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Frequency Response of an Initially Stressed Slab Made from 

Three Compressible Materials 

Highlights 

 A pre-stressed system consisting of three slabs side-by-side was modeled. 

 The finite element solution procedure was presented for the considered problem. 

 The frequency response of the slab caused by the time-harmonic force was investigated. 

 The influence of the initial stress state on the dynamic response of the slab was observed. 

 

Graphical Abstract 

Presented herein is to model the dynamical behavior of the pre-stressed slab with three layers side-by-side resting 

on a rigid foundation under the action of a time-harmonic force. In particular, the dependency between the 

dimensionless frequency and initial stress parameters is investigated. 

 

 

 

 

 

 

 

 

 

 

Figure. The system pattern 

 

Aim 

The paper reports on how to model for a pre-stressed slab with three different layers and analyses in which cases 

the system could in convenient form or not. 

Design & Methodology 

The model is carved out within the scope of the piecewise homogeneous body model utilizing the three-dimensional 

linearized theory of elastic waves in initially stressed bodies. 

Originality 

A dynamical stress field problem for an interface including three surfaces with different material properties was 

examined. 

Findings 

It is founded that the resonance values of the system decrease when the layer-length ratio increases. Besides, as 

the initial stress increase, the resonance mode of stress exceeds. 

Conclusion 

The layer-length ratio has a significant role in the influence of the frequency response of the slab. As the initial 

stresses increase, the system becomes a more stable form. 
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Üç Sıkıştırılabilir Malzemeden Yapılmış Ön Gerilmeli 

Bir Plakanın Frekans Tepkisi 
Araştırma Makalesi / Research Article 

Ahmet DAŞDEMİR* 

Faculty of Arts and Sciences, Department of Mathematics, Kastamonu University, Turkey 

 (Geliş/Received : 25.11.2019 ; Kabul/Accepted : 19.03.2020) 

 ÖZ 

Bu çalışmada, sert bir temel üzerinde duran ve zamana göre harmonik bir yükün etkisi altındaki ön gerilmeli bir levhanın frekans 

tepkisi ele alınmıştır. Araştırma, Ön Gerilmeli Ortamlarda Dalga Yayılımının Üç Boyutlu Doğrusallaştırılmış Teorisi (ÖODYÜT) 

kullanarak parçalı homojen cisim modeli göre gerçekleştirilir. Ele alınan cisim, üç ayrı plakanın yan yana birleştirilmesiyle 

oluşturulur. Sistemdeki tüm ara yüzey düzlemlerinde sert kenetlenme durumu olduğunu varsaydık. Problemin matematiksel bir 

modeli oluşturulur ve hareket denklemleriyle ilgili sistem sonlu elemanlar yötemi (SEY) kullanılarak sayısal olarak çözülüyor. 

Özellikle, katman uzunluğunun oranının, plakanın frekans cevabı üzerindeki etkisi sunulmuştur. 

Anahtar Kelimeler :  Tam bağlı temas koşulu, sıkıştırılabilir malzeme, dinamik tepki, sonlu elemanlar yöntemi, başlangıç 

gerilmesi. 

Frequency Response of an Initially Stressed Slab Made 

from Three Compressible Materials 

ABSTRACT 

In this study, the frequency response of a pre-stressed slab, which stands on a rigid foundation, subject to a timely harmonic loading 

was considered. The investigation is implemented according to the piecewise homogeneous body model utilizing the three-

dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB). The considered body was designed joining 

to three discrete slabs side-by-side. It was assumed that there exists a rigidly clamping state at all interface planes on the system. 

A mathematical model of the problem is constructed and the system related to equations of motion is numerically solved using the 

finite element method (FEM). Particularly, the effect the ratio of the layer length has on the frequency response of the slab was 

presented.      

Keywords: Complete contact condition, compressible material, dynamic response, finite element method, initial stress.

