Research Article
BibTex RIS Cite

Determination of Some Physicochemical Properties of Binary Biodiesel and Binary Biodiesel-Diesel Blend Fuels Obtained from Waste Pumpkin Seed- Camelina Oils

Year 2024, Volume: 11 Issue: 2, 514 - 523, 30.04.2024
https://doi.org/10.30910/turkjans.1389896

Abstract

The primary aim of utilizing biodiesel is to reduce dependency on fossil fuels, decrease harmful emissions, and promote the use of renewable energy sources. Studies on biodiesel commonly revolve around singular biodiesel-petroleum diesel blends. Binary biodiesel is generally obtained by mixing different types of biodiesel or blending these mixtures with petroleum diesel. The combination of these diverse feedstocks with distinct properties can offer varying characteristics and benefits. Many studies regarding liquid biofuels primarily focus on blends of singular biodiesel with diesel. Raw materials constitute a substantial portion of the cost in biodiesel production. Hence, efforts have been made to favor non-edible and waste products as raw materials. Additionally, products that are suitable for cultivation in Turkey and easy to obtain as raw materials, supporting domestic biofuel production, have been chosen. Biodiesels obtained from waste pumpkin seeds and linseed oils through the transesterification method were blended at volumetric ratios of 1:1 and 1:3 to obtain binary biodiesel fuels (C50P50, C25P75, and C75P25). The binary biodiesel-diesel blend fuels were achieved by blending different volume ratios of binary biodiesel fuels (C25P25D50 and C10P10D80) with traditional petroleum diesel after their preparation. Subsequent analyses focused on determining the physicochemical properties (density, kinematic viscosity, flash point, water content, calorific value, cold filter plugging point, and copper strip corrosion) of the prepared binary biodiesel and binary biodiesel-diesel blend fuels. Compliance with biodiesel standards (EN 14214, ASTM D-6751) was observed for all fuels, and the results were compared with the reference fuel, diesel (petroleum). According to the analysis results, all the tested fuels met the standards, with the C10P10D80 blend fuel displaying the closest resemblance to diesel.

