Research Article
BibTex RIS Cite

Effectiveness of Boric Acid in Preventing Acrylamide-Conducted Brain Damage in Rats

Year 2023, Volume: 6 Issue: 1, 92 - 97, 30.04.2023
https://doi.org/10.36516/jocass.1239256

Abstract

Aim: Acrylamide (ACR) is a water-soluble neurotoxic substance that has been widely researched in recent years. Boric acid (BA) is a component that does not have a toxic effect when taken at low concentrations and has a cystotoxic activity. Studies have reported that BA has antioxidant effects. In this study, we aimed to examine the protective efficacy of BA against the toxic damage that ACR may cause in the brain tissue.
Material: In this study, 28 Wistar Albino male rats with an average weight of 320-400 grams were used. In our study, ACR was administered intraperitoneally (i.p.) at a dose of 50 mg/kg for 14 days, while BA was administered orally (p.o.) with a dose of 200 mg/kg for 14 days. Group 1 (n=7): It is the control group and no medication was administered for 14 days. Group 2 (n=7): ACR group, Group 3 (n=7): BA group and Group 4 (n=7): ACR + BA group.
Results: The comparison between the groups in terms of serum Total Oxidant Status (TOS) and Malondialdehyde (MDA) analysis revealed that the highest MDA level was in the ACR group. The MDA and TOS levels of the ACR+BA group were significantly lower than the ACR group (p<0.05).
Conclusions: Our study revealed that BA has a protective effect in the prevention of neurotoxicity due to oxidative stress after ACR application.

