Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 1, 53 - 61, 31.07.2021

Abstract

References

  • 1. Dokan, F. K. & Kuru, M. (2021). A new approach to optimize the synthesis parameters of TiO 2 microsphere and development of photocatalytic performance. Journal of Materials Science: Materials in Electronics, 32(1), 640-655.
  • 2. Greenwood R. & Kendall K. (1999). Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis, J. Eur. Ceram. Soc., 19, 479-488.
  • 3. Hak, C.R.C., Fatanah, D.N.E., Abdullah, Y. & Sulaiman, M.Y.M. (2018). The effect of surfactants on the stability of TiO2 aqueous suspension. International Journal of Current Research in Science, Engineering & Technology, 1, 172.
  • 4. Hoffmann M.R., S.T. Martin, W.Y. Choi & Bahnemann D.W. (1995). Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95 (1), pp. 69-96.
  • 5. Hygienists, A. (1986). Documentation of the threshold limit values and biological exposure indices, American Conference of Governmental Industrial Hygienists.
  • 6. Iafro, C. (2006).Titanium dioxide group 2B. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 93:193–214.
  • 7. Kim, T.K., M.N. Lee, S.H. Lee, Y.C. Park, C.K. Jung & J.H. Boo. (2005). Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475: 71-177.
  • 8. Iavicoli, I., V. Leso & Bergamaschi A. (2012). Toxicological Effects of Titanium Dioxide Nanoparticles: A Review of In Vivo Studies. Journal of Nanomaterials ,2012: 36.
  • 9. Lee, K.P., H.J. Trochimowicz & Reinhardt C.F. (1985). Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years.Toxicology and Applied Pharmacology, 79 (2): 179-192.
  • 10. Lin, X., J., Li, S., Ma, G., Liu, K., Yang, M., Tong & Lin, D. (2014). Toxicity of TiO2 Nanoparticles to Escherichia coli: Effects of Particle Size, Crystal Phase and Water Chemistry.PLOS ONE 9 (10): 110247.
  • 11. Liu, L., H. Zhao, J. M. Andino & Li Y. (2012). Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry.ACS Catalysis ,2 (8): 1817-1828.
  • 12. Livage, J., Henry, M. & Sanchez, C. (1988). Sol–gel chemistry of transition metal oxides, Prog. Solid State Chem. 18, 259–341.
  • 13. Look, J.L. & Zukoski, C.F. (1992). Alkoxide-derived titania particles: use of electrolytes to control size and agglomeration levels, J. Am. Ceram. Soc., 75: 1587–1595.
  • 14. Look, J.L. & Zukoski, C.F. (1995). Colloidal stability of titania precipitate morphology: influence of short-range repulsions, J. Am. Ceram. Soc., 78, 21–32.
  • 15. Lu, X., X. Li, J. Qian, N., Miao, C., Yao & Chen, Z. (2016). Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance.Journal of Alloys and Compounds ,661 (Supplement C): 363-371.
  • 16. Maira, A.J., Yeung, K.L., Lee, C.Y., Yue, P.L. & Chan, C.K. (2000). Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts, Journal of Catalysis ,192, 185–196.
  • 17. Mansoori G.A. (2005). Principles of Nanotechnology Molecular-Based Study of Condensed Matter in Small Systems,World Scientific Publishing Co, Singapore .
  • 18. Ohno, T., K. Sarukawa, K. Tokieda & Matsumura, M. (2001). Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. Journal of Catalysis, 203 (1): 82-86.
  • 19. Pandey, M., Mishra, P., Saha, D. & Islam, S.S. (2013). Polymer optimization for the development of low-cost moisture sensor based on nanoporous alumina thin film, J. Adv. Ceram., 2 ,341-346.
  • 20. Safaei-Naeini, Y., Aminzare, M., Golestani-Fard, F., Khorasanizadeh, F. & Salahi, E. (2012). Suspension stability of TiO2 nanoparticles studied by UV-Vis spectroscopy method, Iranian J. Mater. Sci. Eng., 9, 62-68.
  • 21. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska T. (1985). Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, Pure and Applied Chemistry, Vol. 57, No. 4, pp. 603-619.
  • 22. Shi, H., R. Magaye, V. Castranova & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data.Particle and Fibre Toxicology, 10 (1): 15.
  • 23. Sugimoto, T., Zhou, X. & Muramatsu, A. (2003). Synthesis of uniform anatase TiO2 nanaoparticles by the gel-sol method. 3: Formation process and size control, J. Colloidal Interface Sci. 259 (2003) 43–52.
  • 24. Sugimoto, T., Zhou, X. & Muramatsu, A. (2003). Synthesis of uniform anatase TiO2 nanaoparticles by the gel-sol method. 4: Shape control, J. Colloidal Interface Sci. 259 ,53–61.
  • 25. Stepanov, A.L. (2012). Applications of ion implantation for modification of TiO2. Rev Adv Mater Sci 30:150–165 http//: ejournals/RAMS/no23012/04.
  • 26. Stevanovic, A., Büttner, M., Zhang, Z. & Yates, J.T. (2012). Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc ,134(1): 324–332. doi:10.1021/ja2072737.
  • 27. USEPA (2007). Nanotechnology White Paper. Prepared for the U.S. Environmental Protection Agency by Members of the Nanotechnology Workgroup, a Group of EPA's Science Policy Council Science Policy Council, U.S. Environmental Protection Agency, Washington, DC.
  • 28. Vorkapic, D. & Matsoukas, T. (1998). Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides, J. Am. Ceram. Soc. 81, 2815–2820.
  • 29. Wang, Y., S. Zhu, X. Chen, Y. Tang, Y. Jiang, Z. Peng & Wang, H. (2014). "One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity." Applied Surface Science ,307 (Supplement C): 263-271.
  • 30. Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D. & Biswas, P. (2006). Assessing the risks of manufactured nanomaterials, Environmental Science & Technology, 40 (14) pp. 4336-4345.
  • 31. Xu, N., Shi, Z., Fan, Y., Dong, J., Shi, J. & Hu, M.Z.C. (1999). Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions, Industrial & Engineering Chemistry Research ,38, 373–383.
  • 32. Yuenyongsuwan, J., Nithiyakorn, N., Sabkird, P., Edgar, A.O. & Pongprayoon, T. (2018). Surfactant effect on phase-controlled synthesis and photocatalyst property of TiO2 nanoparticles, Materials Chemistry and Physics,2014,330-336.27.
  • 33. Zeng, T., Qiu, Y., Chen, L. & Song, X. (1998). Microstructure and phase evolution of TiO2 precursors prepared by peptization-hydrolysis method using polycarboxylic acid as peptizing agent, Mater. Chem. Phys., 56 ,163–170.
  • 34. Zhang, Z., Wang, C.C., Zakaria, R. & Ying, J.Y. (1998). Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts, Journal of Physical Chemistry B ,102, 10871–10878.
  • 35. Zhao, J., Bowman, L., Zhang, X., Vallyathan, V., Young, S. H., Castranova, V. & Ding, M. (2009). Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. Journal of Toxicology and Environmental Health, Part A, 72(19), 1141-1149.
  • 36. Zhao, W., N. Liu, H. Wang & Mao, L.(2017). Sacrificial template synthesis of core-shell SrTiO3/TiO2 heterostructured microspheres photocatalyst., Ceramics International, 43 (6): 4807-4813.

EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2

Year 2021, Volume: 4 Issue: 1, 53 - 61, 31.07.2021

Abstract

TiO2 is one of the compounds that researchers especially material scientists have studied most recently. Due to some of its extraordinary properties, for example, it can be used in photocatalysis, dye-sensitive solar cells and biomedical devices, are important parameters that make TiO2 curious. Synthesis, researches and new discoveries made in this direction have always been remarkable. In this study, a low cost and easily prepared surfactant supported hydrothermal method was used to determine the effect of different surfactants on morphology and crystallinity. Three surfactants were selected, including anionic, sodium dodecyl sulfate (SDS), cationic, cetyltrimethylammonium bromide (CTAB) and nonionic (TritonX-100), respectively. Addition of surfactant produced more dispersed and stable TiO2 in the aqueous suspension. 0.5%, 1%, 1.5%, 2% and 2.5 % by weight of all types were added and 2% surfactant was found to produce the most stable suspension with high turbidity and measurable particle size. CTAB was found to provide a more stable TiO2 suspension than SDS and triton x attributed to electro-steric.

References

  • 1. Dokan, F. K. & Kuru, M. (2021). A new approach to optimize the synthesis parameters of TiO 2 microsphere and development of photocatalytic performance. Journal of Materials Science: Materials in Electronics, 32(1), 640-655.
  • 2. Greenwood R. & Kendall K. (1999). Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis, J. Eur. Ceram. Soc., 19, 479-488.
  • 3. Hak, C.R.C., Fatanah, D.N.E., Abdullah, Y. & Sulaiman, M.Y.M. (2018). The effect of surfactants on the stability of TiO2 aqueous suspension. International Journal of Current Research in Science, Engineering & Technology, 1, 172.
  • 4. Hoffmann M.R., S.T. Martin, W.Y. Choi & Bahnemann D.W. (1995). Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95 (1), pp. 69-96.
  • 5. Hygienists, A. (1986). Documentation of the threshold limit values and biological exposure indices, American Conference of Governmental Industrial Hygienists.
  • 6. Iafro, C. (2006).Titanium dioxide group 2B. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 93:193–214.
  • 7. Kim, T.K., M.N. Lee, S.H. Lee, Y.C. Park, C.K. Jung & J.H. Boo. (2005). Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475: 71-177.
  • 8. Iavicoli, I., V. Leso & Bergamaschi A. (2012). Toxicological Effects of Titanium Dioxide Nanoparticles: A Review of In Vivo Studies. Journal of Nanomaterials ,2012: 36.
  • 9. Lee, K.P., H.J. Trochimowicz & Reinhardt C.F. (1985). Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years.Toxicology and Applied Pharmacology, 79 (2): 179-192.
  • 10. Lin, X., J., Li, S., Ma, G., Liu, K., Yang, M., Tong & Lin, D. (2014). Toxicity of TiO2 Nanoparticles to Escherichia coli: Effects of Particle Size, Crystal Phase and Water Chemistry.PLOS ONE 9 (10): 110247.
  • 11. Liu, L., H. Zhao, J. M. Andino & Li Y. (2012). Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry.ACS Catalysis ,2 (8): 1817-1828.
  • 12. Livage, J., Henry, M. & Sanchez, C. (1988). Sol–gel chemistry of transition metal oxides, Prog. Solid State Chem. 18, 259–341.
  • 13. Look, J.L. & Zukoski, C.F. (1992). Alkoxide-derived titania particles: use of electrolytes to control size and agglomeration levels, J. Am. Ceram. Soc., 75: 1587–1595.
  • 14. Look, J.L. & Zukoski, C.F. (1995). Colloidal stability of titania precipitate morphology: influence of short-range repulsions, J. Am. Ceram. Soc., 78, 21–32.
  • 15. Lu, X., X. Li, J. Qian, N., Miao, C., Yao & Chen, Z. (2016). Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance.Journal of Alloys and Compounds ,661 (Supplement C): 363-371.
  • 16. Maira, A.J., Yeung, K.L., Lee, C.Y., Yue, P.L. & Chan, C.K. (2000). Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts, Journal of Catalysis ,192, 185–196.
