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Abstract. A finite group whose complex characters are rationally-valued is called a Q -

group. In this paper, Frobenius Q -groups were completely classified.
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1. INTRODUCTION

Q-Groups. A Q-group is a finite group all of whose irreducible complex characters are

rationally-valued. For example, all of the symmetric groups and finite elemantary
abelian 2-groups are Q -groups. Kletzing’s lecture notes, [3] , presents a detailed

investigation into the structure of Q -groups.General classification of Q -groups has not
been able to be done up to now, but some special Q -groups have been classified.
Frobenius Q -groups were classified by [1]. In this paper, we will classify such groups
in a different way.

Notation. C the field of complex numbers ; Z the ring of rational integers ;
Gen(x) the set of generators of cyclic group <x> ; [X] the conjugacy class of x ;

N;(x) the normalizer of x in G ; C;(x) the centralizer of x in G ; Aut(x) the
group of automorphisms of <x> ;¢ Euler’s function ; x| semidirect product ; z(H)
the set of prime divisors of |[H|; C(H) the centre of H ; Q, the quaternion group of

order 8 ; E(p") the elemantary abelian p -group of order p" ; IN, = IN U {0}.

Let G be afinite group of order n and let & be a primitive n-th root of unity in the
field C. Then, all of the complex character values of G lie in the subring Z[£] of C.
Moreover, if G is a Q-group, these values lie in Z since Z[£]nQ =Z . Now, we say
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that a finite group is a Q -group if and only if the values of its all the irreducible
complex characters lie in Z .

Another characterization of Q -groups is the following theorem.

Theorem 1. Let G be a finite group. Then, G is a Q-group if and only if for every
xeG, Gen(x) c [x] i.e. forevery xeG, Ng(X)/Cgs(X) = Aut(x) [3].

Now, we can easily see the following corollary.

Corrollary 2. Let G be a Q-group. Then:

1) [Ng(X):Cs(x)] =|Aut(x)| = ¢(| x|), forevery xeG.

2) Let xeG.If L <Cg(x) < Ng(x) <K whereboth L and K are subgroups of
G, then o(|x|)|[K:L].

3) If G={1}, 2||G].

4) If N isanormal subgroup of G, then G/N isa Q-group.

Frobenius Groups. A finite group G is a Frobenius group if and only if it contains a
proper subgroup H ={1}, called a Frobenius complement, such that H n H* ={1} for

all x ¢ H . By Frobenius Theorem [2, p.63], a Frobenius group G with complement H
has a normal subgroup K, called Frobenius kernel, such that G=K x| H . Some basic

properties of such groups are the following theorem.

Theorem 3. Let G be a Frobenius group with kernel K and complement H . Then:

1) If 2<p e x(H) and P €Syl (H), then P isacyclic [2, p.184].
2) If 2||H |, then



a) H contains only one involution. Thus, the involution is element of C(H).

b) If u is the involution of H , then t' =t forevery teK.

c) K is an abelian group.

2. MAIN THEOREM

Frobenius Q -groups are completely classified in the following theorem.

Theorem. Let G be a Frobenius Q-group. Then, G is one of the following groups.
1) E@B") x| Z,,where neIN and Z, acts on E(3") by inverting every element.

2) E(3°™) x| Qg , where meIN and E(3°™)is a direct sum of m copies of the 2-
dimensional irreducible modules of group algebra Z;Qg.

3) E(5%)x|Qg , where E(5°) is the 2-dimensional irreducible module of group

algebra Z;Qg.

3. FROBENIUS Q-GROUPS

Now, we shall investigate the structure of Frobenius Q -groups.

Theorem 4. Let G be a Frobenius Q -group with kernel K and complement H . Then:
1) H isa Q-group.

2) 2]|K]|

3) If P isa 2-sylow subgroup of G, then P=Z, or P=Qy.

Proof. 1) H is a Q-group since G is a Q-group, G/K=zH and G/K is also Q-
group by Corollary 2.



2) We have 2 || H | by Corollary 2.3) since {1}#H is a Q-group. Then, H contains
only one involution by Theorem 3. Let u be the involution of H . Now, we assume that
2|| K'|. Then, K contains an involution x by Cauchy Theorem. Therefore, by Theorem

3 we have x" =x, which is not possible since Frobenius complement is always a
regular group of automorphism of the Frobenius kernel.