References

  • 1. Tyl RW, Friedman MA. Effects of acrylamide on rodent reproductive performance. Reprod Toxicol 2003; 17: 1-13. https://doi.org/10.1016/s0890-6238(02)00078-3
  • 2. Pan X, Zhu L, Lu H, et al. Melatonin Attenuates Oxidative Damage Induced by Acrylamide In Vitro and In Vivo, Oxid Med Cell Longev. 2015; 2015: 703-9. https://doi.org/10.1155/2015/703709
  • 3. Yousef M, El-Demerdash F. Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology. 2006; 219:133-41. https://doi.org/10.1016/j.tox.2005.11.008
  • 4. Dearfield KL, Douglas GR, Ehling UH, et al. Acrylamide: a review of its genotoxicity and an as¬sessment of heritable genetic risk.Mutation Re¬search/Fundamental and Molecular Mechanisms of Mutagenesis. 1995; 330:71-99. https://doi.org/10.1016/0027-5107(95)00037-j
  • 5. LoPachin RM, Balaban C, Ross J. Acrylamide ax¬onopathy revisited. Toxicology and applied phar¬macology. 2003; 188: 135-53. https://doi.org/10.1016/s0041-008x(02)00072-8
  • 6. Ghanayem BI, McDaniel LP, Churcwell MI, et al. Role of CYP2E1 in the epoxidation of acrylamide to glisidamide and formation of DNA and hemo¬globin adducts. Toxicol Sci. 2005; 88 (2): 311-8. https://doi.org/10.1093/toxsci/kfi307
  • 7. Sharp D. Acrylamide in food. Lancet 2003; 361: 361-2. https://doi.org/10.1016/S0140-6736(03)12442-7
  • 8. Soriano-Ursúa MA, Das BC, Trujillo-Ferrara JG. Boron containing compounds: Chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy, Expert Opin. Ther. Pat. 2014; 24: 485–500. https://doi.org/10.1517/13543776.2014.881472
  • 9. O’Donovan MR, Mee CD, Fenner S, et al. Boronic acids anovel class of bacterial mutagen, Mutat. Res. 2011;724:1–6. https://doi.org/10.1016/j.mrgentox.2011.05.006
  • 10. Cengiz M. Boric acid protects against cyclophos¬phamide-induced oxidative stressand renal dam¬age in rats. Cell Mol. Biol. (Noisy le Grand). 2018; 64 (12):11–4.
  • 11. Ince S, Kucukkurt I, Demirel HH, et al. Protec¬tive effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicityin rats. Chemo¬sphere. 2014; 108: 197–204. https://doi.org/10.1016/j.chemo¬sphere.2014.01.038
  • 12. Ishii Y, Fujizuka N, Takahaski T, et aş. A fatal case of acute boric acid poisoning, ClinicalToxicology. 1993; 31 (2); 345-52. https://doi.org/10.3109/15563659309000402
  • 13. Al-Qahtani F, Arafah M, Sharma B, Siddiqi N. Ef¬fects of alpha lipoic acid on acrylamide-induced hepatotoxicity in rats. Cell Mol Biol (Noisy-le-grand). 2017; 63:1–6. https://doi.org/10.14715/cmb/2017.63.6.1
  • 14. Rizk M, Abo-El-Matty DM, Aly HF, et al, Haroun AA. Therapeutic activity of sour orange albedo ex¬tract and abundant flavanones loaded silica nano¬particles against acrylamide-induced hepatotoxi¬city. Toxicol Rep. 2018; 5: 929–42. https://doi.org/10.1016/j.toxrep.2018.08.021
  • 15. Mahmood SA, Amin KA, Salih SF. Effect of acrylamide on liver and kidneys in albino wistar rats. Int J Curr Microbiol App Sci. 2015; 4:434–44.
  • 16. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem, 2005; 38: 1103–11. https://doi.org/10.1016/j.clinbio¬chem.2005.08.008
  • 17. Erel O. A novel automated method to measure to¬tal antioxidant response against potent free radical reactions. Clin Biochem, 2004; 37: 112–9. https://doi.org/10.1016/j.clinbiochem
  • 18. Kei S. Serum lipid peroxide in cerebrovascular dis¬orders determined by a new colorimetric method. Clin Chim Acta 1978;90:37e43. https://doi.org/10.1016/0009-8981(78)90081-5
  • 19. Ince S, Arslan-Acaroz D, Demirel HH, et al. Tau¬rine alleviates malathion induced lipid peroxida¬tion, oxidative stress, and proinflammatory cyto¬kine gene expressions in rats. Biomed Pharma¬cother. 2017; 96: 263-8. https://doi.org/10.1016/j.biopha.2017.09.141
  • 20. Lopalco A, Lopedota AA, Laquintana V, et al. Bo¬ric acid, a Lewis acid with unique and unusual properties: formulation ımplications. J Pharm Sci 2020;109(8):2375–2386. https://doi.org/10.1016/j.xphs.2020.04.015
  • 21. Zhang L, Wang E, Chen F, et al. Potential protec¬tive effects of oral administration of allicin on acrylamide-induced toxicity in male mice. Food Funct. 2013; 4: 1229. https://doi.org/10.1039/c3fo60057b
  • 22. Abdel-Daim MM, Abd Eldaim MA, Hassan AG. Trigonella foenum-graecum ameliorates acryla¬mide-induced toxicity in rats: roles of oxidative stress, proinflammatory cytokines, and DNA dam¬age. Biochem Cell Biol. 2014; 93 (3): 192–8. https://doi.org/10.1139/bcb-2014-0122
  • 23. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, et al, Zhu, K. The ameliorative effects of boron against acrylamide-induced oxidative stress, in¬flammatory response, and metabolic changes in rats. Food Chem Toxicol. 2018; 118:745-52. https://doi.org/10.1016/j.fct.2018.06.029
  • 24. Yazici S, Aksit H, Korkut O, et al. Effects of boric acid and 2-aminoethoxydiphenyl borate on ne¬crotizing enterocolitis. J Pediatr Gastroenterol Nutr 2014;58(1):61–7. https://doi.org/10.1097/MPG.0b013e3182a7e02
  • 25. Karimkhani H, Özkoç M, Shojaolsadati P,et al. Protective Effect of Boric Acid and Omega-3 on Myocardial Infarction in an Experimental Rat Model. Biological Trace Element Research. 2021; 199:2612–20. https://doi.org/10.1007/s12011-020-02360-z.
  • 26. Can B, Kar F, Kar E, et al. Conivaptan and Boric Acid Treatments in Acute Kidney Injury: Is This Combination Efective and Safe? Biological Trace Element Research. 2022; 200:3723–37. https://doi.org/10.1007/s12011-021-02977-8.

SIÇANLARDA AKRİLAMİD İLE OLUŞTURULAN BEYİN HASARINI ÖNLEMEDE BORİK ASİTİN ETKİNLİĞİ

Year 2023, Volume: 6 Issue: 1, 92 - 97, 30.04.2023
https://doi.org/10.36516/jocass.1239256