  • 17. Mansoori G.A. (2005). Principles of Nanotechnology Molecular-Based Study of Condensed Matter in Small Systems,World Scientific Publishing Co, Singapore .
  • 18. Ohno, T., K. Sarukawa, K. Tokieda & Matsumura, M. (2001). Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. Journal of Catalysis, 203 (1): 82-86.
  • 19. Pandey, M., Mishra, P., Saha, D. & Islam, S.S. (2013). Polymer optimization for the development of low-cost moisture sensor based on nanoporous alumina thin film, J. Adv. Ceram., 2 ,341-346.
  • 20. Safaei-Naeini, Y., Aminzare, M., Golestani-Fard, F., Khorasanizadeh, F. & Salahi, E. (2012). Suspension stability of TiO2 nanoparticles studied by UV-Vis spectroscopy method, Iranian J. Mater. Sci. Eng., 9, 62-68.
  • 21. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska T. (1985). Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, Pure and Applied Chemistry, Vol. 57, No. 4, pp. 603-619.
  • 22. Shi, H., R. Magaye, V. Castranova & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data.Particle and Fibre Toxicology, 10 (1): 15.
  • 23. Sugimoto, T., Zhou, X. & Muramatsu, A. (2003). Synthesis of uniform anatase TiO2 nanaoparticles by the gel-sol method. 3: Formation process and size control, J. Colloidal Interface Sci. 259 (2003) 43–52.
  • 24. Sugimoto, T., Zhou, X. & Muramatsu, A. (2003). Synthesis of uniform anatase TiO2 nanaoparticles by the gel-sol method. 4: Shape control, J. Colloidal Interface Sci. 259 ,53–61.
  • 25. Stepanov, A.L. (2012). Applications of ion implantation for modification of TiO2. Rev Adv Mater Sci 30:150–165 http//: ejournals/RAMS/no23012/04.
  • 26. Stevanovic, A., Büttner, M., Zhang, Z. & Yates, J.T. (2012). Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc ,134(1): 324–332. doi:10.1021/ja2072737.
  • 27. USEPA (2007). Nanotechnology White Paper. Prepared for the U.S. Environmental Protection Agency by Members of the Nanotechnology Workgroup, a Group of EPA's Science Policy Council Science Policy Council, U.S. Environmental Protection Agency, Washington, DC.
  • 28. Vorkapic, D. & Matsoukas, T. (1998). Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides, J. Am. Ceram. Soc. 81, 2815–2820.
  • 29. Wang, Y., S. Zhu, X. Chen, Y. Tang, Y. Jiang, Z. Peng & Wang, H. (2014). "One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity." Applied Surface Science ,307 (Supplement C): 263-271.
  • 30. Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D. & Biswas, P. (2006). Assessing the risks of manufactured nanomaterials, Environmental Science & Technology, 40 (14) pp. 4336-4345.
  • 31. Xu, N., Shi, Z., Fan, Y., Dong, J., Shi, J. & Hu, M.Z.C. (1999). Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions, Industrial & Engineering Chemistry Research ,38, 373–383.
  • 32. Yuenyongsuwan, J., Nithiyakorn, N., Sabkird, P., Edgar, A.O. & Pongprayoon, T. (2018). Surfactant effect on phase-controlled synthesis and photocatalyst property of TiO2 nanoparticles, Materials Chemistry and Physics,2014,330-336.27.
  • 33. Zeng, T., Qiu, Y., Chen, L. & Song, X. (1998). Microstructure and phase evolution of TiO2 precursors prepared by peptization-hydrolysis method using polycarboxylic acid as peptizing agent, Mater. Chem. Phys., 56 ,163–170.
  • 34. Zhang, Z., Wang, C.C., Zakaria, R. & Ying, J.Y. (1998). Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts, Journal of Physical Chemistry B ,102, 10871–10878.
  • 35. Zhao, J., Bowman, L., Zhang, X., Vallyathan, V., Young, S. H., Castranova, V. & Ding, M. (2009). Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. Journal of Toxicology and Environmental Health, Part A, 72(19), 1141-1149.
  • 36. Zhao, W., N. Liu, H. Wang & Mao, L.(2017). Sacrificial template synthesis of core-shell SrTiO3/TiO2 heterostructured microspheres photocatalyst., Ceramics International, 43 (6): 4807-4813.
There are 36 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Fatma Kılıç Dokan

