�̃�+5𝑎

3𝑦�̃�+3𝑎
3−3𝑎2

18.(𝑏−𝑎)
)

(
−𝑏2𝑤�̃�−𝑏

2𝑢�̃�+𝑏
2𝑦�̃�+4𝑎𝑏𝑦�̃�

6.(𝑏−𝑎)
) + (

3𝑎2𝑤�̃�+𝑎
2𝑢�̃�+3𝑎

2𝑦�̃�+2𝑎
2−2𝑎𝑏

6.(𝑏−𝑎)
)

 

 

+(
−𝑐3𝑤�̃�−𝑐

3𝑢�̃�+𝑐
3𝑦�̃�

18.(𝑑−𝑐)
) + (

𝑑3𝑤�̃�+𝑑
3𝑢�̃�−𝑑

3𝑦�̃�+3𝑑
3−3𝑑2𝑐

18.(𝑑−𝑐)
)

+(
−𝑐2𝑤�̃�−𝑐

2𝑢�̃�+𝑐
2𝑦�̃�

6.(𝑑−𝑐)
) + (

𝑑2𝑤�̃�+𝑑
2𝑢�̃�−𝑑

2𝑦�̃�+2𝑑
2−2𝑐𝑑

6.(𝑑−𝑐)
)

 

 =
1

3

[𝑎3. (−5𝑤�̃� + 𝑢�̃� + 5𝑦�̃� + 3) + 𝑏
3. (−𝑤�̃� − 𝑢�̃� + 𝑦�̃�) + 6𝑏

2𝑎. (𝑤�̃� − 𝑦�̃�) − 3𝑎
2]

[𝑎2. (3𝑤�̃� + 𝑢�̃� + 3𝑦�̃� + 2) − 𝑏
2. (𝑤�̃� + 𝑢�̃� + 𝑦�̃�) + 4𝑎𝑏. (𝑤�̃� − 𝑦�̃�) − 2𝑎𝑏]

 

 
+[(𝑑3 − 𝑐3). (𝑤�̃� + 𝑢�̃� − 𝑦�̃�) + 3𝑑

3 − 3𝑐𝑑2]

+[(𝑑2 − 𝑐2). (𝑤�̃� + 𝑢�̃� − 𝑦�̃�) + 2𝑑
2 − 2𝑐𝑑]

 

Therefore, the proof is valid. 

Definition 14. Let �̃� = ⟨(𝑎1, 𝑏1, 𝑐1, 𝑑1);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ and �̃� = ⟨(𝑎2, 𝑏2, 𝑐2, 𝑑2);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ 
be two SVTN-

numbers. Then, 

1.  𝐼𝑓 𝐶(𝛩𝐼
�̃�) > 𝐶(𝛩𝐼

�̃�), 𝑡ℎ𝑒𝑛 �̃� < �̃� 

2.  𝐼𝑓 𝐶(𝛩𝐼
�̃�) < 𝐶(𝛩𝐼

�̃�), 𝑡ℎ𝑒𝑛 �̃� > �̃� 

3.  𝐼𝑓 𝐶(𝛩𝐼
�̃�) = 𝐶(𝛩𝐼

�̃�), 𝑡ℎ𝑒𝑛  

  𝑖.  𝐼𝑓 𝐶(𝛩𝐼𝐼
�̃�) > 𝐶(𝛩𝐼𝐼

�̃�), 𝑡ℎ𝑒𝑛 �̃� < �̃� 

 𝑖𝑖.  𝐼𝑓 𝐶(𝛩𝐼𝐼
�̃�) < 𝐶(𝛩𝐼𝐼

�̃�), 𝑡ℎ𝑒𝑛 �̃� > �̃� 

 𝑖𝑖𝑖. 𝐼𝑓 𝐶(𝛩𝐼𝐼
�̃�) = 𝐶(𝛩𝐼𝐼

�̃�), 𝑡ℎ𝑒𝑛 �̃� = �̃�.