3) Let P be a 2-sylow subgroup of H. Then, P is a 2-sylow subgroup of G since
G=K x|H and 2/|K|. Moreover, P is a cyclic or generalized quaternion group

since H contains only one involution [2, p.96]. Let |H |=2".n where neIN ,
(2,n) =1, selN,.
Then,

i) If P=(x) where xeH, |x|=2"", seIN,, we have ¢(|x]) | [H:(x)]

%/_/
=n

since H is a Q-group and (x) < Cy,(x) < N (x) < H . Then, P=Z, since 2°|n and
(2,n)=1.

i) If P:<a,b‘ a? =1 a2 =b? ,b.a.b1:a1> where 2<seIN , we have

p(lal) | [H:(a)] since (a) < Cy(a) < Ny(a) < H. Then, we find s=2 since 2<s

H_/
=2n

2°*2n and (2,n)=1,s0 P=Qg.

Thus, we know that P=Z, or P=Qy.

Lemma 5. Let G be a Frobenius Q-group with complement H. If acH and 4|| al,
then |a|=4 .

Proof. Let P be a 2-sylow subgroup of H . Then, by Theorem 4. we have P=Qg since
H has an element whose order is divided by 4. Now, we know that 8f|a| since
expP=expQg =4 . Let |H |=8m and |a|=4k where m,keIN , (2,m)=1=(2,k) .



Then, we have [N, (a):Cy(a)] = ¢(al) = p(4k) =p(4).p(k) = 2.9p(k) since H is a
Q -group by Theorem 4. Moreover, we have 2.p(K) ‘ [H:(a)] since
(a)<Cy(a) <N, (a)<H and Corollary 2.2) . Also, [H :(a)] = 2t where telIN

j_fli‘ _ ZTm and  (2,k)=1. Thus, we find p(k)=1 since

o(k) |t and (2,t)=1. This implies that k=1 since (2,k)=1. Therefore, the lemma is
proved now.

(2,t)=1 since [H :(a)] =

Theorem 6. Let G be a Frobenius Q -group with complement H . Then, H =Z, or
H =Qg.

Proof. Let P be a 2-sylow subgroup of H. Then, we know that P =Z, or P =Qg by
Theorem 4.

1) If P=Z,, then P<H since H contains only one involution by Theorem 3.
Therefore, we have H=P=Z, since H/P is a Q-group of odd order and
Corollary 2.3).

2) If P=Qg, then 2°||H|and 2 |H|. Let|H |=8m where meIN, (2,m)=1.
We assume that m >1. Then, there is 2<pex(H) such that pm. Let S be a
p -Sylow subgroup of H such that |S|=p" where reIN. Since S is a cyclic
by Theorem 3. , there is an element x of H such that S=(x), | x|=p". Then,
we have [N, (X):Cy(X)]=e(x]|) = pt(p-1) since H is a Q -group.
Moreover, p f [Ny (x):Cy(x)] since (x)<C,(x)<Ny(x) and Corollary
2.2). Thus, we find p"*=1 so r=1. Therefore, [N, (X):Cy(X)]=p-1,
S=(x) and |x|=p . Since Ny (x)/Cy(x) = Aut(x) is cyclic, there is an
element y of N, (x) such that Ny (x)/Cy (x) =(y) where ¥=yC (x)

| ¥ |=p—1. Then, we have 2||y| since 2| p-1 , |y|=p-1, |VI||y]. Let
ly|=2°r where r,seIN , (2,r)=1 . Then, s=1 or s=2 since
expP =expQ; = 4.



At first, we assume that s=1. Then, |y|=2r where reIN, (2,r)=1. This
implies ~ that  there are elements z,v of (y) such that
y=2z.v=Vv.z ;|z|=2,|v|]=r. Then, we have zeC,(x) so Z=1 since
H contains only one involution by Theorem 3. Thus, 2||\7| since

y=zv=Z.Vv =V, |y|=p-1, 2| p—1. Then, we have a contradiction since
2|r.