Publication Date July 31, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Kılıç Dokan, F. (2021). EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2. Bartın University International Journal of Natural and Applied Sciences, 4(1), 53-61.
AMA Kılıç Dokan F. EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2. JONAS. July 2021;4(1):53-61.
Chicago Kılıç Dokan, Fatma. “EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2”. Bartın University International Journal of Natural and Applied Sciences 4, no. 1 (July 2021): 53-61.
EndNote Kılıç Dokan F (July 1, 2021) EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2. Bartın University International Journal of Natural and Applied Sciences 4 1 53–61.
IEEE F. Kılıç Dokan, “EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2”, JONAS, vol. 4, no. 1, pp. 53–61, 2021.
ISNAD Kılıç Dokan, Fatma. “EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2”. Bartın University International Journal of Natural and Applied Sciences 4/1 (July 2021), 53-61.
JAMA Kılıç Dokan F. EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2. JONAS. 2021;4:53–61.
MLA Kılıç Dokan, Fatma. “EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2”. Bartın University International Journal of Natural and Applied Sciences, vol. 4, no. 1, 2021, pp. 53-61.
Vancouver Kılıç Dokan F. EFFECT OF DIFFERENT SURFACTANS ON THE FORMATION AND MORPHOLOGY OF TiO2. JONAS. 2021;4(1):53-61.