References

  • Atabani, A., Silva C.A. 2014. Calophyllum inophyllum L.–A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance, Renewable and sustainable energy reviews, 37, 644-655.
  • Balci, A.B. 2017. Examination of Fuel Properties of Biodisel which Obtained from Terebinth Oil and Blending, Selçuk University, Graduate School of Natural and Applied Sciences, Doktora tezi, p.64.
  • Ciubota-Rosie, C., Ruiz, J.R., Ramos, M.J. and Pérez, Á. 2013. Biodiesel from Camelina sativa: A comprehensive characterisation, Fuel, 105, 572-577.
  • Da Ponte, F., Vasques, R. and Oliveira, V. 2015. Studies of second generation biodiesel formulated using binary blends of castor oil with cotton, canola and soybean oils, Eur Int J Sci Technol, 4, 195-204.
  • Eryilmaz, T., Şahin, S., Ertuğrul, M. and Çelik, S. A. 2022. Investigation of the Physicochemical Properties of Camelina [Camelina sativa (L.) Crantz] oil Biodiesel and its Fuel Blends, Konya Journal of Engineering Sciences, 10 (2), 287-300.
  • Ghazali, W. N. M. W., Mamat, R., Masjuki, H. H. and Najafi, G. 2015. Effects of biodiesel from different feedstocks on engine performance and emissions: A review, Renewable and sustainable energy reviews, 51, 585-602.
  • Gupta, S., Sharma, M. P. 2023. Impact of binary blends of biodiesels on fuel quality, engine performance and emission characteristics, Clean Energy, 7 (2), 417-425.
  • Habibullah, M., Rizwanul Fattah, I., Masjuki, H. and Kalam, M. 2015. Effects of palm–coconut biodiesel blends on the performance and emission of a single-cylinder diesel engine, Energy & Fuels, 29 (2), 734-743.
  • Jalil, N., Lau, H. L. N. and Jalal, R. I. A. 2022. The Cold Flow Properties of Palm Biodiesel For Diesel Blends Mandate in Malaysia’s Highlands, Journal of Oil Palm Research, 34 (1), 116-128.
  • Leng, L., Li, W., Li, H., Jiang, S. and Zhou, W. 2020. Cold flow properties of biodiesel and the improvement methods: A review, Energy & Fuels, 34 (9), 10364-10383.
  • Mansourpoor, M. and Shariati, A. 2012, Optimization of biodiesel production from sunflower oil using response surface methodology, J Chem Eng Process Technol, 3 (5), 1-5.
  • Meher, L. C., Sagar, D. V. and Naik, S. 2006. Technical aspects of biodiesel production by transesterification—a review, Renewable and sustainable energy reviews, 10 (3), 248-268.
  • Nayak, S., Hoang, A., Nayak, B. and Mishra, P. 2021. Influence of fish oil and waste cooking oil as post mixed binary biodiesel blends on performance improvement and emission reduction in diesel engine, Fuel, 289, 119948.
  • Nita, I., Geacai, S. and Iulian, O. 2011. Measurements and correlations of physico-chemical properties to composition of pseudo-binary mixtures with biodiesel, Renewable Energy, 36 (12), 3417-3423.
  • Odega, C., Anguruwa, G. and Fakorede, C. 2021. Biodiesel Production and Characterization from Used Vegetable Oil, Journal of Applied Sciences and Environmental Management, 25 (4), 537-542.
  • Ong, H., Silitonga, A., Masjuki, H., Mahlia, T., Chong, W. and Boosroh, M. 2013. Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra, Energy conversion and Management, 73, 245-255.
  • Ong, H. C., Masjuki, H., Mahlia, T., Silitonga, A., Chong, W. and Leong, K. 2014. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine, Energy conversion and Management, 81, 30-40.
  • Öğüt, H., Akınerdem, F., Pehlivan, E., Aydın, M. E. and Oğuz, H. 2004. Investigation of biodiesel production processes from some oil crops in Turkey and its use in diesel engines in terms of agriculture, environment, food, chemistry and technological aspects :DPT Project No:2004/7 Bioenergy 2004 Symposium, Izmir.
  • Silitonga, A., Masjuki, H., Mahlia, T., Ong, H., Chong, W. and Boosroh, M. 2013. Overview properties of biodiesel diesel blends from edible and non-edible feedstock, Renewable and sustainable energy reviews, 22, 346-360.
  • Singh, P., Chauhan, S., Goel, V. and Gupta, A. K. 2020. Enhancing diesel engine performance and reducing emissions using binary biodiesel fuel blend, Journal of Energy Resources Technology, 142 (1), 012201.
  • Sirviö, K., Heikkilä, R., Niemi, S. and Hiltunen, E. 2018. Properties of local produced animal-fat based biodiesel and its blend with fossil fuel, Agronomy Research 16(S1), 1237-1246.
  • Sirviö, K., Niemi, S., Heikkilä, S., Kiijärvi, J., Hissa, M. and Hiltunen, E. 2019. Feasibility of new liquid fuel blends for medium-speed engines, Energies, 12 (14), 2799.
  • Swarna, S., Swamy, M., Divakara, T., Krishnamurthy, K. and Shashidhar, S. 2022. Experimental assessment of ternary fuel blends of diesel, hybrid biodiesel and alcohol in naturally aspirated CI engine, International Journal of Environmental Science and Technology, 19 (9), 8523-8554.
  • Şahin, S. 2021. Determination of the effects on fuel properties, engine performance, and emission values of some additives added to diesel and safflower biodiesel mixtures Selcuk University, Institute of Science and Technology, Doctoral Thesis, p. 164.
  • Tate, R., Watts, K., Allen, C. and Wilkie, K. 2006. The viscosities of three biodiesel fuels at temperatures up to 300 C, Fuel, 85 (7-8), 1010-1015.
  • Tesfa, B., Mishra, R., Gu, F. and Powles, N. 2010. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines, Renewable Energy, 35 (12), 2752-2760.
  • Veluru, S., Hamzah, H. T., Tukaram, B. M., Poiba, V. R. and Mahdi, H. S. 2022. A Review on Biodiesel Production from Various Feedstocks by Transesterification, IOP Conference Series: Materials Science and Engineering, 012024.
  • Yücelşengün, İ., Yücel, E., Kılıç, G. and Öztürk, B. 2021. Determination of Fatty Acid Composition and Bioactive Properties of Pumpkin Seed and Apricot Kernel Oils, The Journal of Food, 46 (3), 608-620.

Atık kabak çekirdeği - Ketencik Yağlarından Elde Edilen İkili biyodizel ve İkili Biyodizel – Dizel Karışım Yakıtlarının Bazı Fizikokimyasal Özelliklerinin Belirlenmesi

Year 2024, Volume: 11 Issue: 2, 514 - 523, 30.04.2024
https://doi.org/10.30910/turkjans.1389896

