Research Article
BibTex RIS Cite

Uzun Zincirli Kuaterner Amin Katyonik-Volkanit Üzerine Stronsiyum (II) İyonlarının Adsorpsiyonunun Araştırılması: RSM ile Modelleme ve Optimizasyon

Year 2023, Volume: 13 Issue: 1, 72 - 84, 30.06.2023

Abstract

Bu çalışmada, alkali bazaltik yapıda ve bol miktarda bulunan kula volkaniti, hekzadesiltrimetilamonyum (HDTMA) organik
katyonu ile adsorpsiyon kapasitesi artırılarak stronsiyum gideriminde kullanılmıştır. İlk olarak, adsorban XRF, FT-IR ve SEM ile
karakterize edilmiştir. Daha sonra, sulu çözeltilerden Stronsiyum (II) iyonlarının adsorpsiyonu ICP cihazı ile ölçülmüş ve deneyler
yüzey yanıt metodu (YYM) ile optimize edilmiştir. Deneylerdeki çalışma planlanması için merkezi kompozit tasarım (CCD) metodu
kullanılmıştır. Çalışmada optimum değerlerde teorik olarak adsorbe edilen Stronsiyum (II) 31,978 mg/g olarak hesaplanmıştır. Ayrıca
çalışmada, çeşitli izotermlerin uyumluluğu ve termodinamik parametreler değerlendirilmiştir. Sonuçlara göre, ucuz ve bol miktarda
olan bu adsorban malzemenin radyoaktif atıkların ayrıştırılması ve arıtılmasında etkili olabileceği ve bu yapının aynı zamanda atıkların
taşınması için koruyucu kaplarda da kullanılabileceği sonucuna varılmıştır.

