Review
BibTex RIS Cite

Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu

Year 2023, Volume: 13 Issue: 3, 2008 - 2025, 01.09.2023
https://doi.org/10.21597/jist.1243613

Abstract

Eklemeli imalat teknolojileri; plastik, seramik ve metal malzemeler kullanılarak nesnelerin üç boyutlu (3B) dijital model verilerine göre nihai geometri elde edilene kadar parçanın katman katman imal edilmesi prensibine dayalı bir yöntemleri içerir. Bu yöntemlerin günümüzde sanat, yapı sektörü, medikal, enerji, otomotiv, havacılık ve uzay endüstrilerinde çok karmaşık geometrili mamulleri tek parça halinde ek işlemlere (kaynak, montaj gibi vb.) ihtiyaç duymadan imal edebilme, gözenekli ve boşluklu (topoloji optimizasyonu) yapılar oluşturarak ağırlık azaltma gibi avantajları sayesinde kullanımı gittikçe artmıştır. Eklemeli imalat sektöründe kullanılan toz malzemeler arasında alüminyum ve alüminyum alaşımları oldukça çok tercih edilmektedir. Bu çalışmada otomotiv, havacılık ve uzay endüstrilerinde kullanılan alüminyum alaşımlarının eklemeli imalat teknolojileri ve topoloji optimizasyonu yöntemlerinden yararlanarak imal edilmiş parçalar incelenmiştir.

