Research Article
BibTex RIS Cite

Removal of salicylic acid from aqueous solutions by electrocoagulation processes using hybrid electrode

Year 2021, Volume: 10 Issue: 2, 479 - 486, 27.07.2021
https://doi.org/10.28948/ngumuh.842616

Abstract

In this study, salicylic acid, an important and widely used micropollutant in the pharmacy sector, removal by electrocoagulation process was investigated. Electrocoagulation and electroflotation processes are commonly used techniques in electrochemical treatment. The type of electrode material employing in electrochemical processes is one of the basic variables which determining the process performance. In the experiments, iron and aluminum plates were employed as a hybrid electrode combination in the electrocoagulation process. The effect of current density, initial pH, electrolysis time, and electrical conductivity were investigated. For this purpose, the current density was 20 A/m2 and 100 A/m2, initial pH 5-8, electrolysis time 2-50 min electrical conductivity 250-1000 µs/cm range and electrode connection type monopolar parallel (MP-P) salicylic acid removal efficiencies from aqueous solutions were investigated during the experimental studies. The best removal results were obtained at pH 6 with a current density of 80 A/m2, solution conductivity of 750 µs/cm, and 40 min of electrolysis time. In these operation conditions, operation cost, amount of sludge, and removal efficiency of salicylic acid were determined as 1.34 $/m3, 0.8 kg/m3, and 91.4%, respectively.

References

  • G. Sönmez, M. Işık, Sulardaki ilaç kalıntılarının ileri oksidasyon yöntemleri ile giderimi. Turkish Journal of Scientific Reviews, 6, 68-73, 2013.
  • S. Aksoy, Elektrokoagülasyon prosesi ile sulu çözeltilerden salisilik asit giderimi. Çevre Mühendisliği ABD, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Sivas, 2016.
  • A. H. Dökmeci, Bazı farmasötik ilaç kalıntılarının sulardaki toksik etkileri, (2009).
  • İ. E. İ. Sendikası, Türkiye İlaç Pazarı, 2020.
  • W. H. Tsai, T. C. Huang, H. H. Chen, J.-J. Huang, M.-H. Hsue, H. Y. Chuang, and Y. W. Wu, Determination of tetracyclines in surface water and milk by the magnesium hydroxide coprecipitation method. Journal of chromatography A, 1217, 415-418, 2010. https://doi.org/10.1016/j.chroma.2009.12.006.
  • S. O’Connor, and D. S. Aga, Analysis of tetracycline antibiotics in soil: advances in extraction, clean-up, and quantification. TrAC Trends in Analytical Chemistry, 26, 456-465, 2007. https://doi.org/10.1016/ j.trac.2007.02.007.
  • R. S. Valverde, M.D.G. García, M.M. Galera, and H.C. Goicoechea, Determination of tetracyclines in surface water by partial least squares using multivariate calibration transfer to correct the effect of solid phase preconcentration in photochemically induced fluorescence signals. Analytica Chimica Acta, 562, 85-93, 2006. https://doi.org/10.1016/j.aca.2006 .01.035.
  • Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, and X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the total environment, 473, 619-641, 2014. https://doi.org/10.1016/ j.scitotenv.2013.12.065.
  • M.H. Khan, H. Bae, and J.-Y. Jung, Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. Journal of hazardous materials, 181, 659-665, 2010. https://doi.org/10.1016/j.jhazmat.2010.05.063.
  • I.R. Bautitz, and R.F.P. Nogueira, Degradation of tetracycline by photo-Fenton process—Solar irradiation and matrix effects. Journal of Photochemistry and Photobiology A: Chemistry, 187, 33-39, 2007. https://doi.org/10.1016/j.jphotochem. 2006.09.009.
  • Y. Liu, X. Gan, B. Zhou, B. Xiong, J. Li, C. Dong, J. Bai, and W. Cai, Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. Journal of Hazardous Materials, 171, 678-683, 2009. https://doi.org/10.1016/j.jhazmat.2009. 06.054.
  • Y.-J. Wang, D.-A. Jia, R.-J. Sun, H.-W. Zhu, and D.M. Zhou, Adsorption and cosorption of tetracycline and copper (II) on montmorillonite as affected by solution pH. Environmental Science & Technology, 42, 3254-3259, 2008. https://doi.org/10.1021/es702641a.
  • C. Reyes, J. Fernandez, J. Freer, M. Mondaca, C. Zaror, S. Malato, and H. Mansilla, Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 184, 141-146, 2006. https://doi.org/10.1016/j.jphotochem. 2006.04.007.
  • D. Avisar, O. Primor, I. Gozlan, and H. Mamane, Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water, Air, & Soil Pollution, 209, 439-450, (2010). https://doi.org/10.1007/s11270-009-0212-8.
  • S. Mondal, M.K. Purkait, and S. De, Advances in dye removal technologie., Springer, 2018. https://doi.org/10.1007/978-981-10-6293-3.
  • A. Romanov, M. Kobya, and A. Dimoglo, Atıksulardaki kolloidal partiküllerin elektroflotakoagülasyonla giderimi, in: İTÜ 7. Endüstriyel Kirlenme Kontrolü Sempozyumu, İstanbul, 2000, pp. 67-74.
  • F. Özyonar, Ö. Gökkuş, and M. Sabuni, Removal of disperse and reactive dyes from aqueous solutions using ultrasound-assisted electrocoagulation. Chemosphere, 127325, 2020. https://doi.org/10.1016/j .chemosphere.2020.127325.
  • R. Sridhar, V. Sivakumar, V.P. Immanuel, and J.P. Maran, Treatment of pulp and paper industry bleaching effluent by electrocoagulant process. Journal of Hazardous Materials, 186, 1495-1502, 2011. https://doi.org/10.1016/j.jhazmat.2010.12.028.
  • M.Y.A. Mollah, R. Schennach, J.R. Parga, and D.L. Cocke, Electrocoagulation (EC)—science and applications. J. Hazard. Mater., 84, 29-41, 2001. https://doi.org/ 10.1016/S0304-3894(01)00176-5.
  • Ö. Gökkuş, and Y.Ş. Yıldız, Application of electrocoagulation for treatment of medical waste sterilization plant wastewater and optimization of the experimental conditions. Clean Technol. Environ. Policy, 17, 1717-1725, 2015. https://doi.org/ 10.1007/s10098-014-0897-2.
  • N. Flores, E. Brillas, F. Centellas, R.M. Rodríguez, P.L. Cabot, J.A. Garrido, and I. Sirés, Treatment of olive oil mill wastewater by single electrocoagulation with different electrodes and sequential electrocoagulation/ electrochemical Fenton-based processes. Journal of hazardous materials, 347, 58-66, 2018. https://doi.org/10.1016/j.jhazmat.2017.12.059.
  • A. Thiam, M. Zhou, E. Brillas, and I. Sirés, A first pre‐pilot system for the combined treatment of dye pollutants by electrocoagulation/EAOPs. Journal of Chemical Technology & Biotechnology, 89, 1136-1144, 2014. https://doi.org/10.1002/jctb.4358.
  • A. Thiam, M. Zhou, E. Brillas, and I. Sirés, Two-step mineralization of Tartrazine solutions: study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes, Applied Catalysis B: Environmental, 150, 116-125, 2014. https://doi.org/10.1016/j.apcatb.2013.12.011.
  • F. Ozyonar, H. Muratcobanoglu, and O. Gokkus, Taguchi approach for color removal using electrocoagulation with different electrode connection types, Feb-Fresenius Environmental Bulletin, 7600, 2017.