Abstract

Biyodizel kullanmanın temel amacı fosil yakıtlara olan bağımlılığı azaltmak, zararlı emisyonları azaltmak ve yenilenebilir enerji kaynaklarının kullanımını teşvik etmektir. Biyodizel üzerine yapılan çalışmalar genellikle tekil biyodizel-petrol dizel karışımları etrafında dönüyor. İkili biyodizel genellikle farklı türdeki biyodizellerin karıştırılması veya bu karışımların petrol dizeli ile harmanlanmasıyla elde edilir. Bu farklı hammaddelerin farklı özelliklere sahip kombinasyonu, farklı özellikler ve faydalar sunabilir. Sıvı biyoyakıtlarla ilgili birçok çalışma öncelikle tekil biyodizelin dizel ile karışımlarına odaklanmaktadır. Biyodizel üretiminde maliyetin önemli bir kısmını hammaddeler oluşturmaktadır. Bu nedenle yenmeyen ve atık ürünlerin hammadde olarak tercih edilmesine yönelik çalışmalar yapılmıştır. Ayrıca Türkiye'de ekime uygun, hammadde olarak temini kolay, yerli biyoyakıt üretimini destekleyen ürünler tercih edildi. Atık kabak çekirdeği ve keten tohumu yağlarından transesterifikasyon yöntemiyle elde edilen biyodizeller, hacimsel olarak 1:1 ve 1:3 oranlarında harmanlanarak ikili biyodizel yakıtlar (C50P50, C25P75 ve C75P25) elde edildi. İkili biyodizel-dizel karışımı yakıtlar, farklı hacim oranlarındaki ikili biyodizel yakıtların (C25P25D50 ve C10P10D80) geleneksel petrol dizeli ile hazırlandıktan sonra harmanlanmasıyla elde edildi. Daha sonraki analizler, hazırlanan ikili biyodizel ve ikili biyodizel-dizel karışımı yakıtların fizikokimyasal özelliklerinin (yoğunluk, kinematik viskozite, parlama noktası, su içeriği, kalorifik değer, soğuk filtre tıkanma noktası ve bakır şerit korozyonu) belirlenmesine odaklandı. Tüm yakıtlarda biyodizel standartlarına (EN 14214, ASTM D-6751) uygunluk gözlemlendi ve sonuçlar referans yakıt olan dizel (petrol) ile karşılaştırıldı. Analiz sonuçlarına göre, test edilen yakıtların tamamı standartlara uygun olup, dizele en yakın benzerliği C10P10D80 karışım yakıtı göstermiştir.