1. INTRODUCTION 

Sandwich structures are a composite material of three 

layers, i.e. two layers were bonded to a core layer. These 

materials have many applications in almost every field of 

metallurgical and engineering applications. This has 

encouraged dense research and risen significant attention 

to the subject. However, corresponding problems 

regarding the sandwich materials include many factors, 

thus making them difficult to solve these problems; more 

particularly, nonlinear wave propagation in the dynamics 

of the elastic phase might arise. Two of the factors that 

play a key role in the non-linear dynamic behavior of the 

considered body are (1) the initial stresses applied to the 

body, which exist before the dynamic load, and (2) 

choice of material to form the body, e.g. elastic or 

piezoelectric materials.  

The first factor is one of the most important characters 

that are used in many engineering applications, due to 

either a technological process using for assembly or 

action of the environmental temperature. In general, the 

initial stress state in the deformed system (including 

layers) cannot be examined according to the linear theory 

of elasticity, because this has a non-linear effect in the 

system. However, based on the assumption that the 

amplitude of the deformations caused by external forces 

in a pre-stressed medium is considerably less than that of 

the initial deformation, they can be investigated in terms 

of the three-dimensional linearized theory of elastic 

waves in initially stressed bodies (TLTEWISB); see the 

references in [1-3] for more detailed information on the 

subject. There are a number of the studies made 

according to the fundamental principles of the 

TLTEWISB and its other versions. For example, in [4], 

Wen-tao, et al. considered the effect of homogeneous 

initial pressures applied to the radial surfaces of a hollow 

cylinder. In [5], Daşdemir and Eröz investigated the 

effect of the pre-stress parameter on the dynamic 

behavior of a bi-layered plate-strip resting on a rigid 

foundation; however, this paper presents the numerical 

results including the case in which there is an initial 

tension force was the only case. Therefore, to address this 

issue, in [6], Daşdemir analyzed the effect of the initial 

compression force on the frequency response of the bi-

layered system and compared the numerical findings 

*Sorumlu Yazar  (Corresponding Author)  
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with those given in [5]. Further, in [7], Daşdemir also 

investigated the influence of arbitrarily inclined loading 

on the dependence between the dynamical behavior of a 

multi-layered system and the static initial stress force.  

The second factor, i.e. geometry of problem, is another 

of the most decisive features that affect the dynamics of 

the deformable system. Here, a process in the 

construction of the body and the resultant body change 

the applied strategy for solving problems to be 

investigated. Therefore, there are many papers devoted to 

the solution to different problems today. For instance, in 

[8], Sergienko and Deineka solved an elasticity problem 

in a compound system with concentrated masses using 

the finite element method. In [9], Akbarov et al. 

investigated the axisymmetric vibration of an initially 

stressed bi-layered plate, under a harmonic point force, 

that rests on a rigid foundation. In [10], Zhuk and Guz 

analyzed the propagation of longitudinal and transverse 

plane waves in the pre-stressed layers of nanocomposites. 

In [11], Pandit et al. developed a new solution model for 

examining the buckling of the laminated slab with the 

transverse elastic core. 

Based on current literature, it can be said that vibration 

by a time-harmonic force of an initially stressed slab 

resting on a rigid foundation made by compounding three 

materials side-by-side has not been studied so far. To fill 

this gap, a mathematical model for the mentioned 

problem is presented within the scope of a piecewise 

homogenous body model utilizing the framework of the 

TLTEWISB; moreover, this model is approximately 

solved using the finite element method (FEM). In 

particular, the effect of the initial stress on the frequency 

response of the slab is analyzed and discussed. 

The paper is organized as follows. Section 2 introduces 

the general structures and features of our modal problem, 

while Section 3 describes the finite element method for 

forced vibration analysis of the composite slab with 

initial stress. Section 4 examines some concrete 

numerical examples. Section 5 summarizes some 

conclusions.  

 

2. MODEL OF PROBLEM 

Consider a pre-stressed tri-layered slab of thickness h  

and length 2a   1 2 3
r r r   , where 

1
r , 

2
r , and 

3
r  

denote the length of layer in the left, middle and right side 

of the slab, respectively. The superscripts (1), (2), and (3) 

represent quantities corresponding to the left, middle, and 

right layers, respectively, and the values for the initial 

state are represented by the additional superscript “0”.  

