." />." />." />
Research Article
BibTex RIS Cite

Terpene Derivatives: A Comprehensive Computational Insights in Drug-likeness and ADMT Properties, and DFT Study

Year 2024, Volume: 11 Issue: 2, 869 - 888

Abstract

In this study, the terpene-like compounds were investigated to explore the possible reactivity tendency using DFT/B3LYP/6-311G** level and evaluation of absorption, distribution, and metabolism characteristics. The lipophilicity indexes of terpenes revealed that the T1 and T2 molecules were more lipophilic than the other molecules, whereas the T5 and T6 molecules were less lipophilic. The water solubility scores obtained from ALI and ESOL approaches indicated that T5 and T6 functionalized with the -C=O group's most soluble compounds, while T2 was the least soluble among the compounds. Regarding absorption, the T5 molecule was determined to be a promising structure among the compounds. Also, all compounds' VD (L/kg) values were determined in the optimal range of 0.04-20 L/kg. The terpenes T1-T3 would exhibit a BBB Penetration at a medium level, while they would not be suitable structures for PPB %. The terpenes T4-T6 could be quite promising in distribution except for BBB Penetration. T6 structure was determined to be more suitable in terms of metabolism than the other terpenes. NBO analyses revealed that cieplak (σ→ σ*) interactions for T1-T4 would lower the stabilization energy, predicted at 7.04 kcal/mol. In contrast, the resonance (π→ π*) interaction for T5 was predicted with the energy of 20.26 kcal/mol, which was the highest contributed interaction to E(2). FMO analyses indicated that T5 (0.204 au) could prefer electron donation more than terpenes, while T4 (0.108 au) would prefer electron donation less. MEP plots implied that the surround of the oxygen atom for T3-T6 molecules would be the electron-rich region for the electrophiles, whereas the around of the double bonds of T1 and T2 would be possible sites for the electrophiles. According to the NPA approach, the atomic charge of the O1 atom of terpenes T4-T6 was predicted at -0.76279, -0.55670, and -0.55395, whereas the O28 atom' charge was found to be at -0.77131, remarkable. The findings from this study are anticipated to provide invaluable insights into the relationship between electronic structure, ADM properties, and toxicity. This could potentially guide the future discovery, development, and refinement of terpene-based therapeutics.

References

  • 1. McGarvey DJ, Croteau R. Terpenoid metabolism. Plant Cell. 1995;7(7):1015-1026. Available from: <URL>.
  • 2. Masyita A, Sari RM, Astuti AD, Yasir B, Rumata NR, Emran TB, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X. 2022;13:100217. Available from: <URL>.
  • 3. Brahmkshatriya PP, Brahmkshatriya PS. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. In: Ramawat K, Mérillon JM, eds. Natural Products. Berlin, Heidelberg: Springer; 2013. Available from: <URL>.
  • 4. Pichersky E, Gershenzon J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol. 2002;5(3):237-243. Available from: <URL>.
  • 5. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – A review. Food Chem Toxicol. 2008;46(2):446-475. Available from: <URL>. 6. Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, et al. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front Pharmacol. 2021;12:704197. Available from: <URL>.
  • 7. Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50(17):4087-4095. Available from: <URL>.
  • 8. Guimarães AC, Meireles LM, Lemos MF, Guimarães MCC, Endringer DC, Fronza M, et al. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules. 2019;24(13):2471. Available from: <URL>.
  • 9. Ansari IA, Akhtar MS. Current Insights on the Role of Terpenoids as Anticancer Agents: A Perspective on Cancer Prevention and Treatment. In: Swamy M, Akhtar M, eds. Natural Bio-active Compounds. Singapore: Springer; 2019. Available from: <URL>.
  • 10. Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA. Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers. 2022;14(5):1100. Available from: <URL>.
  • 11. Fan M, Yuan S, Li L, Zheng J, Zhao D, Wang C, et al. Application of Terpenoid Compounds in Food and Pharmaceutical Products. Fermentation. 2023;9(2):119. Available from: <URL>.
  • 12. Gutiérrez-del-Río I, López-Ibáñez S, Magadán-Corpas P, Fernández-Calleja L, Pérez-Valero Á, Tuñón-Granda M, et al. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants. 2021;10(8):1264. Available from: <URL>.
  • 13. Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun. 2020;15(3):1-13. Available from: <URL>.
  • 14. Mani V, Park S, Kim JA, Lee SI, Lee K. Metabolic Perturbation and Synthetic Biology Strategies for Plant Terpenoid Production—An Updated Overview. Plants. 2021;10(10):2179. Available from: <URL>.
