Research Article
BibTex RIS Cite

pGM-CSF İçeren Kitozan/PVP Hidrojellerinin GM-CSF Ekspresyonu ve Fibroblast Proliferasyonuna Etkileri

Year 2017, Volume: 21 Issue: 2, 228 - 234, 01.05.2017
https://doi.org/10.12991/marupj.278854

Abstract

Bu çalışmanın amacı, gen taşınması için pGM-CSF içeren kitozan/PVP hidrojel sistemini geliştirmektir. Yarı-interpenetre polimer ağ (yarı-IPN) yapısındaki hidrojeller, %2 kitozan ve %2, %4, %6 PVP’nin glutaraldehitle çapraz bağlanması ile hazırlandı. Hidrojellerin viskozite, şişme özellikleri ve yüzey morfolojisi incelendi. Bu hidrojeller oldukça poroz yapı gösterdi. PVP konsantrasyonunun artması ile porozite arttı. Viskozite hidrojellerin PVP konsantrasyonun artması ile azaldı. Şişme yüzdesi PVP konsantrasyonunun artması ile artış gösterdi. Hidrojellerin hücre tutunması ve proliferasyonuna etkisini incelemek için, NIH 3T3 fibroblast hücreleri kullanıldı. Hücreler, hidrojellerin yüzeyine tutundu. Bununla birlikte hücrelerin tutunması 1 ve 3 gün de yavaş olarak gerçekleşti. 7. ve 14. günlerde hücreler hidrojellerin yüzeyinde ve aralarında sağlıklı normal görünüşlü olup, proliferasyon gözlendi. ELISA çalışması ile en yüksek GM-CSF ekspresyonu pGM-CSF içeren %2 kitozan+%4PVP hidrojellerinde elde edildi. MTT çalışması ile kitozan/PVP hidrojellerinin önemli bir sitotoksik etkiyi indüklemediği gözlendi. Sonuç olarak, bu hidrojeller doku rejenerasyonunda lokal gen taşınması için aday taşıyıcı sistem olarak önerilebilir.

References

  • Ostrowska-Czubenko J, Gierszewska-Druzynska M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr Polym 2009;77:590-8.
  • Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Del Rev 2010;62:83-99.
  • Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J. Covalently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomaterial 2007;3:23-31.
  • Ta HT, Han H, Larson I, Dass CR, Dunstan DE. Chitosandibasic orthophosphate hydrogel: A potential drug delivery system. Int J Pharm 2009;371:134-41.
  • Risbud M, Hardikar A, Bhonde R. Growth modulation of fibroblasts by chitosan-polyvinylpyrrolidone hydrogel: Implications for wound management? J Biosci 2000;25:25-31.
  • Anjum S, Arora A, Alam MS, Gupta B. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 2016;508:92-101.
  • Lei Y, Segura T. DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Biomaterials 2009;30:254-65.
  • Salva E, Ozbas-Turan S, Akbuğa J. Increased in vitro cell proliferation by chitosan/pGM-CSF complexes. Ind J Pharm Sci 2011;73:131-8.
  • Suknuntha K, Tantishaiyakul V, Worakul N, Taweepreda W. Characterization of muco- and bioadhesive properties of chitosan, PVP, and chitosan/PVP blends and release of amoxicillin from alginate beads coated with chitosan/PVP. Drug Develop Indust Pharm 2011; 37: 408-18.
  • Mishra RK, Datt M, Banthia AK. Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. AAPS PharmSciTech 2008;9: 395-403.
  • Chun KW, Lee JB, Kim SH, Park TG. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 2005;26:3319-26.
  • Storrie H, Mooney DJ. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv Drug Del Rev 2006;58:500-14.
  • Laporte LD, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Del Rev 2007;59:292-307.
  • Lei Y, Huang S, Sharif-Kashani P, Chen Y, Kavehpour P, Segura T. Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials 2010;31:9106-16.
  • Tokatlian T, Cam C, Segura T. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv Healthcare Mater 2015;4:1084-91.
  • Ji C, Khademhosseini A, Dehghani F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials 2011;32:9719-29.
  • Wu ZM, Zhang XG, Zheng C, Li CX, Zhang SM, Dong RN, Yu DM. Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur J Pharm Sci 2009;37: 198- 206.
  • Archana D, Singh BK, Dutta J, Dutta PK. In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 2013;95:530-9.
  • Roy N, Saha N, Kitano T, Saha P. Novel hydrogels of PVP– CMC and their swelling effect on viscoelastic properties. J App Polym Sci 2010;117:1703-10.
  • Jing X, Yuan G, Lijun K, Yandao G, Nanming Z, Xiufang Z. Behavior of MC3T3-E1 osteoblast cultured on chitosan modified with polyvinylpyrrolidone. Tsinghua Sci Technol 2005;10:439-44.