The materials to be considered for the layers are 

moderately rigid, linear elastic, homogeneous, and 

isotropic. For an elastic medium, the stress-strain-

displacement relationships are 

         
2

m m m m m

ij ij ij         (1.a) 

and 

 
Figure 1. Scheme of the problem 

 
      , , / 2
m m m

ij i j j iu u  ,  (1.b) 

where 1 2 3, ,m   and 1 2, ,i j  . Moreover, 
 m

ij  are the 

stress components, 
 m

ij  are the strain components, and 

 m

iu  are the mechanical displacements of the slab. Here, 

 m
  and 

 m
  are the Lamé constants, and ij  is the 

Kronecker delta. Further, the subscripts after commas 

represent the related coordinate differentiation. Note that 

in this equation and further in the document, repeated 

subscripts are summed over all possible values unless 

otherwise stated. 

As Fig. 1 is shown, the compounded slab rests on a rigid 

foundation and has a lineal time-harmonic charge acting 

on the midpoint on the free surface of the middle layer. 

Note that this point is chosen as the origin of the 

coordinate system. It is assumed that there is the case of 

complete contact at the interfaces between the elastic 

layers. The positions of the points in the slab are 

identified by the Lagrangian coordinates denoted by i
x  , 

which in the unperturbed state overlap with Cartesian 

coordinates denoted by 
i

x . The body is infinitely long in 

the 
3Ox  direction. Since the lineal force extends to 

infinity in this direction, however, the plane deformation 

state arises in the 
1 2Ox x  plane, and therefore, all the 

numerical investigations are conducted in this plane. 

According to Fig. 1, the considered body occupies the 

domain of 
1 2 3D D D D   , where 

  1 1 2 1 2 2, : , 0D x x a x r h x        ,  (2.a) 

  2 1 2 2 1 2 2, : , 0D x x r x r h x        ,  (2.b) 

and 

  3 1 2 2 1 3 2, : , 0D x x r x a h x      , (2.c) 

respectively. Here, the prime indicates half of the 

corresponding length.   

The process of creating the slab is as follows. First, the 

layers selected for creating the slab are compounded, and 

then the resultant system is exposed to homogeneously 

distributed normal forces (either tension or compression) 

before interacting with the rigid foundation. Note that the 

mentioned force is exactly static and applied to the 
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system according to the fundamental principle of 

TLTEWISB. Therefore, a uniaxial homogeneous initial 

stress state arises in the slab, which is determined as 

 ,0
11 q , and  ,0

0ij   for all 11ij  , (3) 

where q  is a certain constant and 1,3=l .  

Now, the equations of motion and the corresponding 

boundary-contact conditions related to the problem under 

consideration are modelled. According to the 

TLTEWISB, the general forms of the partial differential 

equations of motion can be expressed as follows [1-3]: 

       
, ,11

m m m m

ij j i iqu u   ,  (4) 

where 
 m

  is the natural density of the corresponding 

layer. The dots over the quantities denote differentiation 

with respect to time. 

Now the boundary-contact conditions for the considered 

problem are presented. Given above, they are as follows: 

 

2

21
0

0
m

x 
 ,    

2

i

22 0 1
0

e
m t

x
p x


    ,   (5) 

   

21 1 2

1 2

2 2i i
x xr r  

  ,    

2 21 1

2 3

2 2
r

i
x r

i
x   

  ,  (6) 

   

1 12 2

1 2

i i
x xr r

u u
  
 ,    

1 12 2

2 3

r r
i i

x x
u u

  
 ,  (7) 

    
1

,1 1 0j j
x a

qu


  , and  

2

0
m

j
x h

u


 ,  (8) 

where    is the Dirac’s delta function. 

The presentation of the problem is thereby exhausted.  