  • 15. Zhang Y, Song X, Lai Y, Mo Q, Yuan J. High-Yielding Terpene-Based Biofuel Production in Rhodobacter capsulatus. ACS Synth Biol. 2021;10(6):1545-1552. Available from: <URL>.
  • 16. Pahima E, Hoz S, Ben-Tziona M, Majo DT. Computational design of biofuels from terpenes and terpenoids. Sustainable Energy Fuels. 2019;3:457-466. Available from: <URL>.
  • 17. Alper Fitoz, Hasan Nazır, Mehtap Özgür (nee Ya-kut), Emel Emregül, Kaan C. Emregül, "An experi-mental and theoretical approach towards understand-ing the inhibitive behavior of a nitrile substituted cou-marin compound as an effective acidic media inhibi-tor", Corrosion Science. 2018;133:451-464. Available from: <URL>.
  • 18. Alper Fitoz, Zehra Yazan, "Experimental and theo-retical approaches to interactions between DNA and purine metabolism products", International Journal of Biological Macromolecules. 2023;248:125961. Availa-ble from: <URL>.
  • 19. A. Kalavathi, P. Saravana Kumar, K. Satheesh-kumar, K.N. Vennila, S. Ciattini, L. Chelazzi, Kup-panagounder P. Elango, "Spectroscopic and TD-DFT studies on sequential fluorescent detection of Cu(II) and HS- ions in an aqueous solution", Inorganica Chimica Acta. 2023;550:121447. Available from: <URL>.
  • 20. Maspero, A.; Vavassori, F.; Nardo, L.; Vesco, G.; Vitillo, J.G.; Penoni, A. Synthesis, Characterization, Fluorescence Properties, and DFT Modeling of Difluoroboron Biindolediketonates. Molecules. 2023;28:4688. Available from: <URL>.
  • 21. McGarvey DJ, Croteau R. Terpenoid metabolism. Plant Cell. 1995;7(7):1015-1026. Available from: <URL>.
  • 22. Vekiari SA, Protopapadakis EE, Papadopoulou P, Papanicolaou D, Panou C, Vamvakias M. Composition and seasonal variation of the essential oil from leaves and peel of a Cretan lemon variety. J Agric Food Chem. 2002;50(1):147-153. Available from: <URL>.
  • 23. Al-Basheer W. Linear and nonlinear chiro-optical properties of carvone molecule mirror-image configurations. Proc SPIE. 2019;11026:110260Z. Available from: <URL>.
  • 24. Sato H, Hashishin T, Kanazawa J, Miyamoto K, Uchiyama M. DFT Study of a Missing Piece in Brasilane-Type Structure Biosynthesis: An Unusual Skeletal Rearrangement. J Am Chem Soc. 2020;142(47):19830-19834. Available from: <URL>.
  • 25. Sato H, Li BX, Takagi T, Wang C, Miyamoto K, Uchiyama M. DFT Study on the biosynthesis of verrucosane diterpenoids and mangicol sesterterpenoids: Involvement of secondary-carbocation-free reaction cascades. JACS Au. 2021;1(8):1231-1239. Available from: <URL>.
  • 26. Zhu XK, Zheng YQ, Liu JB. A Computational Mechanistic Study of Cp*Co(III)-Catalyzed Three-Component C–H Bond Addition to Terpenes and Formaldehydes: Insights into the Origins of Regioselectivity. J Phys Chem A. 2021;125(23):5031-5039. Available from: <URL>.
  • 27. Yankova R, Dimov M, Dobreva K, Stoyanova A. Electronic structure, reactivity, and Hirshfeld surface analysis of carvone. J Chem Res. 2019;43(9-10):319-29. Available from: <URL>.
  • 28. Mekkaoui AA, El Ayouchia H, Anane H, Chahboun R, El Firdoussi L, El Houssame S. Viable route and DFT study for the synthesis of optically active limonaketone: A barely available natural feedstock in Cedrus atlantica. J Mol Struct. 2021;1235:130221. Available from: <URL>.
  • 29. Becke AD. A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys. 1993;98:1372-1377. Available from: <URL>.
  • 30. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785-789. Available from: <URL>.
  • 31. Raghavachari K, Binkley JS, Seeger R, Pople JA. Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions. J Chem Phys. 1980;72(1):650-654. Available from: <URL>.
  • 32. McLean AD, Chandler GS. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J Chem Phys. 1980;72(9):5639-5648. Available from: <URL>.
  • 33. Li X, Frisch MJ. Energy-represented DIIS within a hybrid geometry optimization method. J Chem Theory Comput. 2006;2(3):835-839. Available from: <URL>.
  • 34. Kudin KN, Scuseria GE, Cancès E. A black-box self-consistent field convergence algorithm: One step closer. J Chem Phys. 2002;116(19):8255-8261. Available from: <URL>.