 

Example 15. �̃� = ⟨(3,5,6,8); 1.0,0.0,0.0⟩ and �̃� = ⟨(1,4,6,9); 1.0,0.0,0.0⟩ 
 
be two SVTN-numbers. Then we 

have 

𝐶(𝛩𝐼
�̃�) 

=
1

3
(
(−3. 53 + 3.5. 32) + (4. 83 − 7. 63 + 3.6. 82)

(32 − 3. 52 + 2.3.5) + (3. 82 − 5. 62 + 2.6.8)
) 

 
=
1

3
(
(−375 + 135) + (2048 − 1512 + 1152)

(9 − 75 + 30) + (192 − 180 + 96)
) 

 = 6,703 
and 
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𝐶(𝛩𝐼
�̃�) 

=
1

3
(
(−3. 43 + 3.4) + (4. 93 − 7. 63 + 3.6. 92)

(1 − 3. 42 + 2.4) + (3. 92 − 5. 62 + 2.6.9)
) 

 
=
1

3
(
(−192 + 12) + (2916 − 1512 + 1458)

(1 − 48 + 8) + (243 − 180 + 108)
) 

 = 6,7727 

Therefore, (𝛩𝐼
�̃�) < 𝐶(𝛩𝐼

�̃�) → �̃� > �̃�. 

 

Remark 16. �̃� = ⟨(𝑎1, 𝑏1, 𝑐1, 𝑑1);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩ ,�̃� = ⟨(𝑎2, 𝑏2, 𝑐2, 𝑑2);𝑤�̃�, 𝑢�̃�, 𝑦�̃�⟩  be two SVTN-numbers. Then, 

the following equations do not generally hold. 

  𝑖.  𝐶(𝛩𝐼
�̃�) + 𝐶(𝛩𝐼

�̃�) = 𝐶(𝛩𝐼
�̃�+�̃�) 

  𝑖𝑖.  𝐶(𝛩𝐼𝐼
�̃�) + 𝐶(𝛩𝐼𝐼

�̃�) = 𝐶(𝛩𝐼𝐼
�̃�+�̃�)

 
  𝑖𝑖𝑖.  𝐶(𝛩𝐼

�̃�). 𝐶(𝛩𝐼
�̃�) = 𝐶(𝛩𝐼

�̃�.�̃�)
 

  𝑖𝑣.  𝐶(𝛩𝐼𝐼
�̃�). 𝐶(𝛩𝐼𝐼

�̃�) = 𝐶(𝛩𝐼𝐼
�̃�.�̃�) 

 

Example 17. �̃� = ⟨(3,5,6,8); 1.0,0.0,0.0⟩ and �̃� = ⟨(1,4,6,9); 1.0,0.0,0.0⟩ 
 
be two SVTN-numbers. Then we 

have, 

i.   
𝐶(𝛩𝐼

�̃�) =
339,5

34,5
= 9,84 (1) 

 
𝐶(𝛩𝐼

�̃�) =
1226,5

162,9
= 7,52  

(2) 
 

 From (1) and (2)   

 
 

 𝐶(𝛩𝐼
�̃�) + 𝐶(𝛩𝐼

�̃�) = 17,36 (3) 
 Also, for �̃� + �̃� = ⟨(3,8,13,16); 0.5,0.7,0.3⟩

  
 

 

 
𝐶(𝛩𝐼

�̃�+�̃�) =
3265

42
= 77,73 (4) 

 Therefore, from (3) and (4) 𝐶(𝛩𝐼
�̃�) + 𝐶(𝛩𝐼

�̃�) = 𝐶(𝛩𝐼
�̃�+�̃�) does not hold.  

  

 

 
 

 

ii.   
𝐶(𝛩𝐼𝐼

�̃�) = 6,84 (5) 

 
𝐶(𝛩𝐼𝐼

�̃�) = 4,91 
(6) 

 

 From (5) and (6) 

 
 

 
𝐶(𝛩𝐼𝐼

�̃�) + 𝐶(𝛩𝐼𝐼
�̃�) = 11,75 (7) 

 Also, for �̃� + �̃� = ⟨(3,8,13,16); 0.5,0.7,0.3⟩,
 
𝐶(𝛩𝐼𝐼

�̃�+�̃�) = 13,37 
 

 

(8) 

 Therefore, from (7) and (8) 𝐶(𝛩𝐼𝐼
�̃�) + 𝐶(𝛩𝐼𝐼

�̃�) = 𝐶(𝛩𝐼𝐼
�̃�+�̃�) does’t hold. 