 

3. SOLUTION TECHNIQUE 

As the problem under consideration is quite complex, it 

cannot be solved analytically. Consequently, an 

approximate solution can be given by employing the 

FEM. To do this, certain preparations are needed to 

facilitate the solution process. First, introduce the 

dimensionless coordinate system 

1
1̂

x
x

h
  and 2

2
ˆ

x
x

h
 . (9) 

Since the force is a time-harmonic, with frequency  , 

denoted by  1

i t

op x e  , all the corresponding dependent 

variables can be represented as 

     1 2 1 2, , , , , , , i t

ij ij i ij ij iu x x t u x x e     ,  (10) 

where the superimposed line over a quantity denotes its 

amplitude. 

Substituting the expression in (10) into the foregoing 

equation and boundary terms after the transformation in 

(9), the equivalent equations and boundary-contact 

conditions are obtained for the amplitudes of the sought 

values by replacing the terms 
 2 2/
m

iu t   and 

 1

i t

op x e   with 
 2 m

ju  and  1op x , respectively. 

As a result, our original problem over the domain D  

takes shape the more simple form over the new domain  

 
Figure 2. Convergence analysis for our algorithm 

 

D  of unit thickness regardless of the time parameter t . 

Thereafter, the superimposed dashes and hats are 

neglected until specified otherwise. 

To construct the FEM model of the last problem, the 

functional 

            

 
 

 

2

2 2

1

2 1

0

2

1

2

m

,

/

/

u
m m m m

ij j i i

D

a h

o

m

a h x

J T u u dD

p x
u dx

 

   
  










  (11) 

is proposed. Eq. (11) introduces the following notations: 

 

 

     
 

 

 
, ,k

1 ijkn

n

m

m m m m m

ij ij j nm m
T

w
uu   

 
,  (12) 

     
/

m m m
h    , and    

/
m m

q  .   (13) 

Here, 
 m

  is the dimensionless frequency and 
 m

  is 

the initial stress parameter. From the mechanical 

relations in Eq. (1), the explicit forms of 
 m

ijknw  in (12) 

are 

         

       

       

         

1111 1122

1212 2121

1221 2112

2211 2222

2 , ,

, ,

, ,

, 2 .

m m m m m

m m m m

m m m m

m m m m m

w q w

w w

w q w

w w

   

 

  

  

  

 

 

  

  (14) 

It should be noted that all the components, which cannot 

be visible in (14), are equal to zero. It is seen from Eq. 

(14) that the symmetry condition 

   m m

ijkn nkjiw w   (15) 

is satisfied.  

The validity of the functional shown in Eq. (11) must be 

proven. Using the Gauss’s theorem with the symmetry 

condition in (15) yields 



Ahmet DAŞDEMİR  / POLİTEKNİK  DERGİSİ, Politeknik Dergisi,2021;24(1): 275-282 

278 

    

 

 

 

 

2

2

2

22

/

1

2 1

/ 0

2

/

1

2 1

/ 0

/

1

2 1

,k ,

, ,

2 2

, ,

/ 0

1
(
2

)

1
2

2

1

1

m
u i

a h

o

a h x

a h

o

a h x

a h

o

a

ijkn

n j i

D

ijnk knji

n k j i j j

D

ijnk n k j i j j

h

m

D

x

w
J u u dD

w w
u u u u d

u

p hx
u dx

p hx
u dx

p hx
u d

D

w u u h u u dD

w

x

 

 

 

 
  

 

 
  

 



   

 





















 

 

  




















 

 

2

/

1

2 1

/ 0

2 2

, ,

,

1

ijnk n k j ji
D

ijnk n k

a h

o

a h x

j i

S

u h u u dD

w u
p hx

u du S xn d
 

 
 

 






 


 

  
Here, S  indicates the boundary of the slab and 

in  are 

components of the unit normal vector on the boundary S

. Note that the superscript “( )m ” is omitted since the 

above equation contains large quantities. Finally, 

evaluating the equation “   0J   ”, Eqs. in (4)-(8) are 

obtained, proving the validity of the functional in (11).  