Hibrit olarak alüminyum ve demir elektrotlar kullanarak elektrokoagulasyon prosesleri ile sulu çözeltilerden salisilik asit gideriminin araştırılması

Year 2021, Volume: 10 Issue: 2, 479 - 486, 27.07.2021
https://doi.org/10.28948/ngumuh.842616

Abstract

Bu çalışmada, elektrokoagulasyon prosesiyle sulu çözeltilerden önemli ve yaygın olarak kullanılan bir mikrokirletici sınıfına giren ve ilaç etken maddesi olan sulu çözeltilerden salisilik asittin giderimi araştırılmıştır. Elektrokimyasal arıtma proseslerinde yaygın olarak kullanılan arıtma prosesleri elektrokoagulasyon ve elektroflotasyon teknikleridir. Elektrokimyasal proseslerde proses verimini belirleyen en temel değişkenlerden birisi, kullanılan elektrot materyalinin cinsidir. Bu çalışmada elektrokoagulasyon prosesiyle hibrit olarak demir ve alüminyum elektrot kombinasyonu kullanılmıştır. Elektrokoagulasyon prosesine etki eden parametrelerden akım yoğunluğu, başlangıç pH, elektroliz süresi ve elektriksel iletkenliğin etkisi salisilik asit giderim verimi üzerine etkisi araştırılmıştır. Bu amaçla elektrokoagulasyon (EC) prosesinde akım yoğunluğu 20 A/m2 ve 100 A/m2 değerinde, başlangıç pH 5-8, Elektroliz süresi 2-50 dakika, elektriksel iletkenlik 250-1000 µs/cm aralığında ve elektrotlar monopolar paralel (MP-P) bağlantı türünde bağlanarak sulu çözeltilerden salisilik asit giderme verimleri incelenmiştir. En yüksek giderme verimi pH 6, Akım yoğunluğu 80 A/m2, çözelti iletkenliği 750 µs/cm, ve Elektroliz süresi 40 dakika olarak elde edilmiştir. Bu işletme şartlarında %91.4 Salisilik asit giderimi, 0.8 kg/m3 çamur oluşumu ve 1.34 $/m3 işletme maliyeti bulunmuştur.