 
 

iii.  
𝐶(𝛩𝐼

�̃�) =
339,5

34,5
= 9,84 (9) 

 
𝐶(𝛩𝐼

�̃�) =
1226,5

162,9
= 7,52 

(10) 
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From (9) and (10)  

 
𝐶(𝛩𝐼

�̃�). 𝐶(𝛩𝐼
�̃�) = 74,09 (11) 

 Also, for �̃�. �̃� = ⟨(2,16,42,64); 0.5,0.7,0.3⟩, 𝐶(𝛩𝐼
�̃�.�̃�) = 47,28

 
 

(12) 

 Therefore, from (11) and (12) 𝐶(𝛩𝐼
�̃�). 𝐶(𝛩𝐼

�̃�) = 𝐶(𝛩𝐼
�̃�.�̃�) does’t hold. 

 
 

iv.  
𝐶(𝛩𝐼𝐼

�̃�) = 6,84 (13) 

 
𝐶(𝛩𝐼𝐼

�̃�) = 4,91 (14) 

 
From (13) and (14) we have 𝐶(𝛩𝐼𝐼

�̃�). 𝐶(𝛩𝐼𝐼
�̃�) = 33,61 

 

 

 Also, for �̃�. �̃� = ⟨(2,16,42,64); 0.5,0.7,0.3⟩
  

 
(15) 

 
𝐶(𝛩𝐼𝐼

�̃�.�̃�) = 31,85 (16) 

 Therefore, from (15) and (16) 𝐶(𝛩𝐼𝐼
�̃�). 𝐶(𝛩𝐼𝐼

�̃�) = 𝐶(𝛩𝐼𝐼
�̃�.�̃�) does’t hold. 

 
 

 

4. A New MCDM Method Based On The Concept Of Score Functions And Defuzzification  

In the section, we propose a new MCDM method based on the proposed 𝐼. score function and 𝐼𝐼. score function 

of SVTN-numbers and defuzzification of fuzzy numbers to deal with MCDM problems in SVTN-number 

environments.  Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} be a set of alternatives and  𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} be a set of criteria. 

Assume that the evaluating value of criteria 
ju  (𝑗 = 1,2, . . . , 𝑛)

 
with respect to alternative 𝑥𝑖 (𝑖 = 1,2, . . . , 𝑚) be 

represented by an SVTN-number (𝑥𝑖𝑗)𝑚𝑥𝑛 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗, 𝑐𝑖𝑗 , 𝑑𝑖𝑗; 𝑤𝑖𝑗, 𝑢𝑖𝑗 , 𝑦𝑖𝑗),  and be the normalized decision 

matrix given by expert based on Table 1, let 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) be weighting vector of the criteria set 𝑈 =
{𝑢1, 𝑢2, . . . , 𝑢𝑛} given by expert based on Table 2.  

Note that if 𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗, 𝑑𝑖𝑗 ∈ [0,1], then (𝑥𝑖𝑗)𝑚𝑥𝑛 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗, 𝑐𝑖𝑗 , 𝑑𝑖𝑗; 𝑤𝑖𝑗 , 𝑢𝑖𝑗, 𝑦𝑖𝑗)𝑚𝑥𝑛 is normal.  Note that if 

(𝑥𝑖𝑗)𝑚𝑥𝑛 = (𝑎𝑖𝑗, 𝑏𝑖𝑗 , 𝑐𝑖𝑗, 𝑑𝑖𝑗; 𝑤𝑖𝑗, 𝑢𝑖𝑗 , 𝑦𝑖𝑗)𝑚𝑥𝑛 is not normal, we can normalize the matrix such as  �̃�𝑖𝑗 =
𝑥𝑖𝑗

𝑚𝑎𝑥
𝑖∈𝐼𝑚,𝑗∈𝐼𝑛

(𝑎𝑖𝑗+𝑏𝑖𝑗+𝑐𝑖𝑗+𝑑𝑖𝑗)
. 