Now, the FEM model for the considered problem is 

constructed using the virtual work principle and the Ritz 

method [12]. To do this, the domain D  is split into a 

finite number of smaller piecewise consisting of nine-

node smooth rectangular elements. A sufficient number 

of finite elements is required to satisfy the boundary-

contact terms with high precision and to ensure very well 

approximation of the numerical results. Let the 

displacement components for the  finite element be 

     1

1

,
M

k k

i i

i

u c N r s


  and      2

1

,
M

k k

i i

i

u N r sd


 , (16) 

where M  is the number of the nodes in the thk  element, 

the coefficients 
 k

ic  and 
 k

id  are unknowns that need to 

be determined, r  and s  are local space components over 

a finite element, and  ,iN r s  are the interpolation 

polynomials for the thk  element. In this study, the 

interpolation functions are selected such as   1

2,iN r s L

, where 
1

2L  is a set of Lebesgue integrable functions.  

Substituting Eqs. (16) into Eq. (11) and applying the 

usual solution method to the resultant equation leads to a 

matrix system as 

 2-K M U R ,  (17) 

where K  is the structure matrix, M  is the mass matrix, 

U  is the vector of unknowns, and R  is the load vector. 

To diminish the volume of the current paper the explicit 

entries of matrices and vectors in (17) are not given here. 

But, one can obtain their explicit forms from Eqs. (11)-

(15) using this procedure. The displacements at the nodes 

can now be obtained by solving the matrix equation (17). 

As a result, these can easily be transformed into the 

corresponding stress values via the stress-strain matrix 

relationship.  

This exhausts the presentation of the FEM model for the 

problem. 

 

4. NUMERICAL FINDINGS AND DISCUSSIONS 

This section presents some numerical results. First, some 

explanations to be needed are made. The number of the 

finite element was chosen such that 200 and 80 along the  

 

SHS 

 

HSH 

Figure 3. Dependence between 
22 0

h p /  and   for various values of *h  
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Figure 4. Dependence between 
22 0

h p /  and   for various 

values of *h  

1Ox , and 
3Ox  axes, respectively. All the algorithms 

needed to obtain numerical solutions were done in 

Mathematica© software. Using these numerical results, 

the original figures are designed in OriginPro© program. 

Note that the global node numbers are aligned from the 

below to the above. This selection provides us certain 

advantages. Since the force applied to the body under 

consideration is perpendicular to its free surface, the 

graphs are symmetrical about the line 
1

/x h . Even 

though it is possible to draw the graphs to be investigated 

in anywhere of the slab using our PC algorithm, 

throughout the paper, the numerical results will be given 

at the interface between the slab and the rigid foundation 

and in the parts of the diagrams where 
1

0/x h  .   

Introduce the notations 

* / 2h h a , 
* 1 2/r r r , and    

/
m n

mne E E ,   (18) 

where 
*r  is the ratio of the layer length, 

*h  is the 

thickness ratio, 
 m

E  is the Young's Modulus of the thm  

layer, and 
mne  is the ratio of the layer’s Young's Modulus. 

For simplicity, all the numerical investigations are given 

under 
* 0.2h  , 

1 2 3r r r  , 
 

0
m

  , and 
 

0
m
  

unless otherwise specified.  Hereafter, all the superscripts 

of the parameters that have equal values will be 

neglected. To investigate the concrete examples, the 

following cases are investigated: (i) Al+St+Al, and (ii) 

St+Al+St, as investigated by Daşdemir and Eröz [7], 

where Al and St indicate abbreviations of Aluminium and 

Steel materials, respectively. 

Before giving our numerical results, the accuracy and 

trustiness of the PC algorithm composed of the current 

problem must be proven. For validation purposes, 

consider the case with 1mne  , 
     1 2 3

0.33      in 

addition to the above assumptions, where 
 m

  is the 

Poisson ratio for thm  layer. Here, for * 0h  , the  

 

Figure 5. Dependence between 
22 0

h p /  and   for various 

values of 
*r  

geometry of the problem resembles the one investigated 

by Uflyand [13] for an infinitely long plate. Our 

numerical results, therefore, must approach those of [13]; 

and the graphs in Fig. 2 show that this is the case. Thus, 

the validity and reliability of the algorithms were 

demonstrated. Note that the starred graph denotes the one 

presented in [13].  