References

  • Aktürk., (2021). Eklemeli İmalat Yöntemi ile Üretilmiş Alsi10Mg Malzemesinin Malzeme Yapısal Parametrelerinin Belirlenmesi ve Sonlu Elemanlar Yöntemiyle Doğrulanması, Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü (Yüksek Lisans Tezi). Erişim adresi: http://acikerisim.karabuk.edu.tr:8080/xmlui/bitstream/handle/123456789/1123/10381778.pdf?sequence=1
  • Aktürk, Korkmaz., (2021). Eklemeli İmalat Yöntemi ile Üretilmiş Alüminyum Alaşımlarının Malzeme Yapısal Parametrelerinin Belirlenmesi Üzerine Bir Derleme, Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü (Yüksek Lisans Tezi). Erişim adresi: https://dergipark.org.tr/tr/download/article-file/1626465.
  • Altair, 2017. Special Report: Generative Design and Topology Optimization by Altair, URL: https://cdn2.hubspot.net/hubfs/47251/Altair_Generative_Design_Report.pdf (Erişim tarihi: 15 Nisan, 2022).
  • Archdaily, 2016. The Living's 3D Printed Airplane Partition is Designed to Mimic Bone Structure. URL: https://www.archdaily.com/780661/the-livings-parametric-3d-printed-airplane-partition-is-designed-to-mimic-bone-structure (Erişim tarihi: 18 Nisan, 2022).
  • Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Berto, F., du Plessis, A. (2021). Metal additive manufacturing in aerospace: A review. Materials & Design, 209, 110008. https://doi.org/10.1016/j.matdes.2021.110008.
  • Bradford, R. L., Cao, L., Klosterman, D., Herman, F., Forman, L., & Browning, C. (2021). A metal–metal powder formulation approach for laser additive manufacturing of difficult-to-print high-strength aluminum alloys. Materials Letters, Volume 300, https://doi.org/10.1016/j.matlet.2021.130113.
  • Brice, C. A., Tayon, W. A., Newman, J. A., Kral, M. V., Bishop, C., & Sokolova, A. (2018). Effect of compositional changes on microstructure in additively manufactured aluminum alloy 2139. Materials Characterization. https://doi.org/10.1016/j.matchar.2018.04.002.
  • Casati, R., Coduri, M., Checchia, S., & Vedani, M. (2021). Insight into the effect of different thermal treatment routes on the microstructure of AlSi7Mg produced by laser powder bed fusion. Materials Characterization, 172, 110881. https://doi.org/10.1016/j.matchar.2021.110881.
  • Enrico Hilpert, Johannes Hartung, Henrik Von Lukowicz, Tobias Herffurth and Nils Heidler., (2019). Design, additive manufacturing, processing, and characterization of metal mirror made of aluminum silicon alloy for space applications. Optical Engineering 58(09):1, doi: 10.1117/1.OE.58.9.092613.
  • EOS, 2018a. Certified for Universal Success: Additive Manufacturing of Satellite Components. URL: https://www.eos.info/01_parts-and applications/case_studies_applications_parts/_case_studies_pdf/en_cases/cs_m_aerospace_ruag_en.pdf (Erişim tarihi: 01 Nisan, 2022).
  • Ermaksan, 2022. Eklemeli İmalat İçin Tasarım Kuralları. URL: https://www.ermaksanadditive.com/Upload/Katalog/EnaIcon_TR.pdf (Erişim tarihi: 15 Mart, 2022).
  • Fiocchi, J., Biffi, C. A., & Tuissi, A. (2020). Selective laser melting of high-strength primary AlSi9Cu3 alloy: Processability, microstructure, and mechanical properties. Materials & Design, Volume 191, https://doi.org/10.1016/j.matdes.2020.108581.
  • Green Car Congress, 2017. Mercedes-Benz Trucks introduces its first 3D-printed spare part made of metal. URL: https://www.greencarcongress.com/2017/08/20170802-mbt.html (Erişim tarihi: 24 Ekim, 2022).
  • Hilpert, E., Hartung, J., Risse, S., Eberhardt, R., & Tünnermann, A., (2018). Precision manufacturing of a lightweight mirror body made by selective laser melting. Precision Engineering, 53, 310–317, doi:10.1016/j.precisioneng.2018.04.013.
  • Hiperbaric, 2022a. Qué es la tecnología HIP. URL: https://www.hiperbaric.com/es/tecnologia-hip/que-es-la-tecnologia-hip/, (Erişim tarihi: 18 Mart, 2022).
  • Hiperbaric, 2022b. Sectors of HIP Technology. URL: https://www.hiperbaric.com/en/hip-technology/hip-sectors/ (Erişim tarihi: 18 Mart, 2022).
  • Jungho Choe, Kyung Tae Kim, Ji HunYu, Jeong Min Park, Dong Yeol Yang, Soo ho Jung, Seungki Jo, Hyomoon Joo, Mungu Kan, Soung Yeoul Ahn, Sang Guk Jeong, Eun Seong Kim, Haksung Lee, Hyoung Seop Kim., (2023). A novel route for predicting the cracking of inoculant-added AA7075 processed via laser powder bed fusion. Additive Manufacturing, Volume 62, https://doi.org/10.1016/j.addma.2022.103370.