The proposed multiple criteria decision-making method based on proposed 𝐼. score function and 𝐼𝐼. score function 

of SVTN-numbers and defuzzification of fuzzy numbers is now presented as follows: 

Table 1. The linguistic values of the SVTN-number for the evaluation matrix 

Linguistic values               SVTN-number values  
Very Poor (VP) ⟨(0.0,0.0,0.1,0.2); 0.1,0.0,0.2⟩  
Weak (W) ⟨(0.0,0.1,0.2,0.3); 0.3,0.5,0.4⟩  
Medium Weak (MW) ⟨(0.2,0.3,0.3,0.4); 0.3,0.6,0.7⟩  
Weak(W) ⟨(0.4,0.4,0.5,0.6); 0.4,0.5,0.6⟩  
Medium Good (MG) ⟨(0.5,0.6,0.6,0.7); 0.7,0.4,0.5⟩  
Good (G) ⟨(0.6,0.7,0.7,0.8); 0.7,0.5,0.4⟩  
Very Good (VG) ⟨(0.8,0.8,0.9,1.0); 0.9,0.8,0.4⟩  

Step 1:
 
Give the normalized decision-making matrix (𝑥𝑖𝑗)𝑚𝑥𝑛  

Step 2:
 
Give the weighting vector 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) of the criteria set 
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Step 3:
 

Find of the normalized weights of the criteria set as; 

 

𝑤𝑗 =
𝐶(𝛩𝐼

𝜔𝑗
)

∑ 𝐶(𝛩𝐼
𝜔𝑗
)𝑛

𝑗=1

 for 𝑗 = 1,2, . . . , 𝑛 

(𝑜𝑟 𝑤𝑗 =
𝐶(𝛩𝐼𝐼

𝜔𝑗
)

∑ 𝐶(𝛩𝐼𝐼
𝜔𝑗
)𝑛

𝑗=1

) 

 Table 2. The linguistic values of the SVTN-number for the criteria weights 

Linguistic values SVTN-number values  
Very Low (VL) ⟨(0.0,0.0,0.1,0.2); 0.1,0.1,0.0⟩  
Low (L) ⟨(0.1,0.1,0.2,0.3); 0.3,0.1,0.2⟩  
Medium Low (ML) ⟨(0.2,0.2,0.3,0.4); 0.4,0.3,0.2⟩  
Medium (M) ⟨(0.4,0.4,0.5,0.6); 0.5,0.4,0.3⟩  
Medium High (MH) ⟨(0.5,0.6,0.6,0.7); 0.7,0.5,0.4⟩  
High (H) ⟨(0.7,0.8,0.8,0.9); 0.9,0.8,0.7⟩  
Very High (VH) ⟨(0.8,0.9,0.9,1.0); 1.0,0.9,0.8⟩  

Step 4:
 
Compute the matrix

 
𝑀𝑖𝑗 = 𝑤𝑗 × 𝑥𝑖𝑗 , (𝑖 = 1,2, . . . , 𝑚 ;  𝑗 = 1,2, . . . , 𝑛) 

Step 5: Compute the 𝑆𝑖 = ∑ 𝑀𝑖𝑗
𝑛
𝑗=1  (𝑖 = 1,2, … ,𝑚) for 𝑥𝑖 𝑖 = 1,2, . . . , 𝑚 

Step 6: Find 𝐶(𝛩𝐼
𝑆𝑖) (or 𝐶(Θ𝐼𝐼

𝑆𝑖)) for the values 𝑆𝑖(𝑖 = 1,2, . . . , 𝑚) 

Step 7: Rank all alternatives 𝑥𝑖 for all 𝑖 = 1,2,… ,𝑚, by using 𝐶(𝛩𝐼
𝑆𝑖) (or 𝐶(Θ𝐼𝐼