The Effects to GM-CSF Expression and Fibroblast Proliferation of pGMCSF Containing Chitosan/PVP Hydrogels

Year 2017, Volume: 21 Issue: 2, 228 - 234, 01.05.2017
https://doi.org/10.12991/marupj.278854

Abstract

The aim of this study was to develop pGM-CSF containing chitosan/PVP hydrogel system for gene delivery. The hydrogels in semi-interpenetrating polymer network (semi-IPN) structure were synthesized by glutaraldehyde crosslinking between 2% chitosan and 2%, %4, %6 PVP. The viscosity, swelling properties and surface morphology of hydrogels were examined. These hydrogels showed highly porous structure. The porosity was increased with enhanced PVP concentration. Viscosity decreased with increasing PVP concentration of the hydrogels. The swelling percentage increased with increasing PVP concentration. In order to examine the effect of cell attachment and proliferation of hydrogels, NIH-3T3 fibroblast cell was used. The cells were able to attach on the top surface of hydrogels. However, the attachment of cells were slow at days 1 and 3. At days 7 and 14, cells looked healthy and normal and proliferated around and top of the hydrogels. With the ELISA study, the highest GM-CSF expression was obtained with pGM-CSF containing 2% chitosan+4% PVP hydrogels. MTT assay showed that chitosan/PVP hydrogels did not induce significant cytotoxic effect. As a result, these hydrogels could be served candidate for local gene delivery in tissue regeneration.

References

  • Ostrowska-Czubenko J, Gierszewska-Druzynska M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr Polym 2009;77:590-8.
  • Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Del Rev 2010;62:83-99.
  • Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J. Covalently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomaterial 2007;3:23-31.
  • Ta HT, Han H, Larson I, Dass CR, Dunstan DE. Chitosandibasic orthophosphate hydrogel: A potential drug delivery system. Int J Pharm 2009;371:134-41.
  • Risbud M, Hardikar A, Bhonde R. Growth modulation of fibroblasts by chitosan-polyvinylpyrrolidone hydrogel: Implications for wound management? J Biosci 2000;25:25-31.
  • Anjum S, Arora A, Alam MS, Gupta B. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 2016;508:92-101.
  • Lei Y, Segura T. DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Biomaterials 2009;30:254-65.
  • Salva E, Ozbas-Turan S, Akbuğa J. Increased in vitro cell proliferation by chitosan/pGM-CSF complexes. Ind J Pharm Sci 2011;73:131-8.
  • Suknuntha K, Tantishaiyakul V, Worakul N, Taweepreda W. Characterization of muco- and bioadhesive properties of chitosan, PVP, and chitosan/PVP blends and release of amoxicillin from alginate beads coated with chitosan/PVP. Drug Develop Indust Pharm 2011; 37: 408-18.
  • Mishra RK, Datt M, Banthia AK. Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. AAPS PharmSciTech 2008;9: 395-403.
  • Chun KW, Lee JB, Kim SH, Park TG. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 2005;26:3319-26.
  • Storrie H, Mooney DJ. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv Drug Del Rev 2006;58:500-14.
  • Laporte LD, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Del Rev 2007;59:292-307.
  • Lei Y, Huang S, Sharif-Kashani P, Chen Y, Kavehpour P, Segura T. Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials 2010;31:9106-16.
  • Tokatlian T, Cam C, Segura T. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv Healthcare Mater 2015;4:1084-91.
  • Ji C, Khademhosseini A, Dehghani F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials 2011;32:9719-29.
  • Wu ZM, Zhang XG, Zheng C, Li CX, Zhang SM, Dong RN, Yu DM. Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur J Pharm Sci 2009;37: 198- 206.
  • Archana D, Singh BK, Dutta J, Dutta PK. In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 2013;95:530-9.
  • Roy N, Saha N, Kitano T, Saha P. Novel hydrogels of PVP– CMC and their swelling effect on viscoelastic properties. J App Polym Sci 2010;117:1703-10.
  • Jing X, Yuan G, Lijun K, Yandao G, Nanming Z, Xiufang Z. Behavior of MC3T3-E1 osteoblast cultured on chitosan modified with polyvinylpyrrolidone. Tsinghua Sci Technol 2005;10:439-44.
There are 20 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