  • 35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09W, Revision D.01, Gaussian, Inc, Wallingford CT, 2013.
  • 36. Dennington R, Keith TA, Millam JM. GaussView, Version 6. Semichem Inc., Shawnee Mission, KS, 2016.
  • 37. Cossi M, Barone V, Cammi R, Tomasi J. Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chem Phys Lett 1996;255:327-335. Available from: <URL>.
  • 38. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999-3093. Available from: <URL>.
  • 39. McQuarrie DA. Statistical Thermodynamics. Harper & Row Publishers, 1973.
  • 40. Hill TL. An Introduction to Statistical Thermodynamics. Addison-Wesley Publishing, 1962.
  • 41. Herzberg, G. Molecular Spectra and Molecular Structure III (1st ed.). D. Van Nostrand Company, Inc., 1964.
  • 42. Serdaroglu G, Durmaz S. DFT and statistical mechanics entropy calculations of diatomic and polyatomic molecules. Indian J Chem 2010; 49: 861-866. ISSN: 0376-4710
  • 43. Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwertenzu den Einzelnen Elektronen Eines Atoms. Physica 1934;1:104-113. Available from: <URL>.
  • 44. Perdew JP, Parr RG, Levy M, Balduz JL, et al. Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy. Phys Rev Lett 1982;49(23):1691-1694. Available from: <URL>.
  • 45. Janak JF. Proof that ∂E/∂ni=εi in density-functional theory. Phys Rev B. 1978;18(12):7165-7168. Available from: <URL>.
  • 46. Perdew JP, Levy M. Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities. Phys Rev Lett. 1983;51(20):1884-1887. Available from: <URL>.
  • 47. Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983;105:7512-7516. Available from: <URL>.
  • 48. Pearson RG. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci USA. 1986;83:8440-8441. Available from: <URL>.
  • 49. Parr RG, Szentpaly LV, Liu S. Electrophilicity Index. J Am Chem Soc. 1999;121:1922-1924. Available from: <URL>.
  • 50. Gazquez JL, Cedillo A, Vela A. Electrodonating and Electroaccepting Powers. J Phys Chem A. 2007;111(10):1966-1970. Available from: <URL>.
  • 51. Gomez B, Likhanova NV, Domínguez-Aguilar MA, Martínez-Palou R, Vela A, Gazquez JL. Quantum Chemical Study of the Inhibitive Properties of 2-Pyridyl-Azoles. J Phys Chem B. 2006;110(18):8928-8934. Available from: <URL>.
  • 52. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.
  • 53. J. P. Foster and F. Weinhold, "Natural hybrid orbitals", J. Am. Chem. Soc., 102 (1980):7211-7218.
  • 54. Reed, A.E., Weinstock, R.B. and Weinhold, F. Natural Atomic Orbitals and Natural Population Analysis. Journal of Chemical Physics. 1985;83:735-746. Available from: <URL>.
  • 55. A. E. Reed and F. Weinhold, "Natural localized molecular orbitals", J. Chem. Phys. 1985;83:1736-1740.
  • 56. A. E. Reed, L. A. Curtiss and F. Weinhold, "Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint", Chem. Rev. 1988;88(6):899–926.
  • 57. Mulliken RS. Chemical bonding. Annual Review of Physical Chemistry. 1978;29(1):1-31.
  • 58. Daina A, Michielin O, Zoete V. iLOGP: A Simple, Robust, and Efficient Description of n‑Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J Chem Inf Model. 2014;54(12):3284–3301. Available from: <URL>.
  • 59. Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J Chem Inf Model. 2007;47(6):2140–2148. Available from: <URL>.
  • 60. Wildman SA, Crippen GM. Prediction of Physicochemical Parameters by Atomic Contributions. J Chem Inf Comput Sci. 1999;39:868-873. Available from: <URL>.
  • 61. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26. Available from: <URL>.
  • 62. Silicos-it. (n.d.). Available from: <URL>.
  • 63. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. Available from: <URL>.
  • 64. Delaney JS. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J Chem Inf Comput Sci. 2004;44:1000-1005. Available from: <URL>.
  • 65. Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB. In Silico Prediction of Aqueous Solubility Using Simple QSPR Models: The Importance of Phenol and Phenol-like Moieties. J Chem Inf Model. 2012;52:2950−2957. Available from: <URL>.
  • 66. Ghose AK, Viswanadhan VN, Wendoloski JJ. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J Comb Chem. 1999;1:55-68. Available from: <URL>.
  • 67. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J Med Chem. 2002; 45: 2615-2623. Available from: <URL>.
  • 68. Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of Drug Absorption Using Multivariate Statistics. J Med Chem. 2000; 43: 3867-3877. Available from: <URL>.