𝑆𝑖))
 
and determine the best 

alternative 

 

5. Application 

Example 18.  Assume that the next five years' strategic plan of a country will be prepared by authorities in the 

country. For this, there are five areas called 𝑥1 = “defence area”,  𝑥2 =“social area”, 𝑥3 = “health area”, 𝑥4 = 

“agriculture area” and 𝑥5 = “education area” to be evaluated with four criteria; 𝑢1 =“Reduction of production 

and external dependence”, 𝑢2 =“finance”, 𝑢3 =“Marketing” and  𝑢4 =“To have a voice in the world”.  The 

authorities use the linguistic terms shown in Table 1 to represent the characteristics of the potential areas with 

respect to different criteria. Also, the authorities use the linguistic terms shown in Table 2 to represent criteria 

weights. 

Using the information, the authorities of the country will make the most advantageous investment order with the 

following algorithm. 

Step 1:
 
The normalized decision-making matrix (𝑥𝑖𝑗)5𝑥4 

is given by an expert in Table 3 based on Table 1 

Table 3. The normalized decision-making matrix (𝑥𝑖𝑗)5𝑥4 

                                 
𝑢1

                                                                  
𝑢2 

𝑥1 ⟨(0.2,0.3,0.3,0.4); 0.3,0.6,0.7⟩     ⟨(0.5,0.6,0.7,0.7); 0.7,0.4,0.5⟩ 
𝑥2 ⟨(0.5,0.6,0.7,0.7); 0.7,0.4,0.5⟩     ⟨(0.2,0.3,0.3,0.4); 0.3,0.6,0.7⟩ 
𝑥3  ⟨(0.7,0.8,0.8,0.9); 0.8,0.3,0.4⟩     ⟨(0.0,0.1,0.2,0.2); 0.3,0.5,0.4⟩ 
𝑥4 ⟨(0.4,0.4,0.5,0.6); 0.4,0.5,0.6⟩     ⟨(0.7,0.8,0.8,0.9); 0.8,0.3,0.4⟩ 
𝑥5 ⟨(0.0,0.1,0.2,0.2); 0.3,0.5,0.4⟩     ⟨(0.8,0.9,1.0,1.0); 0.9,0.2,0.3⟩ 

                                 
𝑢3

                                                                 
𝑢4 

𝑥1 ⟨(0.0,0.0,0.1,0.1); 0.1,0.0,0.2⟩       ⟨(0.4,0.4,0.5,0.6); 0.4,0.5,0.6⟩ 
𝑥2 ⟨(0.2,0.3,0.3,0.4); 0.3,0.6,0.7⟩       ⟨(0.8,0.9,1.0,1.0); 0.9,0.2,0.3⟩ 
𝑥3  ⟨(0.4,0.4,0.5,0.6); 0.4,0.5,0.6⟩       ⟨(0.2,0.3,0.3,0.4); 0.3,0.6,0.7⟩ 
𝑥4 ⟨(0.7,0.8,0.8,0.9); 0.8,0.3,0.4⟩       ⟨(0.0,0.0,0.1,0.1); 0.1,0.0,0.2⟩ 
𝑥5 ⟨(0.0,0.1,0.2,0.2); 0.3,0.5,0.4⟩       ⟨(0.5,0.6,0.7,0.7); 0.7,0.4,0.5⟩ 
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Step 2:
 
The weighting vector 𝜔 = (𝜔1 = 𝑀𝐿,𝜔2 = 𝑀,𝜔3 = 𝑀𝐻,𝜔4 = 𝐻) of the criteria set is given by expert 

based on Table 2, according to 𝑗𝑡ℎ attribute 𝑢𝑗 (𝑗 = 1,2, . . . ,4); 

Step 3:
 
The normalized weights of the criteria set are found as 

𝑤 = (0.1145,  0.1937,  0.2998,  0.3920)
 