The main aim of the paper is to obtain the numerical 

results illustrating the effects of the corresponding 

problem parameters on the frequency response of the 

slab. For this purpose, all subsequent numerical 

investigations will be  conducted at  the point (0, 1)-  for 

both Case 1and Case 2; this will not impair the generality 

of the results.  

In Fig. 3, variations of the normal stress 
22 0

/h p  versus 

dimensionless frequency   for both Case 1 (Fig. 3a) and 

Case 2 (Fig. 3b) for various values of the thickness ratio 
*h  is displayed. The dependence between 

22 0
/h p  and 

  is non-monotonous. The stress becomes damp as 
*h  

increases. It is concluded from the graphs that there are 

some points the stress 
22 0

/h p  has maximal or minimal 

values. These are called resonance values of stress and 

indicated by * . The values of *  can be detected from 

each graph. According to the distributions of graphs in 

Fig. 3, the values of *  decrease as 
*h  increases. It is 

clear that the choice of the layers such that 

Soft+Hard+Soft (SHS) is more ideal than that of 

Hard+Soft+Hard (HSH); accordingly, only the case SHS 

will be considered after this. This means that the 

resonance values depend on the material selections of the 

layers as well as the thickness ratio. In addition, an 

increase in the values of 
*h  leads to a decrease in the 

number of extreme of  
22 0

/h p . 

Now, the effect of the initial stress parameter   at the 

layers is focused on the frequency response of the system,  
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Figure 6. Dependence between 
22 0

h p /  and   for various 

values of the ratio 
21e  

 

considering the graphs in Fig. 4. According to the 

numerical results, it is concluded that while the initial 

tension causes to increase the absolute values of 

22 0
/h p , the initial compression has an opposite effect. 

At the same time, an increase in the value of the initial 

stress parameter   leads to obtain a more stable system, 

giving rise to increasing the values of * . Further, it is 

clear that the slab has local parametric resonances, 

denoted by ** , for certain values of the initial stress 

parameter  , e.g. for 0 , 0 35**
.  . The 

distributions of the graphs in Fig. 4 prove that the number 

of the extreme values of 
22 0

/h p  decreases as the values 

of   increases. The conclusion is that the effect of the 

parameter   on the values of *  is notable not only 

quantitatively, but also qualitatively. The parameter      

has a great influence on the resonance mode of 
22 0

/h p

. In the manufacture of the material, not only the selection 

of materials for the layers but also the design of layers is 

an important issue.  

Fig. 5 provides us the facility to investigate the effect of 

the ratio of the layer length on the frequency response of 

the slab. The absolute values of 
22 0

/h p  decrease 

gradually with the ratio 
*r . An increase in the value of the 

layer length ratio 
*r  causes to decrease the resonance 

values of the slab; namely, when the length of the soft 

layer is relatively smaller than that of the hard part, the 

stability of the system under consideration increases. As 

a result, it can be said from the numerical results in Figs. 

4 and 5 that the values of *  are considerably affected 

by not only the initial stress parameter   but also the 

layer length ratio 
*r . Note that the number of the maxima 

and minima values of 
22 0

/h p  decrease accordingly 

with the ratio 
*r .   

 

Figure 7. Dependence between 
22 0

h p /  and   for various 

values of the ratio 
*r  

 

Now, consider the case where 
     1 2 3

0.33     . In 

this situation, Fig. 6 allows us to observe the influence of 

the ratio of Young’s modulus 
21e  on the relationships 

between 
22 0

/h p  and  . It is evident from the graphs 

that an increase in the value of the ratio 
21e  prevents the 

resonance mode of the slab. This means that the stability 

of the system under consideration increases with the ratio 

21e .  Further, the number of extreme values of the normal 

stress 
22 0

/h p  versus   decreases as the ratio 
21e  

increases. By the way, the results obtained from the 

figure agree well with the well-known mechanical 

findings, again proving the validity and the 

trustworthiness of the PC algorithm.  