Abstract

Giriş: Akrilamid (ACR) suda çözünebilen, son yıllarda yaygın olarak araştırma konusu olan nörotoksik bir maddedir. Borik asit (BA) düşük yoğunluklarda alındığında toksik etki göstermeyen ve sistotoksik aktiviteye sahip bir bileşendir. Yapılan çalışmalarda BA’nın antioksidan etkilere sahip olduğu bildirmiştir. Biz de planladığımız bu çalışmada ACR’nin beyin dokusunda meydana getireceği toksik hasara karşı, BA’nın koruyucu etkinliğini incelemeyi amaçladık.
Gereç ve Yöntemler: Bu çalışmada ortalama ağırlıkları 320-400 gram arasında 28 adet Wistar Albino cinsi erkek sıçanlar kullanıldı. Çalışmamızda ACR 14 gün süreyle 50 mg/kg doz ile intraperitonal (i.p.) olarak verilirken, BA ise 200 mg/ kg doz ile 14 gün boyunca gavaj yardımıyla oral (p.o.) olarak verildi. Grup 1 (n=7): Kontrol grubu olup, 14 gün boyunca herhangi bir ilaç uygulanmadı. Grup 2 (n=7): ACR grubu, Grup 3 (n=7): BA grubu ve Grup 4 (n=7): ACR + BA grubu olarak belirlendi.
Sonuç: Serum TOS ve MDA analizi yapılan gruplar arasında karşılaştırma yapıldığında en yüksek MDA düzeyinin ACR grubunda olduğu izlendi. ACR+BA grubunun MDA düzeyinin ACR grubundan anlamlı derecede düşük görüldü.
Tartışma: Yapılan çalışmalarda ACR farklı doz (50 mg/kg, 20 mg/kg) ve süreler ile uygulanmış ve böylece serum Il-1β, Il-6 ve TNF-α gibi proinflamatuar sitokin düzeylerinde önemli oranda artış olduğu izlenmiştir. Yazici S ve ark. da çalışmalarında BA’nın proinflamatuar özelliklerinin olduğunu gösteren bulguları işaret etmişlerdir. Bizde ACR toksisitesi durumunda serum MDA düzeylerinde bir yükselme olduğunu ve BA uygulandığında ise bu durumun düzeldiğini gözlemledik. Çalışmamızın sonucunda ACR uygulaması sonrası oluşan oksidatif stresin neden olduğu nörotoksisitenin önlenmesinde, BA’nın antioksidan özelliği sayesinde koruyucu etkinliğinin olduğunu saptadık