References

  • G. Sönmez, M. Işık, Sulardaki ilaç kalıntılarının ileri oksidasyon yöntemleri ile giderimi. Turkish Journal of Scientific Reviews, 6, 68-73, 2013.
  • S. Aksoy, Elektrokoagülasyon prosesi ile sulu çözeltilerden salisilik asit giderimi. Çevre Mühendisliği ABD, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Sivas, 2016.
  • A. H. Dökmeci, Bazı farmasötik ilaç kalıntılarının sulardaki toksik etkileri, (2009).
  • İ. E. İ. Sendikası, Türkiye İlaç Pazarı, 2020.
  • W. H. Tsai, T. C. Huang, H. H. Chen, J.-J. Huang, M.-H. Hsue, H. Y. Chuang, and Y. W. Wu, Determination of tetracyclines in surface water and milk by the magnesium hydroxide coprecipitation method. Journal of chromatography A, 1217, 415-418, 2010. https://doi.org/10.1016/j.chroma.2009.12.006.
  • S. O’Connor, and D. S. Aga, Analysis of tetracycline antibiotics in soil: advances in extraction, clean-up, and quantification. TrAC Trends in Analytical Chemistry, 26, 456-465, 2007. https://doi.org/10.1016/ j.trac.2007.02.007.
  • R. S. Valverde, M.D.G. García, M.M. Galera, and H.C. Goicoechea, Determination of tetracyclines in surface water by partial least squares using multivariate calibration transfer to correct the effect of solid phase preconcentration in photochemically induced fluorescence signals. Analytica Chimica Acta, 562, 85-93, 2006. https://doi.org/10.1016/j.aca.2006 .01.035.
  • Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, and X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the total environment, 473, 619-641, 2014. https://doi.org/10.1016/ j.scitotenv.2013.12.065.
  • M.H. Khan, H. Bae, and J.-Y. Jung, Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. Journal of hazardous materials, 181, 659-665, 2010. https://doi.org/10.1016/j.jhazmat.2010.05.063.
  • I.R. Bautitz, and R.F.P. Nogueira, Degradation of tetracycline by photo-Fenton process—Solar irradiation and matrix effects. Journal of Photochemistry and Photobiology A: Chemistry, 187, 33-39, 2007. https://doi.org/10.1016/j.jphotochem. 2006.09.009.
  • Y. Liu, X. Gan, B. Zhou, B. Xiong, J. Li, C. Dong, J. Bai, and W. Cai, Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. Journal of Hazardous Materials, 171, 678-683, 2009. https://doi.org/10.1016/j.jhazmat.2009. 06.054.
  • Y.-J. Wang, D.-A. Jia, R.-J. Sun, H.-W. Zhu, and D.M. Zhou, Adsorption and cosorption of tetracycline and copper (II) on montmorillonite as affected by solution pH. Environmental Science & Technology, 42, 3254-3259, 2008. https://doi.org/10.1021/es702641a.
  • C. Reyes, J. Fernandez, J. Freer, M. Mondaca, C. Zaror, S. Malato, and H. Mansilla, Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 184, 141-146, 2006. https://doi.org/10.1016/j.jphotochem. 2006.04.007.
  • D. Avisar, O. Primor, I. Gozlan, and H. Mamane, Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water, Air, & Soil Pollution, 209, 439-450, (2010). https://doi.org/10.1007/s11270-009-0212-8.
  • S. Mondal, M.K. Purkait, and S. De, Advances in dye removal technologie., Springer, 2018. https://doi.org/10.1007/978-981-10-6293-3.
  • A. Romanov, M. Kobya, and A. Dimoglo, Atıksulardaki kolloidal partiküllerin elektroflotakoagülasyonla giderimi, in: İTÜ 7. Endüstriyel Kirlenme Kontrolü Sempozyumu, İstanbul, 2000, pp. 67-74.
  • F. Özyonar, Ö. Gökkuş, and M. Sabuni, Removal of disperse and reactive dyes from aqueous solutions using ultrasound-assisted electrocoagulation. Chemosphere, 127325, 2020. https://doi.org/10.1016/j .chemosphere.2020.127325.
  • R. Sridhar, V. Sivakumar, V.P. Immanuel, and J.P. Maran, Treatment of pulp and paper industry bleaching effluent by electrocoagulant process. Journal of Hazardous Materials, 186, 1495-1502, 2011. https://doi.org/10.1016/j.jhazmat.2010.12.028.
  • M.Y.A. Mollah, R. Schennach, J.R. Parga, and D.L. Cocke, Electrocoagulation (EC)—science and applications. J. Hazard. Mater., 84, 29-41, 2001. https://doi.org/ 10.1016/S0304-3894(01)00176-5.
  • Ö. Gökkuş, and Y.Ş. Yıldız, Application of electrocoagulation for treatment of medical waste sterilization plant wastewater and optimization of the experimental conditions. Clean Technol. Environ. Policy, 17, 1717-1725, 2015. https://doi.org/ 10.1007/s10098-014-0897-2.
  • N. Flores, E. Brillas, F. Centellas, R.M. Rodríguez, P.L. Cabot, J.A. Garrido, and I. Sirés, Treatment of olive oil mill wastewater by single electrocoagulation with different electrodes and sequential electrocoagulation/ electrochemical Fenton-based processes. Journal of hazardous materials, 347, 58-66, 2018. https://doi.org/10.1016/j.jhazmat.2017.12.059.
  • A. Thiam, M. Zhou, E. Brillas, and I. Sirés, A first pre‐pilot system for the combined treatment of dye pollutants by electrocoagulation/EAOPs. Journal of Chemical Technology & Biotechnology, 89, 1136-1144, 2014. https://doi.org/10.1002/jctb.4358.
  • A. Thiam, M. Zhou, E. Brillas, and I. Sirés, Two-step mineralization of Tartrazine solutions: study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes, Applied Catalysis B: Environmental, 150, 116-125, 2014. https://doi.org/10.1016/j.apcatb.2013.12.011.
  • F. Ozyonar, H. Muratcobanoglu, and O. Gokkus, Taguchi approach for color removal using electrocoagulation with different electrode connection types, Feb-Fresenius Environmental Bulletin, 7600, 2017.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Fuat Özyonar 0000-0001-6772-8010