  • 69. Muegge I, Heald SL, Brittelli D. Simple Selection Criteria for Drug-like Chemical Matter. J Med Chem. 2001;44(12):1841–1846. Available from: <URL>.
  • 70. Martin YC. A Bioavailability Score. J Med Chem. 2005;48:3164-3170. Available from: <URL>.
  • 71. ADMETlab 2.0.
  • 72. Serin S. A comprehensive DFT study on organosilicon-derived fungicide flusilazole and its germanium analogue: A computational approach to Si/Ge bioisosterism. J Indian Chem Soc. 2023;100:100939. Available from: <URL>.
  • 73. Serdaroğlu G, Ortiz JV. Ab Initio Calculations on some Antiepileptic Drugs such as Phenytoin, Phenbarbital, Ethosuximide and Carbamazepine. Struct Chem. 2017;28(4):957-964. Available from: <URL>.
  • 74. Serdaroğlu G. DFT and Ab initio computational study on the reactivity sites of the GABA and its agonists, such as CACA, TACA, DABA, and muscimol: In the gas phase and dielectric media. Int J Quantum Chem. 2011;111(14):3938-3948. Available from: <URL>.
  • 75. Serdaroğlu G. A DFT study of determination of the reactive sites of the acetylcholine and its agonists: In the gas phase and dielectric medium. Int J Quantum Chem. 2011;111(10):2464-2475. Available from: <URL>.
  • 76. Serin S, Kaya G, Utku T. Insights into solvent effects on molecular properties, physicochemical parameters, and NLO behavior of brinzolamide, a bioactive sulfonamide: A computational study. J Indian Chem Soc. 2022;99:100738. Available from: <URL>.
  • 77. Lin JH, Lu AY. Role of Pharmacokinetics and Metabolism in Drug Discovery and Development. Pharmacol Rev. 1997;49(4):403-449. Available from: <URL>.
  • 78. Jackson E, Shoemaker R, Larian N, Cassis L. Adipose Tissue as a Site of Toxin Accumulation. Compr Physiol. 2017;7(4):1085–1135. Available from: <URL>.
  • 79. Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: Theory and practice. Pharm Biotechnol. 1997;9:189-227. Available from: <URL>.
  • 80. McGeer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green A. Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem. 2003;22(5):1017-1037. Available from: <URL>.
  • 81. Nendza M, Müller M. Screening for low aquatic bioaccumulation. 1. Lipinski’s ‘Rule of 5’ and molecular size. SAR QSAR Environ Res. 2010;21(5-6):495-512. Available from: <URL>.
  • 82. Cuadros-Siguas CF, Herrera-Calderon O, Batiha GES, Almohmad, NH, Aljarba NH, Apesteguia-Infantes JA, ... & Pari-Olarte JB. Volatile Components, Antioxidant and Phytotoxic Activity of the Essential Oil of Piper acutifolium Ruiz & Pav. from Peru. Molecules. 2023;28(8):3348.
  • 83. Rezende ECN, Carneiro FM, de Moraes JB, Wastowski IJ. Trends in science on glyphosate toxicity: a scientometric study. Environ Sci Pollut Res. 2021;28:56432–56448. Available from: <URL>.
  • 84. Rivas-Garcia, T.; Espinosa-Calderón, A.; Hernández-Vázquez, B.; Schwentesius-Rindermann, R. Overview of Environmental and Health Effects Related to Glyphosate Usage. Sustainability. 2022;14:6868. Available from: <URL>.
  • 85. Deeksha Rawat, Aarti Bains, Prince Chawla, Ravinder Kaushik, Rahul Yadav, Anil Kumar, Kandi Sridhar, Minaxi Sharma, Hazardous impacts of glyphosate on human and environment health: Occurrence and detection in food, Chemosphere. 2023;329:138676. Available from: <URL>.
  • 86. Erdogan M, Serdaroglu G. New Hybrid (E)-4-((pyren-1-ylmethylene)amino)-N-(thiazol-2-yl)benzenesulfonamide as a Potential Drug Candidate: Spectroscopy, TD-DFT, NBO, FMO, and MEP Studies. Chemistry Select. 2021;6:9369–9381. Available from: <URL>.
  • 87. Serdaroğlu G. Harmine derivatives: a comprehensive quantum chemical investigation of the structural, electronic (FMO, NBO, and MEP), and spectroscopic (FT-IR and UV–Vis) properties. Research on Chemical Intermediates. 2020;46(1):961-982.
  • 88. Uludağ N, Serdaroğlu G. An efficient studies on C-2 cyanomethylation of the indole synthesis: The electronic and spectroscopic characterization (FT-IR, NMR, UV-Vis), antioxidant activity, and theoretical calculations. Journal of Molecular Structure. 2022;1247:131416.