References

  • 1. Tyl RW, Friedman MA. Effects of acrylamide on rodent reproductive performance. Reprod Toxicol 2003; 17: 1-13. https://doi.org/10.1016/s0890-6238(02)00078-3
  • 2. Pan X, Zhu L, Lu H, et al. Melatonin Attenuates Oxidative Damage Induced by Acrylamide In Vitro and In Vivo, Oxid Med Cell Longev. 2015; 2015: 703-9. https://doi.org/10.1155/2015/703709
  • 3. Yousef M, El-Demerdash F. Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology. 2006; 219:133-41. https://doi.org/10.1016/j.tox.2005.11.008
  • 4. Dearfield KL, Douglas GR, Ehling UH, et al. Acrylamide: a review of its genotoxicity and an as¬sessment of heritable genetic risk.Mutation Re¬search/Fundamental and Molecular Mechanisms of Mutagenesis. 1995; 330:71-99. https://doi.org/10.1016/0027-5107(95)00037-j
  • 5. LoPachin RM, Balaban C, Ross J. Acrylamide ax¬onopathy revisited. Toxicology and applied phar¬macology. 2003; 188: 135-53. https://doi.org/10.1016/s0041-008x(02)00072-8
  • 6. Ghanayem BI, McDaniel LP, Churcwell MI, et al. Role of CYP2E1 in the epoxidation of acrylamide to glisidamide and formation of DNA and hemo¬globin adducts. Toxicol Sci. 2005; 88 (2): 311-8. https://doi.org/10.1093/toxsci/kfi307
  • 7. Sharp D. Acrylamide in food. Lancet 2003; 361: 361-2. https://doi.org/10.1016/S0140-6736(03)12442-7
  • 8. Soriano-Ursúa MA, Das BC, Trujillo-Ferrara JG. Boron containing compounds: Chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy, Expert Opin. Ther. Pat. 2014; 24: 485–500. https://doi.org/10.1517/13543776.2014.881472
  • 9. O’Donovan MR, Mee CD, Fenner S, et al. Boronic acids anovel class of bacterial mutagen, Mutat. Res. 2011;724:1–6. https://doi.org/10.1016/j.mrgentox.2011.05.006
  • 10. Cengiz M. Boric acid protects against cyclophos¬phamide-induced oxidative stressand renal dam¬age in rats. Cell Mol. Biol. (Noisy le Grand). 2018; 64 (12):11–4.
  • 11. Ince S, Kucukkurt I, Demirel HH, et al. Protec¬tive effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicityin rats. Chemo¬sphere. 2014; 108: 197–204. https://doi.org/10.1016/j.chemo¬sphere.2014.01.038
  • 12. Ishii Y, Fujizuka N, Takahaski T, et aş. A fatal case of acute boric acid poisoning, ClinicalToxicology. 1993; 31 (2); 345-52. https://doi.org/10.3109/15563659309000402
  • 13. Al-Qahtani F, Arafah M, Sharma B, Siddiqi N. Ef¬fects of alpha lipoic acid on acrylamide-induced hepatotoxicity in rats. Cell Mol Biol (Noisy-le-grand). 2017; 63:1–6. https://doi.org/10.14715/cmb/2017.63.6.1
  • 14. Rizk M, Abo-El-Matty DM, Aly HF, et al, Haroun AA. Therapeutic activity of sour orange albedo ex¬tract and abundant flavanones loaded silica nano¬particles against acrylamide-induced hepatotoxi¬city. Toxicol Rep. 2018; 5: 929–42. https://doi.org/10.1016/j.toxrep.2018.08.021
  • 15. Mahmood SA, Amin KA, Salih SF. Effect of acrylamide on liver and kidneys in albino wistar rats. Int J Curr Microbiol App Sci. 2015; 4:434–44.
  • 16. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem, 2005; 38: 1103–11. https://doi.org/10.1016/j.clinbio¬chem.2005.08.008
  • 17. Erel O. A novel automated method to measure to¬tal antioxidant response against potent free radical reactions. Clin Biochem, 2004; 37: 112–9. https://doi.org/10.1016/j.clinbiochem
  • 18. Kei S. Serum lipid peroxide in cerebrovascular dis¬orders determined by a new colorimetric method. Clin Chim Acta 1978;90:37e43. https://doi.org/10.1016/0009-8981(78)90081-5
  • 19. Ince S, Arslan-Acaroz D, Demirel HH, et al. Tau¬rine alleviates malathion induced lipid peroxida¬tion, oxidative stress, and proinflammatory cyto¬kine gene expressions in rats. Biomed Pharma¬cother. 2017; 96: 263-8. https://doi.org/10.1016/j.biopha.2017.09.141
  • 20. Lopalco A, Lopedota AA, Laquintana V, et al. Bo¬ric acid, a Lewis acid with unique and unusual properties: formulation ımplications. J Pharm Sci 2020;109(8):2375–2386. https://doi.org/10.1016/j.xphs.2020.04.015
  • 21. Zhang L, Wang E, Chen F, et al. Potential protec¬tive effects of oral administration of allicin on acrylamide-induced toxicity in male mice. Food Funct. 2013; 4: 1229. https://doi.org/10.1039/c3fo60057b
  • 22. Abdel-Daim MM, Abd Eldaim MA, Hassan AG. Trigonella foenum-graecum ameliorates acryla¬mide-induced toxicity in rats: roles of oxidative stress, proinflammatory cytokines, and DNA dam¬age. Biochem Cell Biol. 2014; 93 (3): 192–8. https://doi.org/10.1139/bcb-2014-0122
  • 23. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, et al, Zhu, K. The ameliorative effects of boron against acrylamide-induced oxidative stress, in¬flammatory response, and metabolic changes in rats. Food Chem Toxicol. 2018; 118:745-52. https://doi.org/10.1016/j.fct.2018.06.029
  • 24. Yazici S, Aksit H, Korkut O, et al. Effects of boric acid and 2-aminoethoxydiphenyl borate on ne¬crotizing enterocolitis. J Pediatr Gastroenterol Nutr 2014;58(1):61–7. https://doi.org/10.1097/MPG.0b013e3182a7e02
  • 25. Karimkhani H, Özkoç M, Shojaolsadati P,et al. Protective Effect of Boric Acid and Omega-3 on Myocardial Infarction in an Experimental Rat Model. Biological Trace Element Research. 2021; 199:2612–20. https://doi.org/10.1007/s12011-020-02360-z.
  • 26. Can B, Kar F, Kar E, et al. Conivaptan and Boric Acid Treatments in Acute Kidney Injury: Is This Combination Efective and Safe? Biological Trace Element Research. 2022; 200:3723–37. https://doi.org/10.1007/s12011-021-02977-8.
There are 26 citations in total.

Details

Primary Language English
Subjects Surgery
Journal Section Articles
Authors

Eda Yildizhan 0000-0002-5648-6498

Burak Veli Ülger 0000-0001-9843-6301

Ercan Gündüz 0000-0003-1249-6958

Murat Akkuş 0000-0002-1659-1189

Hüseyin Bilge 0000-0001-7203-2288

Publication Date April 30, 2023
Acceptance Date March 3, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Yildizhan, E., Ülger, B. V., Gündüz, E., Akkuş, M., et al. (2023). Effectiveness of Boric Acid in Preventing Acrylamide-Conducted Brain Damage in Rats. Journal of Cukurova Anesthesia and Surgical Sciences, 6(1), 92-97. https://doi.org/10.36516/jocass.1239256

download

You are free to:
Share — copy and redistribute the material in any medium or format The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.