References

  • Aghadavoud, A.; Rezaee Ebrahim Saraeea, Kh.; Shakur ,H.R.; Sayyari, R. (2016) Removal of uranium ions from synthetic wastewater using ZnO/Na-clinoptilolite nanocomposites. Radiochimica Acta 104: 809-819. doi: 10.1515/ract-2016-2586
  • Aralkumar, M.; Sathishkumar, P.; Palvannan, T. (2011) Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. J. Hazard. Mater. 186: 827-834. doi: 10.1016/j.jhazmat.2010.11.067
  • Bezerra, M.A.; Santelli, R.E.; Oliveria, E.P.; Villar, L.S.; Escaleira, L.A. (2008) Talanta 76: 965-977. doi: 10.1016/j.talanta.2008.05.019
  • Boparai, H.K.; Joseph, M.; O'Carroll, D.M. (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186: 458-465. doi:10.1016/j.jhazmat.2010.11.029
  • Cao, J.; Wu. Y.; Jin, Y.; Yılıhan, P.; Huang, W. (2014) Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM-41. J. Taiwan Inst. Chem. Eng. 45: 860-868. doi: 10.1016/j.jtice.2013.09.011
  • Cojocaru, C.; Zakrzewska-Trznadel, G. (2007) Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration. J. Membr. Sci. 298: 56-70. doi: 10.1016/j.memsci.2007.04.001
  • Dos-Anjos, V.E.; Rohwedder, J.R.; Cadore, S.; Abate, G.; Grassi, M.T. (2014) Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Appl. Clay. Sci. 99: 289-296. doi: 10.1016/j.clay.2014.07.013
  • Fisher, R.V. (1961) Proposed Classification of Volcaniclastic Sediments and Rocks. Geol. Soc. Am. Bull. 72: 1409-1414. doi: 10.1130/0016-7606(1961)72[1409:PCOVSA]2.0.CO;2
  • Grahek, Z.; Mačefat, M.R. (2005) Determination of radioactive strontium in seawater. Analy. Chim. Acta. 534(2): 271-279. doi: 10.1016/j.aca.2004.11.050
  • Haghseresht, F.; Lu, G.Q. (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy and Fuels 12:1100-1107. doi: 10.1021/ef9801165 Hong, H.J.; Ryu, J.; Park, I.S.; Ryu, T.; Chung, K.S.; Kim, B.G. (2016) Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater. J. Environ. Manage. 165: 263-270. doi: 10.1016/j.jenvman.2015.09.040
  • Houhounea, F.; Niboub. D.; Chegrouchea, S.; Menacera, S. (2016) Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species. J. Environ. Chem. Eng. 4: 3459-3467. doi: 10.1016/j.jece.2016.07.018
  • Kaynar, U.H.; Sabikoglu, I.; Kaynar, S.C.; Eral, M. (2015) Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies. J. Environ. Radioact. 150: 145-151. doi: 10.1016/j.jenvrad.2015.08.014
  • Kunwar, P.S.; Shikha, G.; Arun, K.S.; Sarita, S. (2011) Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 186: 1462-1473. doi: 10.1016/j.jhazmat.2010.12.032
  • Landstetter, C.; Wallner, G. (2006) Determination of strontium-90 in deer bones by liquid scintillation spectrometry after separation on Sr-specific ion exchange columns. J. Environ. Radioac. 87: 315-324. doi: 10.1016/j.jenvrad.2005.12.008
  • Lee, J.J.; Choi, J.; Park, J.W. (2002) Simultaneous sorption of lead and chlorbenzene by organobentonite. Chemosphere 49: 1309-1315. doi: 10.1016/S0045-6535(02)00531-3
  • Liu, S.; Li, S.; Zhang, H.; Wu, L.; Sun, L.; Ma, J. (2016) Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite. J. Radioanal. Nucl. Chem. 309: 607–614. doi:10.1007/s10967-015-4654-8
  • Majdan, M.; Pikus. S.; Gajowiak, A.; Gładysz-Płaska, A.; Krzyżanowska, H.; Żuk, J.; Bujacka, M. (2010) Characterization of uranium(VI) sorption by organobentonite. App. Surf. Sci. 256-(17): 5416-5421. doi: 10.1016/j.apsusc.2009.12.123
  • Maranescu, B.; Popa, P.; Lupa, L.; Maranescu, V.; Visa, A. (2017) Use of chitosan complex with aminophosphonic groups and cobalt for the removal of Sr2+ ions. Separation Science And Technology, doi: 10.1080/01496395.2017.1304961
  • Myers, R.H.; Montgomery, D.C. (2011) Response surface methodology, 2nd ed. Wiley; New York.
  • Prakash, O.; Talat, M.; Hasan, S.H.; Pandey, R.K. (2008) Factorial design for the optimization of enzymatic detection of cadmium in aqueous solution using immobilized urease from vegetable waste. Bioresour. Technol. 99: 7565-7572. doi: 10.1016/j.biortech.2008.02.008
  • Richards, S.; Bouazza, A. (2010) Phenol adsorption in organo-modified basaltic clay and bentonite. App. Clay Sci. 37: 133-142. doi: 10.1016/j.clay.2006.11.006
  • Rosales-Landeros, C.; Barrera-Díaz, C.E.; Bilyeu, B.; Guerrero. V.V.; Núñez, F.U. (2013) A review on Cr (VI) adsorption using inorganic materials. Am. J. Anal. Chem. 4: 8-16. doi: 10.4236/ajac.2013.47A002
  • Ryu, C.H.; Yeo, S.D. (2010) Vapor phase adsorption of trichloroethane using organically modified montmorillonite. J. Ind. Eng. Chem. 377: 441-449. doi: 10.1016/j.jiec.2010.01.043
  • Saitoh, T.; Shibayama, T. (2016) Removal and degradation of β-lactam antibiotics in water using didodecyldimethylammonium bromide-modified montmorillonite organoclay. J. Hazard. Mater. 317: 677-685 doi:10.1016/j.jhazmat.2016.06.003
  • Shakur, H.R.; Rezaee Ebrahim Saraeea, Kh.; Abdib, M.R.; Azimic, G. (2016-a) Selective removal of uranium ions from contaminated waters using modified-X nanozeolite. Appl. Radia. Iso. 118: 43-55. doi:10.1016/j.apradiso.2016.08.022
  • Shakur, H.R.; Rezaee Ebrahim Saraeea, Kh.; Abdi, M.R.; Azimic, G. (2016-b) A novel PAN/NaX/ZnO nanocomposite absorbent: synthesis, characterization, removal of uranium anionic species from contaminated water. J. Mater. Sci. 51: 9991-10004. doi: 10.1007/s10853-016-0227-7
  • Shakur, H.R.; Rezaee Ebrahim Saraeea, Kh.; Abdib, M.R.; Azimic, G. (2016-c) Highly selective and effective removal of uranium from contaminated drinking water using a novel PAN/AgX/ZnO nanocomposite. Micr. Mes. Mater. 234 (2016) 257-266. doi: 10.1016/j.micromeso.2016.07.034
  • Sharma. S.; Malik, A.; Satya, S. (2009) Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr (VI) removal by Aspergillus lentulus AML05. J. Hazard. Mater. 164: 1198-1204. doi: org/10.1016/j.jhazmat.2008.09.030
  • Smičiklas, I.; Dimović, S.; Plećaš, P. (2007) Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Appl. Clay Sci. 35: 139-144. doi: 10.1016/j.clay.2006.08.004 Sprynskyy, M.; Kowalkowskia, T.; Tutu, H.; Cukrowskab, E.M.; Buszewski, B. (2015) The separation of uranium ions by natural and modified diatomite from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 465: 159-167. doi: 10.1016/j.colsurfa.2014.10.042
  • Sprynskyy, M.; Kovalchuk, I.; Buszewski, B. (2010) The separation of uranium ions by natural and modified diatomite from aqueous solution. J. Hazard. Mater. 181: 700-707. doi: 10.1016/j.jhazmat.2010.05.069
  • Uddin, M.K. (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308: 438-462. doi: 10.1016/j.cej.2016.09.029
  • Xi, Y.; Frost, R.; He, H. (2007) Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methylammonium bromides. J. Colloid. Interface. Sci. 305: 150-158. doi: 10.1016/j.jcis.2006.09.033
  • Wu, P.; Dai, Y.; Longa, H.; Zhu, N.; Li, P.; Danga, Z. (2012) Characterization of organo-montmorillonites and comparison for Sr(II) removal: Equilibrium and kinetic studies, Chem. Eng. J. 191: 288-296. doi: 10.1016/j.cej.2012.03.017
  • Zhang, L.; Zhang, L.; Wu, T.; Jing, X.; Li, R.; Liu, J.; Liu, Q. (2015) In situ growth of ZnO nanorod arrays on cotton cloth for the removal of uranium (VI). RSC. Adv. 5: 53433-53440. doi: 10.1039/C5RA08489J

Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM

Year 2023, Volume: 13 Issue: 1, 72 - 84, 30.06.2023

Abstract

In this study, kula volcanite with alkaline basaltic structure and abundant abundance was used for strontium removal by increasing its
adsorption capacity with hexadecyltrimethylammonium (HDTMA) organic cation. First, the adsorbent was characterized by XRF,
FT-IR and SEM. Then, the adsorption of Strontium (II) ions from aqueous solutions was measured with the ICP device and the
experiments were optimized by the surface response method (RSM). Central composite design (CCD) method was used for the study
planning in the experiments. The theoretically adsorbed Strontium (II) at optimum values in the study was calculated as 31.978 mg/g.
In addition, compatibility of various isotherms and thermodynamic parameters were evaluated in the study. According to the results, it
was concluded that this cheap and abundant adsorbent material can be effective in the separation and purification of radioactive wastes,
and this structure can also be used in protective containers for the transport of wastes.

References

  • Aghadavoud, A.; Rezaee Ebrahim Saraeea, Kh.; Shakur ,H.R.; Sayyari, R. (2016) Removal of uranium ions from synthetic wastewater using ZnO/Na-clinoptilolite nanocomposites. Radiochimica Acta 104: 809-819. doi: 10.1515/ract-2016-2586
  • Aralkumar, M.; Sathishkumar, P.; Palvannan, T. (2011) Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. J. Hazard. Mater. 186: 827-834. doi: 10.1016/j.jhazmat.2010.11.067
  • Bezerra, M.A.; Santelli, R.E.; Oliveria, E.P.; Villar, L.S.; Escaleira, L.A. (2008) Talanta 76: 965-977. doi: 10.1016/j.talanta.2008.05.019
  • Boparai, H.K.; Joseph, M.; O'Carroll, D.M. (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186: 458-465. doi:10.1016/j.jhazmat.2010.11.029
  • Cao, J.; Wu. Y.; Jin, Y.; Yılıhan, P.; Huang, W. (2014) Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM-41. J. Taiwan Inst. Chem. Eng. 45: 860-868. doi: 10.1016/j.jtice.2013.09.011
  • Cojocaru, C.; Zakrzewska-Trznadel, G. (2007) Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration. J. Membr. Sci. 298: 56-70. doi: 10.1016/j.memsci.2007.04.001
  • Dos-Anjos, V.E.; Rohwedder, J.R.; Cadore, S.; Abate, G.; Grassi, M.T. (2014) Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Appl. Clay. Sci. 99: 289-296. doi: 10.1016/j.clay.2014.07.013
  • Fisher, R.V. (1961) Proposed Classification of Volcaniclastic Sediments and Rocks. Geol. Soc. Am. Bull. 72: 1409-1414. doi: 10.1130/0016-7606(1961)72[1409:PCOVSA]2.0.CO;2
  • Grahek, Z.; Mačefat, M.R. (2005) Determination of radioactive strontium in seawater. Analy. Chim. Acta. 534(2): 271-279. doi: 10.1016/j.aca.2004.11.050
  • Haghseresht, F.; Lu, G.Q. (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy and Fuels 12:1100-1107. doi: 10.1021/ef9801165 Hong, H.J.; Ryu, J.; Park, I.S.; Ryu, T.; Chung, K.S.; Kim, B.G. (2016) Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater. J. Environ. Manage. 165: 263-270. doi: 10.1016/j.jenvman.2015.09.040
  • Houhounea, F.; Niboub. D.; Chegrouchea, S.; Menacera, S. (2016) Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species. J. Environ. Chem. Eng. 4: 3459-3467. doi: 10.1016/j.jece.2016.07.018
  • Kaynar, U.H.; Sabikoglu, I.; Kaynar, S.C.; Eral, M. (2015) Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies. J. Environ. Radioact. 150: 145-151. doi: 10.1016/j.jenvrad.2015.08.014
  • Kunwar, P.S.; Shikha, G.; Arun, K.S.; Sarita, S. (2011) Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 186: 1462-1473. doi: 10.1016/j.jhazmat.2010.12.032
  • Landstetter, C.; Wallner, G. (2006) Determination of strontium-90 in deer bones by liquid scintillation spectrometry after separation on Sr-specific ion exchange columns. J. Environ. Radioac. 87: 315-324. doi: 10.1016/j.jenvrad.2005.12.008
  • Lee, J.J.; Choi, J.; Park, J.W. (2002) Simultaneous sorption of lead and chlorbenzene by organobentonite. Chemosphere 49: 1309-1315. doi: 10.1016/S0045-6535(02)00531-3
  • Liu, S.; Li, S.; Zhang, H.; Wu, L.; Sun, L.; Ma, J. (2016) Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite. J. Radioanal. Nucl. Chem. 309: 607–614. doi:10.1007/s10967-015-4654-8