The foregoing numerical results were discussed without 

reference to the initial stress state in the slab up to now, 

namely 
 

0
m
 . But, one of the principal goals of the 

paper is to investigate the influence of the mentioned 

state on the dynamic behavior of the slab. For this 

purpose, Fig. 7 shows the variations of the stress 

22 0
/h p  with respect to   for certain values of the ratio 

*r . According to the graphs, the values of 
22 0

/h p  

changes linearly with  . While an increase in the value 

of the initial compression parameter   causes to increase 

the value of 
22 0

/h p , the increasing value of the initial 

tension parameter   leads contrarily to decrease the 

stress 
22 0

/h p . The ratio 
*r  has a significant role in the 

influence of the initial stress parameter   on the dynamic 

behavior of the slab. Indeed, the decreasing value of the 

ratio 
*r  causes to damps the influence of   on the values 

of 
22 0

/h p .  

5. CONCLUSIONS 

In this paper, the forced vibration induced by a time-

harmonic external force of a pre-stressed slab with three 
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compressible layers, which rest on a rigid foundation, has 

been investigated. This has been made based on the 

fundamental principles of the TLTEWISB in the case 

where there exists a complete contact interaction between 

the layers. The mathematical problem is created under 

consideration and numerically solved using the FEM. 

Numerical results have demonstrated the influence of the 

design of the body on the frequency response of the 

normal stress, acting on the interface planes between the 

slab and rigid foundation. Numerical investigations have 

shown the following: 

 an increase in the values of the initial stress 

parameter   causes the resonance mode of the 

normal stress 
22 0

/h p  to vanish;  

 the choice of the materials for the layers has a 

great influence on the frequency response of 

22 0
/h p ; 

 the values of *  decrease as the values of the 

ratio 
*r  increase;  

 the numbers of the local maxima and minima of 

the stress 
22 0

/h p  versus the dimensionless 

frequency   decrease with increasing the ratio 

*r ;  

 and the influence of   on the stress distributions 

in the slab damps as the values of the ratio 
*r  

decreases. 
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NOMENCLATURE 

 

a    : length of the slab 

Al : Aluminum 
 k

ic
 k

id  : nodal unknowns 

D  : the domain of the slab 

1D , 
2D , 

3D  : domains of the layers 

mne   : the ratio of Young’s modulus of 

thm  and thn layer material  
 m

E   : Young’s modulus of thm  layer 

FEM : finite element method 

h   : the thickness of the slab 
*h   : thickness ratio 

  m
J u  : the total potential energy functional 

K   : structure matrix 
1

2L  : the set of Lebesgue integrable 

functions 
 m

  : thm layer in slab 

M  : the number of the nodes over a 

finite element 

M  : mass matrix 

in  : components of the unit normal 

vector 

 , ,ijN r s t  : the shape functions 

O   : origin of the coordinate system 

0
p   : value of dynamic force 

 m

ijq   : value of initial stress of thm layer 

*r  : the ratio of the layer length 

1r , 
2r , 

3r  : the lengths of layer 

r ,  s  : local normalized coordinate 

components 

R   : work of the external force 

R  : load vector 

S  : boundary of slab 

St : Steel 

TLTEWISB : three-dimensional linearized theory 

of elastic waves in initially stressed 

bodies 
 m

iu   : components of the displacement 

vector 

U  : nodal displacement vector 

ix   : Cartesian coordinate components 

ix   : Lagrange coordinate components 

ˆ
ix  : Normalized coordinate components 

  : variation parameter 

ij  : Kronecker delta 

    : Dirac’s delta function 

 m

ij  : strain tensor of m th layer 

 m
  : initial stress parameter of the m th 

layer 
   

,
m m

   : Lamé constants 

 m
   : Poisson ratio of m th layer 

 m
  : the mass density of m th layer 

 m

ij  : components of the stress tensor 

 ,0m

ij  : initial stress acting in the layers 

  : frequency of the external force 
 m

  : dimensionless frequency 

*  : resonance value 

**  : local parametric resonance value 
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