  • 89. Sigfridsson E, Ryde U. Comparison of methods for deriving atomic charges from the electrostatic potential and moments. Journal of Computational Chemistry. 1998;19(4):377-395. Available from: <URL>.
  • 90. Serin S. DFT-based computations on some structurally related N-substituted piperazine. J Indian Chem Soc. 2022;99:100766. Available from: <URL>.
  • 91. Hsissou R, Benhiba F, Echihi S, Benzidia B, Cherrouf S, Haldhar R, Alvi PA, Kaya S, Serdaroglu G, Zarrouk A. Performance of curing epoxy resin as potential anticorrosive coating for carbon steel in 3.5 NaCl medium: Combining experimental and computational approaches. Chem Phys Lett. 2021;783:139081. Available from: <URL>.
Year 2024, Volume: 11 Issue: 2, 869 - 888

Abstract

References

  • 1. McGarvey DJ, Croteau R. Terpenoid metabolism. Plant Cell. 1995;7(7):1015-1026. Available from: <URL>.
  • 2. Masyita A, Sari RM, Astuti AD, Yasir B, Rumata NR, Emran TB, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X. 2022;13:100217. Available from: <URL>.
  • 3. Brahmkshatriya PP, Brahmkshatriya PS. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. In: Ramawat K, Mérillon JM, eds. Natural Products. Berlin, Heidelberg: Springer; 2013. Available from: <URL>.
  • 4. Pichersky E, Gershenzon J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol. 2002;5(3):237-243. Available from: <URL>.
  • 5. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – A review. Food Chem Toxicol. 2008;46(2):446-475. Available from: <URL>. 6. Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, et al. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front Pharmacol. 2021;12:704197. Available from: <URL>.
  • 7. Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50(17):4087-4095. Available from: <URL>.
  • 8. Guimarães AC, Meireles LM, Lemos MF, Guimarães MCC, Endringer DC, Fronza M, et al. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules. 2019;24(13):2471. Available from: <URL>.
  • 9. Ansari IA, Akhtar MS. Current Insights on the Role of Terpenoids as Anticancer Agents: A Perspective on Cancer Prevention and Treatment. In: Swamy M, Akhtar M, eds. Natural Bio-active Compounds. Singapore: Springer; 2019. Available from: <URL>.
  • 10. Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA. Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers. 2022;14(5):1100. Available from: <URL>.
  • 11. Fan M, Yuan S, Li L, Zheng J, Zhao D, Wang C, et al. Application of Terpenoid Compounds in Food and Pharmaceutical Products. Fermentation. 2023;9(2):119. Available from: <URL>.
  • 12. Gutiérrez-del-Río I, López-Ibáñez S, Magadán-Corpas P, Fernández-Calleja L, Pérez-Valero Á, Tuñón-Granda M, et al. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants. 2021;10(8):1264. Available from: <URL>.
  • 13. Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun. 2020;15(3):1-13. Available from: <URL>.
  • 14. Mani V, Park S, Kim JA, Lee SI, Lee K. Metabolic Perturbation and Synthetic Biology Strategies for Plant Terpenoid Production—An Updated Overview. Plants. 2021;10(10):2179. Available from: <URL>.
  • 15. Zhang Y, Song X, Lai Y, Mo Q, Yuan J. High-Yielding Terpene-Based Biofuel Production in Rhodobacter capsulatus. ACS Synth Biol. 2021;10(6):1545-1552. Available from: <URL>.
  • 16. Pahima E, Hoz S, Ben-Tziona M, Majo DT. Computational design of biofuels from terpenes and terpenoids. Sustainable Energy Fuels. 2019;3:457-466. Available from: <URL>.
  • 17. Alper Fitoz, Hasan Nazır, Mehtap Özgür (nee Ya-kut), Emel Emregül, Kaan C. Emregül, "An experi-mental and theoretical approach towards understand-ing the inhibitive behavior of a nitrile substituted cou-marin compound as an effective acidic media inhibi-tor", Corrosion Science. 2018;133:451-464. Available from: <URL>.
  • 18. Alper Fitoz, Zehra Yazan, "Experimental and theo-retical approaches to interactions between DNA and purine metabolism products", International Journal of Biological Macromolecules. 2023;248:125961. Availa-ble from: <URL>.
  • 19. A. Kalavathi, P. Saravana Kumar, K. Satheesh-kumar, K.N. Vennila, S. Ciattini, L. Chelazzi, Kup-panagounder P. Elango, "Spectroscopic and TD-DFT studies on sequential fluorescent detection of Cu(II) and HS- ions in an aqueous solution", Inorganica Chimica Acta. 2023;550:121447. Available from: <URL>.