  • Majdan, M.; Pikus. S.; Gajowiak, A.; Gładysz-Płaska, A.; Krzyżanowska, H.; Żuk, J.; Bujacka, M. (2010) Characterization of uranium(VI) sorption by organobentonite. App. Surf. Sci. 256-(17): 5416-5421. doi: 10.1016/j.apsusc.2009.12.123
  • Maranescu, B.; Popa, P.; Lupa, L.; Maranescu, V.; Visa, A. (2017) Use of chitosan complex with aminophosphonic groups and cobalt for the removal of Sr2+ ions. Separation Science And Technology, doi: 10.1080/01496395.2017.1304961
  • Myers, R.H.; Montgomery, D.C. (2011) Response surface methodology, 2nd ed. Wiley; New York.
  • Prakash, O.; Talat, M.; Hasan, S.H.; Pandey, R.K. (2008) Factorial design for the optimization of enzymatic detection of cadmium in aqueous solution using immobilized urease from vegetable waste. Bioresour. Technol. 99: 7565-7572. doi: 10.1016/j.biortech.2008.02.008
  • Richards, S.; Bouazza, A. (2010) Phenol adsorption in organo-modified basaltic clay and bentonite. App. Clay Sci. 37: 133-142. doi: 10.1016/j.clay.2006.11.006
  • Rosales-Landeros, C.; Barrera-Díaz, C.E.; Bilyeu, B.; Guerrero. V.V.; Núñez, F.U. (2013) A review on Cr (VI) adsorption using inorganic materials. Am. J. Anal. Chem. 4: 8-16. doi: 10.4236/ajac.2013.47A002
  • Ryu, C.H.; Yeo, S.D. (2010) Vapor phase adsorption of trichloroethane using organically modified montmorillonite. J. Ind. Eng. Chem. 377: 441-449. doi: 10.1016/j.jiec.2010.01.043
  • Saitoh, T.; Shibayama, T. (2016) Removal and degradation of β-lactam antibiotics in water using didodecyldimethylammonium bromide-modified montmorillonite organoclay. J. Hazard. Mater. 317: 677-685 doi:10.1016/j.jhazmat.2016.06.003
  • Shakur, H.R.; Rezaee Ebrahim Saraeea, Kh.; Abdib, M.R.; Azimic, G. (2016-a) Selective removal of uranium ions from contaminated waters using modified-X nanozeolite. Appl. Radia. Iso. 118: 43-55. doi:10.1016/j.apradiso.2016.08.022
  • Shakur, H.R.; Rezaee Ebrahim Saraeea, Kh.; Abdi, M.R.; Azimic, G. (2016-b) A novel PAN/NaX/ZnO nanocomposite absorbent: synthesis, characterization, removal of uranium anionic species from contaminated water. J. Mater. Sci. 51: 9991-10004. doi: 10.1007/s10853-016-0227-7
  • Shakur, H.R.; Rezaee Ebrahim Saraeea, Kh.; Abdib, M.R.; Azimic, G. (2016-c) Highly selective and effective removal of uranium from contaminated drinking water using a novel PAN/AgX/ZnO nanocomposite. Micr. Mes. Mater. 234 (2016) 257-266. doi: 10.1016/j.micromeso.2016.07.034
  • Sharma. S.; Malik, A.; Satya, S. (2009) Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr (VI) removal by Aspergillus lentulus AML05. J. Hazard. Mater. 164: 1198-1204. doi: org/10.1016/j.jhazmat.2008.09.030
  • Smičiklas, I.; Dimović, S.; Plećaš, P. (2007) Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Appl. Clay Sci. 35: 139-144. doi: 10.1016/j.clay.2006.08.004 Sprynskyy, M.; Kowalkowskia, T.; Tutu, H.; Cukrowskab, E.M.; Buszewski, B. (2015) The separation of uranium ions by natural and modified diatomite from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 465: 159-167. doi: 10.1016/j.colsurfa.2014.10.042
  • Sprynskyy, M.; Kovalchuk, I.; Buszewski, B. (2010) The separation of uranium ions by natural and modified diatomite from aqueous solution. J. Hazard. Mater. 181: 700-707. doi: 10.1016/j.jhazmat.2010.05.069
  • Uddin, M.K. (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308: 438-462. doi: 10.1016/j.cej.2016.09.029
  • Xi, Y.; Frost, R.; He, H. (2007) Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methylammonium bromides. J. Colloid. Interface. Sci. 305: 150-158. doi: 10.1016/j.jcis.2006.09.033
  • Wu, P.; Dai, Y.; Longa, H.; Zhu, N.; Li, P.; Danga, Z. (2012) Characterization of organo-montmorillonites and comparison for Sr(II) removal: Equilibrium and kinetic studies, Chem. Eng. J. 191: 288-296. doi: 10.1016/j.cej.2012.03.017
  • Zhang, L.; Zhang, L.; Wu, T.; Jing, X.; Li, R.; Liu, J.; Liu, Q. (2015) In situ growth of ZnO nanorod arrays on cotton cloth for the removal of uranium (VI). RSC. Adv. 5: 53433-53440. doi: 10.1039/C5RA08489J
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ümit Hüseyin Kaynar 0000-0002-3321-0341