  • Kimura, T., & Nakamoto, T. (2016). Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Materials & Design, Volume 89, Pages 1294-1301, https://doi.org/10.1016/j.matdes.2015.10.065.
  • Leticia Cabrera-Correa, Leandro González-Rovira, Juande Dios López-Castro, F. JavierBotana., (2022). Pitting and intergranular corrosion of Scalmalloy® aluminium alloy additively manufactured by Selective Laser Melting (SLM). Corrosion Science, Volume 201, https://doi.org/10.1016/j.corsci.2022.110273.
  • Nagy, D., Zhao, D., & Benjamin, D. (2017). Nature-Based Hybrid Computational Geometry System for Optimizing Component Structure. Humanizing Digital Reality, page 167–176, https://doi.org/10.1007/978-981-10-6611-5_15.
  • Neo Kekana, Mxolisi B. Shongwe, Khumbulani Mpofu, Rumbidzai Muvunzi., (2022). A review on factors influencing mechanical properties of AlSi12 alloy processed by selective laser melting. The International Journal of Advanced Manufacturing Technology, Volume121, issue 7-8, pages 4313–4323.
  • nTopology, 2021. Cobra Aero Reimagines the Combustion Engine Cylinder using Multiphysics Simulation & Field Driven Design. URL: https://ntopology.com/case-studies/cobra-aero-multiphysics-simulation-drone-engine/ (Erişim tarihi: 01 Nisan, 2022).
  • Orme, M. E., Gschweitl, M., Ferrari, M., Vernon, R., Madera, I. J., Yancey, R., & Mouriaux, F. (2017). Additive Manufacturing of Lightweight, Optimized, Metallic Components Suitable for Space Flight. Journal of Spacecraft and Rockets, 54(5), 1050–1059. https://doi.org/10.2514/1.A33749.
  • Orme, M., Madera, I., Gschweitl, M., & Ferrari, M. (2018). Topology Optimization for Additive Manufacturing as an Enabler for Light Weight Flight Hardware. Design and Applications of Additive Manufacturing and 3D Printing, 2(4), 51. https://doi.org/10.3390/designs2040051.
  • Pereira, J. C., Gil, E., Solaberrieta, L., San Sebastián, M., Bilbao, Y., & Rodríguez, P. P. (2020). Comparison of AlSi7Mg0.6 alloy obtained by selective laser melting and investment casting processes: Microstructure and mechanical properties in as-built/as-cast and heat-treated conditions. Materials Science and Engineering: A, 778, 139124. https://doi.org/10.1016/j.msea.2020.139124.
  • Posser, T., & Freitas de Oliveira, B. (2019). Design for additive manufacturing applied for mass reduction of a two-stroke engine cylinder for portable machine. International Journal on Interactive Design and Manufacturing (IJIDeM). doi:10.1007/s12008-019-00596-1.
  • Ravindra E.Gite, Vishnu D.Wakchaure., (2023). A review on process parameters, microstructure and mechanical properties of additively manufactured AlSi10Mg alloy. Materials today: Proceedings. Volume 72, Part 3, Pages 966-986, https://doi.org/10.1016/j.matpr.2022.09.100.
  • Saltzman, D., Bichnevicius, M., Lynch, S., Simpson, T. W., Reutzel, E. W., Dickman, C., & Martukanitz, R. (2018). Design and evaluation of an additively manufactured aircraft heat exchanger. Applied Thermal Engineering, https://doi.org/10.1016/j.applthermaleng.2018.04.032.
  • Slideshare, 2018. EOS Model M400 DMLS Client, Ruag Citim, antenna bracket for the Sentinel satellite. URL: https://www.slideshare.net/JohnManley2/eos-model-m400-dmls-client-ruag-citim-antenna-bracket-for-the-sentinel-satellite (Erişim tarihi: 28 Mart, 2022).
  • Sürmen., (2019). Eklemeli İmalat (3B Baskı): Teknolojiler ve Uygulamalar. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, Cilt 24, Sayı 2, https://doi.org/10.17482/uumfd.519147.
  • The Additive Report, 2019. Minibike features ground-breaking 3D-printed fuel tank. URL: https://www.thefabricator.com/additivereport/article/additive/minibike-features-ground-breaking-3d-printed-fuel-tank (Erişim tarihi: 25 Ekim, 2022).
  • Theliving, 2016. Bionic Partition. URL: http://www.thelivingnewyork.com/ (Erişim tarihi: 18 Nisan, 2022).
  • Z. Gobetz, A. Rowen, C. Dickman, K. Meinert and R. Martukanitz., (2016). Utilization of additive manufacturing for aerospace heat exchangers. Defense Technical Information Center, page 31-35.
  • 3Dnatives, 2022. What Are the Most Innovative 3D Printing Applications in the Automotive Sector. URL: https://www.3dnatives.com/en/3d-printing-applications-in-automotive-ranking-081020204/#! (Erişim tarihi: 20 Mayıs, 2022).