Emine Şalva

Jülide Akbuğa This is me

Publication Date May 1, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Şalva, E., & Akbuğa, J. (2017). The Effects to GM-CSF Expression and Fibroblast Proliferation of pGMCSF Containing Chitosan/PVP Hydrogels. Marmara Pharmaceutical Journal, 21(2), 228-234. https://doi.org/10.12991/marupj.278854
AMA Şalva E, Akbuğa J. The Effects to GM-CSF Expression and Fibroblast Proliferation of pGMCSF Containing Chitosan/PVP Hydrogels. Marmara Pharm J. May 2017;21(2):228-234. doi:10.12991/marupj.278854
Chicago Şalva, Emine, and Jülide Akbuğa. “The Effects to GM-CSF Expression and Fibroblast Proliferation of PGMCSF Containing Chitosan/PVP Hydrogels”. Marmara Pharmaceutical Journal 21, no. 2 (May 2017): 228-34. https://doi.org/10.12991/marupj.278854.
EndNote Şalva E, Akbuğa J (May 1, 2017) The Effects to GM-CSF Expression and Fibroblast Proliferation of pGMCSF Containing Chitosan/PVP Hydrogels. Marmara Pharmaceutical Journal 21 2 228–234.
IEEE E. Şalva and J. Akbuğa, “The Effects to GM-CSF Expression and Fibroblast Proliferation of pGMCSF Containing Chitosan/PVP Hydrogels”, Marmara Pharm J, vol. 21, no. 2, pp. 228–234, 2017, doi: 10.12991/marupj.278854.
ISNAD Şalva, Emine - Akbuğa, Jülide. “The Effects to GM-CSF Expression and Fibroblast Proliferation of PGMCSF Containing Chitosan/PVP Hydrogels”. Marmara Pharmaceutical Journal 21/2 (May 2017), 228-234. https://doi.org/10.12991/marupj.278854.
JAMA Şalva E, Akbuğa J. The Effects to GM-CSF Expression and Fibroblast Proliferation of pGMCSF Containing Chitosan/PVP Hydrogels. Marmara Pharm J. 2017;21:228–234.
MLA Şalva, Emine and Jülide Akbuğa. “The Effects to GM-CSF Expression and Fibroblast Proliferation of PGMCSF Containing Chitosan/PVP Hydrogels”. Marmara Pharmaceutical Journal, vol. 21, no. 2, 2017, pp. 228-34, doi:10.12991/marupj.278854.
Vancouver Şalva E, Akbuğa J. The Effects to GM-CSF Expression and Fibroblast Proliferation of pGMCSF Containing Chitosan/PVP Hydrogels. Marmara Pharm J. 2017;21(2):228-34.