  • 20. Maspero, A.; Vavassori, F.; Nardo, L.; Vesco, G.; Vitillo, J.G.; Penoni, A. Synthesis, Characterization, Fluorescence Properties, and DFT Modeling of Difluoroboron Biindolediketonates. Molecules. 2023;28:4688. Available from: <URL>.
  • 21. McGarvey DJ, Croteau R. Terpenoid metabolism. Plant Cell. 1995;7(7):1015-1026. Available from: <URL>.
  • 22. Vekiari SA, Protopapadakis EE, Papadopoulou P, Papanicolaou D, Panou C, Vamvakias M. Composition and seasonal variation of the essential oil from leaves and peel of a Cretan lemon variety. J Agric Food Chem. 2002;50(1):147-153. Available from: <URL>.
  • 23. Al-Basheer W. Linear and nonlinear chiro-optical properties of carvone molecule mirror-image configurations. Proc SPIE. 2019;11026:110260Z. Available from: <URL>.
  • 24. Sato H, Hashishin T, Kanazawa J, Miyamoto K, Uchiyama M. DFT Study of a Missing Piece in Brasilane-Type Structure Biosynthesis: An Unusual Skeletal Rearrangement. J Am Chem Soc. 2020;142(47):19830-19834. Available from: <URL>.
  • 25. Sato H, Li BX, Takagi T, Wang C, Miyamoto K, Uchiyama M. DFT Study on the biosynthesis of verrucosane diterpenoids and mangicol sesterterpenoids: Involvement of secondary-carbocation-free reaction cascades. JACS Au. 2021;1(8):1231-1239. Available from: <URL>.
  • 26. Zhu XK, Zheng YQ, Liu JB. A Computational Mechanistic Study of Cp*Co(III)-Catalyzed Three-Component C–H Bond Addition to Terpenes and Formaldehydes: Insights into the Origins of Regioselectivity. J Phys Chem A. 2021;125(23):5031-5039. Available from: <URL>.
  • 27. Yankova R, Dimov M, Dobreva K, Stoyanova A. Electronic structure, reactivity, and Hirshfeld surface analysis of carvone. J Chem Res. 2019;43(9-10):319-29. Available from: <URL>.
  • 28. Mekkaoui AA, El Ayouchia H, Anane H, Chahboun R, El Firdoussi L, El Houssame S. Viable route and DFT study for the synthesis of optically active limonaketone: A barely available natural feedstock in Cedrus atlantica. J Mol Struct. 2021;1235:130221. Available from: <URL>.
  • 29. Becke AD. A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys. 1993;98:1372-1377. Available from: <URL>.
  • 30. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785-789. Available from: <URL>.
  • 31. Raghavachari K, Binkley JS, Seeger R, Pople JA. Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions. J Chem Phys. 1980;72(1):650-654. Available from: <URL>.
  • 32. McLean AD, Chandler GS. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J Chem Phys. 1980;72(9):5639-5648. Available from: <URL>.
  • 33. Li X, Frisch MJ. Energy-represented DIIS within a hybrid geometry optimization method. J Chem Theory Comput. 2006;2(3):835-839. Available from: <URL>.
  • 34. Kudin KN, Scuseria GE, Cancès E. A black-box self-consistent field convergence algorithm: One step closer. J Chem Phys. 2002;116(19):8255-8261. Available from: <URL>.
  • 35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09W, Revision D.01, Gaussian, Inc, Wallingford CT, 2013.
  • 36. Dennington R, Keith TA, Millam JM. GaussView, Version 6. Semichem Inc., Shawnee Mission, KS, 2016.
  • 37. Cossi M, Barone V, Cammi R, Tomasi J. Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chem Phys Lett 1996;255:327-335. Available from: <URL>.
  • 38. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999-3093. Available from: <URL>.
  • 39. McQuarrie DA. Statistical Thermodynamics. Harper & Row Publishers, 1973.
  • 40. Hill TL. An Introduction to Statistical Thermodynamics. Addison-Wesley Publishing, 1962.
  • 41. Herzberg, G. Molecular Spectra and Molecular Structure III (1st ed.). D. Van Nostrand Company, Inc., 1964.
  • 42. Serdaroglu G, Durmaz S. DFT and statistical mechanics entropy calculations of diatomic and polyatomic molecules. Indian J Chem 2010; 49: 861-866. ISSN: 0376-4710
  • 43. Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwertenzu den Einzelnen Elektronen Eines Atoms. Physica 1934;1:104-113. Available from: <URL>.
  • 44. Perdew JP, Parr RG, Levy M, Balduz JL, et al. Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy. Phys Rev Lett 1982;49(23):1691-1694. Available from: <URL>.