Now, we assume that s=2 . Then, we have |y|=4r where relN ,
(2,r)=1.This implies that | y |=4, by Lemma 5. Then, y% =y2 =1 since y?
IS a unique involution in H , so |y|| 2 . Therefore, we find p=3 since
2<p-1=1|y|,|VI||2. Then, we have |H |=2°3=24.As y e N, (X), we have
a semi-direct product (x) x| (y) . Now let M =(x) x| (y). We know that
|M | =12 since |x|=p=3 and |y|=4. Then, M is a normal subgroup of H
since [H:M]=2. Thus, we have (x)<H since M < H and (x) is a
characteristic subgroup of M, so N (x)=H .Then, we find |C, (x)|=12 since
[H:Chy(X)I=[Ny(X):Cu(X]=0( x])=¢(3)=2 and | H |=24. Now, let R be
a 2-Sylow subgroup of C,, (x), then |R|=4. Moreover, R is a cyclic since H
contains only one involution. Then, there is an element z of C, (x) such that
R:<z> where |z|=4. Thus, we have | xz|=12. This is a contradiction by

lemma 5.

Finally, we find m=1 that is, |H|=8.

Theorem 7. Let G be a Frobenius Q -group with kernel K and complement H . Then,

H=Z, or H=Qg and K is an elemantary abelian p -group where p=3 or p=5.

Proof. By Theorem 6, H =Z, or H =Qg. Then, K is an abelian group since 2|| H |

and Theorem 3. Moreover, we have 2/| K| by Theorem 4. Now, we assume that x is

an element of K such that |x|=p® where ecIN,2<pex(K). Then, we have
(X[ [G:K] so  p**(p-D|[G:K] since K <Cg(x)<Ng(X)<G and



Corollary 2.2). This implies that pe‘l.(p—1)| |H | since [G : K]=|H|. Then, we find
e=1 since p | |H|and 2 < p € IP. Therefore, we have | x|=p and (p—1)| [H .

1) If H=Z,, then p-1e€{1,2}. Thus, p=3 since 2 < p € 7(K). Therefore,
K is an elemantary abelian 3-group.

2) If H=Qg, then p-1e{1,2,4,84 . Thus, we find p=3 or p=5 since
2<pen(K). Now, let |K|=3%5" where a,beIN, . We assume that
| K |=325" where a,beIN. Then, K has an element of order 15 , say z, since
K is an abelian group. We have ¢(| z[) | [Ng (z) : K] so 8| [Ng(z) : K] since
K <Cs(z) £ Ng(z) and Corollary 2.2) . Thus, G = Ng(2) since
[G:K]=|H|=8 by Frobenius Theorem. Moreover, we have K = C;(z)
since [G:K]=8=¢(z]) =[Ng(2) :C5(2)] =[G : C5(z)] and K <C,(2) .
Therefore, we have Q= G/K = Ng(z)/Cs(z) = Aut(z) . This is a

contradiction because Aut(z) is an abelian but Qg is not.

Conclusion. Let G be a Frobenius Q -group with kernel K and complement H .

1) If H=Z,, then K is an elemantary abelian 3-group by Theorem 7. and for every

teK,t'=t? wherelzueH.

2) If H=Qg, then K is an elemantary abelian p -group where p=3 or p=5 by
Theorem 7. Since K<G, H acts on K by conjugation. Thus, K may be considered as
a Z,H -module, so K defines a representation of H over the field Z,,. Since p}|H [,

we can use ordinary representation theory, so K is a direct sum of some irreducible
modules of group ring Z ,H by Maschke’s Theorem and Wedderburn’s Theorem. H

has exactly five non-isomorphic irreducible module over the field Z , and four of them

are 1-dimensional so the other is 2-dimensional. In addition, for every 1-dimensional
representation y of H, y(u)=1eZ, where u is the involusion of H. Thus, K

must be a direct sum of copies of the 2-dimensional irreducible modules of group ring
Z,H since H is a regular group of automorphism of K. Also, if p=5, K is 2-

dimensional irreducible module of Z;H by [3, p.36, Corollary 36. 2) b)]. Finally, any
Frobenius Q-group is one of the groups of our main theorem. Conversely, we can see



easily that all of the groups in our main theorem are indeed Frobenius groups.
Moreover, the fact that these groups are Q -groups can be verified by using the [3, p.80,

Corollary 80].
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