References

  • Atabani, A., Silva C.A. 2014. Calophyllum inophyllum L.–A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance, Renewable and sustainable energy reviews, 37, 644-655.
  • Balci, A.B. 2017. Examination of Fuel Properties of Biodisel which Obtained from Terebinth Oil and Blending, Selçuk University, Graduate School of Natural and Applied Sciences, Doktora tezi, p.64.
  • Ciubota-Rosie, C., Ruiz, J.R., Ramos, M.J. and Pérez, Á. 2013. Biodiesel from Camelina sativa: A comprehensive characterisation, Fuel, 105, 572-577.
  • Da Ponte, F., Vasques, R. and Oliveira, V. 2015. Studies of second generation biodiesel formulated using binary blends of castor oil with cotton, canola and soybean oils, Eur Int J Sci Technol, 4, 195-204.
  • Eryilmaz, T., Şahin, S., Ertuğrul, M. and Çelik, S. A. 2022. Investigation of the Physicochemical Properties of Camelina [Camelina sativa (L.) Crantz] oil Biodiesel and its Fuel Blends, Konya Journal of Engineering Sciences, 10 (2), 287-300.
  • Ghazali, W. N. M. W., Mamat, R., Masjuki, H. H. and Najafi, G. 2015. Effects of biodiesel from different feedstocks on engine performance and emissions: A review, Renewable and sustainable energy reviews, 51, 585-602.
  • Gupta, S., Sharma, M. P. 2023. Impact of binary blends of biodiesels on fuel quality, engine performance and emission characteristics, Clean Energy, 7 (2), 417-425.
  • Habibullah, M., Rizwanul Fattah, I., Masjuki, H. and Kalam, M. 2015. Effects of palm–coconut biodiesel blends on the performance and emission of a single-cylinder diesel engine, Energy & Fuels, 29 (2), 734-743.
  • Jalil, N., Lau, H. L. N. and Jalal, R. I. A. 2022. The Cold Flow Properties of Palm Biodiesel For Diesel Blends Mandate in Malaysia’s Highlands, Journal of Oil Palm Research, 34 (1), 116-128.
  • Leng, L., Li, W., Li, H., Jiang, S. and Zhou, W. 2020. Cold flow properties of biodiesel and the improvement methods: A review, Energy & Fuels, 34 (9), 10364-10383.
  • Mansourpoor, M. and Shariati, A. 2012, Optimization of biodiesel production from sunflower oil using response surface methodology, J Chem Eng Process Technol, 3 (5), 1-5.
  • Meher, L. C., Sagar, D. V. and Naik, S. 2006. Technical aspects of biodiesel production by transesterification—a review, Renewable and sustainable energy reviews, 10 (3), 248-268.
  • Nayak, S., Hoang, A., Nayak, B. and Mishra, P. 2021. Influence of fish oil and waste cooking oil as post mixed binary biodiesel blends on performance improvement and emission reduction in diesel engine, Fuel, 289, 119948.
  • Nita, I., Geacai, S. and Iulian, O. 2011. Measurements and correlations of physico-chemical properties to composition of pseudo-binary mixtures with biodiesel, Renewable Energy, 36 (12), 3417-3423.
  • Odega, C., Anguruwa, G. and Fakorede, C. 2021. Biodiesel Production and Characterization from Used Vegetable Oil, Journal of Applied Sciences and Environmental Management, 25 (4), 537-542.
  • Ong, H., Silitonga, A., Masjuki, H., Mahlia, T., Chong, W. and Boosroh, M. 2013. Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra, Energy conversion and Management, 73, 245-255.
  • Ong, H. C., Masjuki, H., Mahlia, T., Silitonga, A., Chong, W. and Leong, K. 2014. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine, Energy conversion and Management, 81, 30-40.
  • Öğüt, H., Akınerdem, F., Pehlivan, E., Aydın, M. E. and Oğuz, H. 2004. Investigation of biodiesel production processes from some oil crops in Turkey and its use in diesel engines in terms of agriculture, environment, food, chemistry and technological aspects :DPT Project No:2004/7 Bioenergy 2004 Symposium, Izmir.
  • Silitonga, A., Masjuki, H., Mahlia, T., Ong, H., Chong, W. and Boosroh, M. 2013. Overview properties of biodiesel diesel blends from edible and non-edible feedstock, Renewable and sustainable energy reviews, 22, 346-360.
  • Singh, P., Chauhan, S., Goel, V. and Gupta, A. K. 2020. Enhancing diesel engine performance and reducing emissions using binary biodiesel fuel blend, Journal of Energy Resources Technology, 142 (1), 012201.
  • Sirviö, K., Heikkilä, R., Niemi, S. and Hiltunen, E. 2018. Properties of local produced animal-fat based biodiesel and its blend with fossil fuel, Agronomy Research 16(S1), 1237-1246.
  • Sirviö, K., Niemi, S., Heikkilä, S., Kiijärvi, J., Hissa, M. and Hiltunen, E. 2019. Feasibility of new liquid fuel blends for medium-speed engines, Energies, 12 (14), 2799.
  • Swarna, S., Swamy, M., Divakara, T., Krishnamurthy, K. and Shashidhar, S. 2022. Experimental assessment of ternary fuel blends of diesel, hybrid biodiesel and alcohol in naturally aspirated CI engine, International Journal of Environmental Science and Technology, 19 (9), 8523-8554.
  • Şahin, S. 2021. Determination of the effects on fuel properties, engine performance, and emission values of some additives added to diesel and safflower biodiesel mixtures Selcuk University, Institute of Science and Technology, Doctoral Thesis, p. 164.
  • Tate, R., Watts, K., Allen, C. and Wilkie, K. 2006. The viscosities of three biodiesel fuels at temperatures up to 300 C, Fuel, 85 (7-8), 1010-1015.
  • Tesfa, B., Mishra, R., Gu, F. and Powles, N. 2010. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines, Renewable Energy, 35 (12), 2752-2760.
  • Veluru, S., Hamzah, H. T., Tukaram, B. M., Poiba, V. R. and Mahdi, H. S. 2022. A Review on Biodiesel Production from Various Feedstocks by Transesterification, IOP Conference Series: Materials Science and Engineering, 012024.
  • Yücelşengün, İ., Yücel, E., Kılıç, G. and Öztürk, B. 2021. Determination of Fatty Acid Composition and Bioactive Properties of Pumpkin Seed and Apricot Kernel Oils, The Journal of Food, 46 (3), 608-620.
There are 28 citations in total.

Details

Primary Language English
Subjects Agricultural Machine Systems, Agricultural Energy Systems
Journal Section Research Article
Authors

Seda Şahin 0000-0003-1743-9530

Early Pub Date April 30, 2024
Publication Date April 30, 2024
Submission Date November 13, 2023
Acceptance Date February 26, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Şahin, S. (2024). Determination of Some Physicochemical Properties of Binary Biodiesel and Binary Biodiesel-Diesel Blend Fuels Obtained from Waste Pumpkin Seed- Camelina Oils. Türk Tarım Ve Doğa Bilimleri Dergisi, 11(2), 514-523. https://doi.org/10.30910/turkjans.1389896