Sermin Çam Kaynar 0000-0002-3022-4908

Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 13 Issue: 1

Cite

APA Kaynar, Ü. H., & Çam Kaynar, S. (2023). Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM. Karaelmas Fen Ve Mühendislik Dergisi, 13(1), 72-84. https://doi.org/10.7212/karaelmasfen.1182259
AMA Kaynar ÜH, Çam Kaynar S. Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM. Karaelmas Fen ve Mühendislik Dergisi. June 2023;13(1):72-84. doi:10.7212/karaelmasfen.1182259
Chicago Kaynar, Ümit Hüseyin, and Sermin Çam Kaynar. “Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM”. Karaelmas Fen Ve Mühendislik Dergisi 13, no. 1 (June 2023): 72-84. https://doi.org/10.7212/karaelmasfen.1182259.
EndNote Kaynar ÜH, Çam Kaynar S (June 1, 2023) Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM. Karaelmas Fen ve Mühendislik Dergisi 13 1 72–84.
IEEE Ü. H. Kaynar and S. Çam Kaynar, “Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM”, Karaelmas Fen ve Mühendislik Dergisi, vol. 13, no. 1, pp. 72–84, 2023, doi: 10.7212/karaelmasfen.1182259.
ISNAD Kaynar, Ümit Hüseyin - Çam Kaynar, Sermin. “Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM”. Karaelmas Fen ve Mühendislik Dergisi 13/1 (June 2023), 72-84. https://doi.org/10.7212/karaelmasfen.1182259.
JAMA Kaynar ÜH, Çam Kaynar S. Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM. Karaelmas Fen ve Mühendislik Dergisi. 2023;13:72–84.
MLA Kaynar, Ümit Hüseyin and Sermin Çam Kaynar. “Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 13, no. 1, 2023, pp. 72-84, doi:10.7212/karaelmasfen.1182259.
Vancouver Kaynar ÜH, Çam Kaynar S. Investigation of Strontium (II) Ions Adsorption onto Long Chain Quaternary Amine Cationic-Volcanite: Modeling and Optimization by RSM. Karaelmas Fen ve Mühendislik Dergisi. 2023;13(1):72-84.