Step 4: The weighted matrix
 
𝑀𝑖𝑗 = 𝜔𝑗 × 𝑘𝑖𝑗, (𝑖 = 1,2, . . . ,5;  𝑗 = 1,2,3,4) is computed as Table 4 

Table 4. 𝑀𝑖𝑗 = 𝜔𝑗 × 𝑘𝑖𝑗 ,  (𝑖 = 1,2, . . . ,5 ;  𝑗 = 1,2,3,4) 

𝑢1
                                                             

𝑢2 

𝑥1 ⟨(0.0229,0.0343,0.0343,0.0458); 0.3,0.6,0.7⟩ ⟨(0.0968,0.1162,0.1356,0.1356); 0.7,0.4,0.5⟩ 
𝑥2 ⟨(0.0572,0.0687,0.0801,0.0801); 0.7,0.4,0.5⟩ ⟨(0.0387,0.0581,0.0581,0.0774); 0.3,0.6,0.7⟩ 
𝑥3  ⟨(0.0801,0.0916,0.0916,0.1030); 0.8,0.3,0.4⟩ ⟨(0.0000,0.0193,0.0387,0.0387); 0.3,0.5,0.4⟩ 
𝑥4 ⟨(0.0458,0.0458,0.0572,0.0687); 0.4,0.5,0.6⟩ ⟨(0.1356,0.1549,0.15490.1743); 0.8,0.3,0.4⟩ 
𝑥5 ⟨(0.0000,0.0114,0.0229,0.0229); 0.3,0.5,0.4⟩ ⟨(0.1549,0.1743,0.1937,0.1937); 0.9,0.2,0.3⟩ 

 

𝑢3
                                                            

𝑢4 

𝑥1 ⟨(0.0000,0.0000,0.0299,0.0299); 0.1,0.0,0.2⟩ ⟨(0.1567,0.1567,0.1959,0.2351); 0.4,0.5,0.6⟩ 
𝑥2 ⟨(0.0599,0.0899,0.0899,0.1199); 0.3,0.6,0.7⟩ ⟨(0.3135,0.3527,0.3919,0.3919); 0.9,0.2,0.3⟩ 
𝑥3  ⟨(0.1199,0.1199,0.1498,0.1798); 0.4,0.5,0.6⟩ ⟨(0.0783,0.1175,0.1175,0.1567); 0.3,0.6,0.7⟩ 
𝑥4 ⟨(0.2098,0.2398,0.2398,0.2698); 0.8,0.3,0.4⟩ ⟨(0.0000,0.0000,0.0391,0.0391); 0.8,0.3,0.4⟩ 
𝑥5 ⟨(0.0000,0.0299,0.0599,0.0599); 0.3,0.5,0.4⟩ ⟨(0.1959,0.2351,0.2743,0.2743); 0.7,0.4,0.5⟩ 

Step 5: The 𝑆𝑖 = ∑ 𝑀𝑖𝑗
𝑛
𝑗=1  (𝑖 = 1,2,… ,5) for 𝑥𝑖 is computed as 

𝑆1 = ⟨(0.2765,0.3073,0.3959,0.4465); 0.1,0.6,0.7⟩ 
𝑆2 = ⟨(0.4695,0.5695,0.6201,0.6695); 0.3,0.6,0.7⟩ 
𝑆3 = ⟨(0.2784,0.3484,0.3978,0.4784); 0.3,0.6,0.7⟩ 
𝑆4 = ⟨(0.3912,0.4406,0.4912,0.5520); 0.4,0.5,0.6⟩ 
𝑆5 = ⟨(0.3509,0.4509,0.5509,0.5509); 0.3,0.5,0.5⟩

 