Ömür Gökkuş 0000-0001-6044-3522

Publication Date July 27, 2021
Submission Date December 17, 2020
Acceptance Date April 9, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Özyonar, F., & Gökkuş, Ö. (2021). Hibrit olarak alüminyum ve demir elektrotlar kullanarak elektrokoagulasyon prosesleri ile sulu çözeltilerden salisilik asit gideriminin araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 479-486. https://doi.org/10.28948/ngumuh.842616
AMA Özyonar F, Gökkuş Ö. Hibrit olarak alüminyum ve demir elektrotlar kullanarak elektrokoagulasyon prosesleri ile sulu çözeltilerden salisilik asit gideriminin araştırılması. NOHU J. Eng. Sci. July 2021;10(2):479-486. doi:10.28948/ngumuh.842616
Chicago Özyonar, Fuat, and Ömür Gökkuş. “Hibrit Olarak alüminyum Ve Demir Elektrotlar Kullanarak Elektrokoagulasyon Prosesleri Ile Sulu çözeltilerden Salisilik Asit Gideriminin araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 2 (July 2021): 479-86. https://doi.org/10.28948/ngumuh.842616.
EndNote Özyonar F, Gökkuş Ö (July 1, 2021) Hibrit olarak alüminyum ve demir elektrotlar kullanarak elektrokoagulasyon prosesleri ile sulu çözeltilerden salisilik asit gideriminin araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 479–486.
IEEE F. Özyonar and Ö. Gökkuş, “Hibrit olarak alüminyum ve demir elektrotlar kullanarak elektrokoagulasyon prosesleri ile sulu çözeltilerden salisilik asit gideriminin araştırılması”, NOHU J. Eng. Sci., vol. 10, no. 2, pp. 479–486, 2021, doi: 10.28948/ngumuh.842616.
ISNAD Özyonar, Fuat - Gökkuş, Ömür. “Hibrit Olarak alüminyum Ve Demir Elektrotlar Kullanarak Elektrokoagulasyon Prosesleri Ile Sulu çözeltilerden Salisilik Asit Gideriminin araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (July 2021), 479-486. https://doi.org/10.28948/ngumuh.842616.
JAMA Özyonar F, Gökkuş Ö. Hibrit olarak alüminyum ve demir elektrotlar kullanarak elektrokoagulasyon prosesleri ile sulu çözeltilerden salisilik asit gideriminin araştırılması. NOHU J. Eng. Sci. 2021;10:479–486.
MLA Özyonar, Fuat and Ömür Gökkuş. “Hibrit Olarak alüminyum Ve Demir Elektrotlar Kullanarak Elektrokoagulasyon Prosesleri Ile Sulu çözeltilerden Salisilik Asit Gideriminin araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, 2021, pp. 479-86, doi:10.28948/ngumuh.842616.
Vancouver Özyonar F, Gökkuş Ö. Hibrit olarak alüminyum ve demir elektrotlar kullanarak elektrokoagulasyon prosesleri ile sulu çözeltilerden salisilik asit gideriminin araştırılması. NOHU J. Eng. Sci. 2021;10(2):479-86.

23135