  • 45. Janak JF. Proof that ∂E/∂ni=εi in density-functional theory. Phys Rev B. 1978;18(12):7165-7168. Available from: <URL>.
  • 46. Perdew JP, Levy M. Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities. Phys Rev Lett. 1983;51(20):1884-1887. Available from: <URL>.
  • 47. Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983;105:7512-7516. Available from: <URL>.
  • 48. Pearson RG. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci USA. 1986;83:8440-8441. Available from: <URL>.
  • 49. Parr RG, Szentpaly LV, Liu S. Electrophilicity Index. J Am Chem Soc. 1999;121:1922-1924. Available from: <URL>.
  • 50. Gazquez JL, Cedillo A, Vela A. Electrodonating and Electroaccepting Powers. J Phys Chem A. 2007;111(10):1966-1970. Available from: <URL>.
  • 51. Gomez B, Likhanova NV, Domínguez-Aguilar MA, Martínez-Palou R, Vela A, Gazquez JL. Quantum Chemical Study of the Inhibitive Properties of 2-Pyridyl-Azoles. J Phys Chem B. 2006;110(18):8928-8934. Available from: <URL>.
  • 52. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.
  • 53. J. P. Foster and F. Weinhold, "Natural hybrid orbitals", J. Am. Chem. Soc., 102 (1980):7211-7218.
  • 54. Reed, A.E., Weinstock, R.B. and Weinhold, F. Natural Atomic Orbitals and Natural Population Analysis. Journal of Chemical Physics. 1985;83:735-746. Available from: <URL>.
  • 55. A. E. Reed and F. Weinhold, "Natural localized molecular orbitals", J. Chem. Phys. 1985;83:1736-1740.
  • 56. A. E. Reed, L. A. Curtiss and F. Weinhold, "Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint", Chem. Rev. 1988;88(6):899–926.
  • 57. Mulliken RS. Chemical bonding. Annual Review of Physical Chemistry. 1978;29(1):1-31.
  • 58. Daina A, Michielin O, Zoete V. iLOGP: A Simple, Robust, and Efficient Description of n‑Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J Chem Inf Model. 2014;54(12):3284–3301. Available from: <URL>.
  • 59. Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J Chem Inf Model. 2007;47(6):2140–2148. Available from: <URL>.
  • 60. Wildman SA, Crippen GM. Prediction of Physicochemical Parameters by Atomic Contributions. J Chem Inf Comput Sci. 1999;39:868-873. Available from: <URL>.
  • 61. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26. Available from: <URL>.
  • 62. Silicos-it. (n.d.). Available from: <URL>.
  • 63. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. Available from: <URL>.
  • 64. Delaney JS. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J Chem Inf Comput Sci. 2004;44:1000-1005. Available from: <URL>.
  • 65. Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB. In Silico Prediction of Aqueous Solubility Using Simple QSPR Models: The Importance of Phenol and Phenol-like Moieties. J Chem Inf Model. 2012;52:2950−2957. Available from: <URL>.
  • 66. Ghose AK, Viswanadhan VN, Wendoloski JJ. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J Comb Chem. 1999;1:55-68. Available from: <URL>.
  • 67. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J Med Chem. 2002; 45: 2615-2623. Available from: <URL>.
  • 68. Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of Drug Absorption Using Multivariate Statistics. J Med Chem. 2000; 43: 3867-3877. Available from: <URL>.
  • 69. Muegge I, Heald SL, Brittelli D. Simple Selection Criteria for Drug-like Chemical Matter. J Med Chem. 2001;44(12):1841–1846. Available from: <URL>.
  • 70. Martin YC. A Bioavailability Score. J Med Chem. 2005;48:3164-3170. Available from: <URL>.
  • 71. ADMETlab 2.0.
  • 72. Serin S. A comprehensive DFT study on organosilicon-derived fungicide flusilazole and its germanium analogue: A computational approach to Si/Ge bioisosterism. J Indian Chem Soc. 2023;100:100939. Available from: <URL>.
  • 73. Serdaroğlu G, Ortiz JV. Ab Initio Calculations on some Antiepileptic Drugs such as Phenytoin, Phenbarbital, Ethosuximide and Carbamazepine. Struct Chem. 2017;28(4):957-964. Available from: <URL>.
  • 74. Serdaroğlu G. DFT and Ab initio computational study on the reactivity sites of the GABA and its agonists, such as CACA, TACA, DABA, and muscimol: In the gas phase and dielectric media. Int J Quantum Chem. 2011;111(14):3938-3948. Available from: <URL>.