Step 6: The 𝐶(𝛩𝐼
𝑆𝑖) for the values 

iS (𝑖 = 1,2, . . . ,5)is found as 

𝐶(𝛩𝐼
𝑆1)  = 11.25007926 

𝐶(𝛩𝐼
𝑆2) = 0.699682108 

𝐶(𝛩𝐼
𝑆3) = 0.458601346 

𝐶(𝛩𝐼
𝑆4) = 0.505543469 

𝐶(𝛩𝐼
𝑆5) = 0.255190279 

Step 7: All alternatives 𝑥𝑖 for all 𝑖 = 1,2,… ,5, by using the 
 
𝐶((𝛩1)𝑆𝑖)

 
is ranked as 

𝐶(𝛩𝐼
𝑆1) > 𝐶(𝛩𝐼

𝑆2) > 𝐶(𝛩𝐼
𝑆4) > 𝐶(𝛩𝐼

𝑆3) > 𝐶(𝛩𝐼
𝑆5)

 
Since we have  

 

 𝑥5 > 𝑥3 > 𝑥4 > 𝑥2 > 𝑥1
 

the best alternative is 𝑥5. 

In that case, primarily investment must be made in the education area. 

6. Comparative Analysis 

In order to further elucidate the advantages of the proposed MCDM method, we use the proposed MCDM method 

based on the defuzzification and concepts of 1. and 2. score function, method [20] based on the Value and 

ambiguity index, method [22] based on the cut sets and values and ambiguities value, method [32] based on the 

normalized weighted Bonferroni mean operator,  method [33] based on preference relations and method [27] 
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based on weighted aggregation operators to deal with the Example 18 and compare the ranking results in Table 

5 for different decision-making methods. 

 
Table 5. Comparative Analysis with the existing methods of Example 20 

Methods Ranking Order 
Primarily 

investment 

Not primarily 

investment 

1. Method in [20] 𝑥5 > 𝑥4 > 𝑥2 > 𝑥3 > 𝑥1 𝑥5 𝑥1 

2. Method in [22] (𝜆, 𝜇, 𝜈) = (0.5,0.5,0.5) 𝑥2 > 𝑥5 > 𝑥4 > 𝑥3 > 𝑥1 𝑥2 𝑥1 

3. Method in [32] 𝑥5 > 𝑥4 > 𝑥2 > 𝑥3 > 𝑥1 𝑥5 𝑥1 

4. Method in [33] 

 

5. Method in [26] 

𝑥5 > 𝑥4 > 𝑥2 > 𝑥3 > 𝑥1 
 

𝑥5 > 𝑥4 > 𝑥2 > 𝑥3 > 𝑥1 

𝑥5 

 

𝑥5 

𝑥1 
 

𝑥1 
6. Proposed method 𝑥5 > 𝑥3 > 𝑥4 > 𝑥2 > 𝑥1 𝑥5 𝑥1 

 

In this case, the proposed MCDM method is generally similar to the decision-making methods presented in 

[20,22,32,33].  From Table 5, we have a significant impact on the ranking results of the five alternatives for the 

decision-making method presented in [20,22,32,33]. The ranking result of the five alternatives obtained by the 

MCDM method in [22] the primary investment alternative is changed from the alternative 𝑥5 to the alternative 

𝑥2. But, the not primarily investment alternative is the same as all the methods. Obviously, these ranking results 

of the alternatives obtained by the method presented in [22] based on the cut sets and values and ambiguities 

value is unreasonable. Therefore, the proposed MCDM method based on the defuzzification and concepts of 𝐼. 
score function and 𝐼𝐼. score function, method [20] based on the Value and ambiguity index, method [32] based 

on the normalized weighted Bonferroni mean operator, method [33] based on preference relations are more 

suitable to deal with practical decision-making problems. 

 

7. Conclusions 

In recent years, many useful defuzzification methods have been proposed to solve various MCDM problems in 

fuzzy numbers and intuitionistic fuzzy numbers, but very few methods take into account the perspectives of both 

the defuzzification and the SVTN-numbers. Therefore, we presented concepts of 𝐼. score function and 𝐼𝐼. score 

function to reduce the SVTN-numbers to fuzzy numbers. Finally, we developed MCDM method for MCDM 

problems by using the defined concepts. Also, we introduced a numerical example to demonstrate how to apply 

the proposed MCDM method and the superiority of the proposed MCDM method compared to the existing 

methods. In further research, we will develop new defuzzification methods of the SVTN-numbers based on fuzzy 

numbers. 
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