  • 75. Serdaroğlu G. A DFT study of determination of the reactive sites of the acetylcholine and its agonists: In the gas phase and dielectric medium. Int J Quantum Chem. 2011;111(10):2464-2475. Available from: <URL>.
  • 76. Serin S, Kaya G, Utku T. Insights into solvent effects on molecular properties, physicochemical parameters, and NLO behavior of brinzolamide, a bioactive sulfonamide: A computational study. J Indian Chem Soc. 2022;99:100738. Available from: <URL>.
  • 77. Lin JH, Lu AY. Role of Pharmacokinetics and Metabolism in Drug Discovery and Development. Pharmacol Rev. 1997;49(4):403-449. Available from: <URL>.
  • 78. Jackson E, Shoemaker R, Larian N, Cassis L. Adipose Tissue as a Site of Toxin Accumulation. Compr Physiol. 2017;7(4):1085–1135. Available from: <URL>.
  • 79. Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: Theory and practice. Pharm Biotechnol. 1997;9:189-227. Available from: <URL>.
  • 80. McGeer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green A. Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem. 2003;22(5):1017-1037. Available from: <URL>.
  • 81. Nendza M, Müller M. Screening for low aquatic bioaccumulation. 1. Lipinski’s ‘Rule of 5’ and molecular size. SAR QSAR Environ Res. 2010;21(5-6):495-512. Available from: <URL>.
  • 82. Cuadros-Siguas CF, Herrera-Calderon O, Batiha GES, Almohmad, NH, Aljarba NH, Apesteguia-Infantes JA, ... & Pari-Olarte JB. Volatile Components, Antioxidant and Phytotoxic Activity of the Essential Oil of Piper acutifolium Ruiz & Pav. from Peru. Molecules. 2023;28(8):3348.
  • 83. Rezende ECN, Carneiro FM, de Moraes JB, Wastowski IJ. Trends in science on glyphosate toxicity: a scientometric study. Environ Sci Pollut Res. 2021;28:56432–56448. Available from: <URL>.
  • 84. Rivas-Garcia, T.; Espinosa-Calderón, A.; Hernández-Vázquez, B.; Schwentesius-Rindermann, R. Overview of Environmental and Health Effects Related to Glyphosate Usage. Sustainability. 2022;14:6868. Available from: <URL>.
  • 85. Deeksha Rawat, Aarti Bains, Prince Chawla, Ravinder Kaushik, Rahul Yadav, Anil Kumar, Kandi Sridhar, Minaxi Sharma, Hazardous impacts of glyphosate on human and environment health: Occurrence and detection in food, Chemosphere. 2023;329:138676. Available from: <URL>.
  • 86. Erdogan M, Serdaroglu G. New Hybrid (E)-4-((pyren-1-ylmethylene)amino)-N-(thiazol-2-yl)benzenesulfonamide as a Potential Drug Candidate: Spectroscopy, TD-DFT, NBO, FMO, and MEP Studies. Chemistry Select. 2021;6:9369–9381. Available from: <URL>.
  • 87. Serdaroğlu G. Harmine derivatives: a comprehensive quantum chemical investigation of the structural, electronic (FMO, NBO, and MEP), and spectroscopic (FT-IR and UV–Vis) properties. Research on Chemical Intermediates. 2020;46(1):961-982.
  • 88. Uludağ N, Serdaroğlu G. An efficient studies on C-2 cyanomethylation of the indole synthesis: The electronic and spectroscopic characterization (FT-IR, NMR, UV-Vis), antioxidant activity, and theoretical calculations. Journal of Molecular Structure. 2022;1247:131416.
  • 89. Sigfridsson E, Ryde U. Comparison of methods for deriving atomic charges from the electrostatic potential and moments. Journal of Computational Chemistry. 1998;19(4):377-395. Available from: <URL>.
  • 90. Serin S. DFT-based computations on some structurally related N-substituted piperazine. J Indian Chem Soc. 2022;99:100766. Available from: <URL>.
  • 91. Hsissou R, Benhiba F, Echihi S, Benzidia B, Cherrouf S, Haldhar R, Alvi PA, Kaya S, Serdaroglu G, Zarrouk A. Performance of curing epoxy resin as potential anticorrosive coating for carbon steel in 3.5 NaCl medium: Combining experimental and computational approaches. Chem Phys Lett. 2021;783:139081. Available from: <URL>.
There are 90 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section RESEARCH ARTICLES
Authors

Goncagül Serdaroğlu 0000-0001-7649-9168

Publication Date
Submission Date June 9, 2023
Acceptance Date February 20, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

Vancouver Serdaroğlu G. Terpene Derivatives: A Comprehensive Computational Insights in Drug-likeness and ADMT Properties, and DFT Study. JOTCSA. 11(2):869-88.