Applications and Topology Optimization of Aluminum and Aluminum Alloys in Additive Manufacturing

Year 2023, Volume: 13 Issue: 3, 2008 - 2025, 01.09.2023
https://doi.org/10.21597/jist.1243613

Abstract

Additive manufacturing technologies; It includes methods based on the principle of manufacturing the part layer by layer until the final geometry is obtained according to the three-dimensional (3D) digital model data of the objects using plastic, ceramic and metal materials. Today by using this method can be manufactured in the art, building sector, medical, energy, automotive aviation and space industries, without the need for additional (assembly, welding, etc.) processes of very complex geometry products. Its use has increased gradually thanks to its advantages such as weight reduction (topology optimization) by creating porous and cavitied structures. Aluminum and aluminum alloys are highly preferred among the powder materials used in the additive manufacturing sector. In this study, parts manufactured by using additive manufacturing technologies and topology optimization methods of aluminum alloys used in the automotive, aerospace and aerospace industries are examined.

References

  • Aktürk., (2021). Eklemeli İmalat Yöntemi ile Üretilmiş Alsi10Mg Malzemesinin Malzeme Yapısal Parametrelerinin Belirlenmesi ve Sonlu Elemanlar Yöntemiyle Doğrulanması, Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü (Yüksek Lisans Tezi). Erişim adresi: http://acikerisim.karabuk.edu.tr:8080/xmlui/bitstream/handle/123456789/1123/10381778.pdf?sequence=1
  • Aktürk, Korkmaz., (2021). Eklemeli İmalat Yöntemi ile Üretilmiş Alüminyum Alaşımlarının Malzeme Yapısal Parametrelerinin Belirlenmesi Üzerine Bir Derleme, Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü (Yüksek Lisans Tezi). Erişim adresi: https://dergipark.org.tr/tr/download/article-file/1626465.
  • Altair, 2017. Special Report: Generative Design and Topology Optimization by Altair, URL: https://cdn2.hubspot.net/hubfs/47251/Altair_Generative_Design_Report.pdf (Erişim tarihi: 15 Nisan, 2022).
  • Archdaily, 2016. The Living's 3D Printed Airplane Partition is Designed to Mimic Bone Structure. URL: https://www.archdaily.com/780661/the-livings-parametric-3d-printed-airplane-partition-is-designed-to-mimic-bone-structure (Erişim tarihi: 18 Nisan, 2022).
  • Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Berto, F., du Plessis, A. (2021). Metal additive manufacturing in aerospace: A review. Materials & Design, 209, 110008. https://doi.org/10.1016/j.matdes.2021.110008.
  • Bradford, R. L., Cao, L., Klosterman, D., Herman, F., Forman, L., & Browning, C. (2021). A metal–metal powder formulation approach for laser additive manufacturing of difficult-to-print high-strength aluminum alloys. Materials Letters, Volume 300, https://doi.org/10.1016/j.matlet.2021.130113.
  • Brice, C. A., Tayon, W. A., Newman, J. A., Kral, M. V., Bishop, C., & Sokolova, A. (2018). Effect of compositional changes on microstructure in additively manufactured aluminum alloy 2139. Materials Characterization. https://doi.org/10.1016/j.matchar.2018.04.002.
  • Casati, R., Coduri, M., Checchia, S., & Vedani, M. (2021). Insight into the effect of different thermal treatment routes on the microstructure of AlSi7Mg produced by laser powder bed fusion. Materials Characterization, 172, 110881. https://doi.org/10.1016/j.matchar.2021.110881.
  • Enrico Hilpert, Johannes Hartung, Henrik Von Lukowicz, Tobias Herffurth and Nils Heidler., (2019). Design, additive manufacturing, processing, and characterization of metal mirror made of aluminum silicon alloy for space applications. Optical Engineering 58(09):1, doi: 10.1117/1.OE.58.9.092613.
  • EOS, 2018a. Certified for Universal Success: Additive Manufacturing of Satellite Components. URL: https://www.eos.info/01_parts-and applications/case_studies_applications_parts/_case_studies_pdf/en_cases/cs_m_aerospace_ruag_en.pdf (Erişim tarihi: 01 Nisan, 2022).
  • Ermaksan, 2022. Eklemeli İmalat İçin Tasarım Kuralları. URL: https://www.ermaksanadditive.com/Upload/Katalog/EnaIcon_TR.pdf (Erişim tarihi: 15 Mart, 2022).
  • Fiocchi, J., Biffi, C. A., & Tuissi, A. (2020). Selective laser melting of high-strength primary AlSi9Cu3 alloy: Processability, microstructure, and mechanical properties. Materials & Design, Volume 191, https://doi.org/10.1016/j.matdes.2020.108581.
  • Green Car Congress, 2017. Mercedes-Benz Trucks introduces its first 3D-printed spare part made of metal. URL: https://www.greencarcongress.com/2017/08/20170802-mbt.html (Erişim tarihi: 24 Ekim, 2022).
  • Hilpert, E., Hartung, J., Risse, S., Eberhardt, R., & Tünnermann, A., (2018). Precision manufacturing of a lightweight mirror body made by selective laser melting. Precision Engineering, 53, 310–317, doi:10.1016/j.precisioneng.2018.04.013.
  • Hiperbaric, 2022a. Qué es la tecnología HIP. URL: https://www.hiperbaric.com/es/tecnologia-hip/que-es-la-tecnologia-hip/, (Erişim tarihi: 18 Mart, 2022).
  • Hiperbaric, 2022b. Sectors of HIP Technology. URL: https://www.hiperbaric.com/en/hip-technology/hip-sectors/ (Erişim tarihi: 18 Mart, 2022).
  • Jungho Choe, Kyung Tae Kim, Ji HunYu, Jeong Min Park, Dong Yeol Yang, Soo ho Jung, Seungki Jo, Hyomoon Joo, Mungu Kan, Soung Yeoul Ahn, Sang Guk Jeong, Eun Seong Kim, Haksung Lee, Hyoung Seop Kim., (2023). A novel route for predicting the cracking of inoculant-added AA7075 processed via laser powder bed fusion. Additive Manufacturing, Volume 62, https://doi.org/10.1016/j.addma.2022.103370.
  • Kimura, T., & Nakamoto, T. (2016). Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Materials & Design, Volume 89, Pages 1294-1301, https://doi.org/10.1016/j.matdes.2015.10.065.
  • Leticia Cabrera-Correa, Leandro González-Rovira, Juande Dios López-Castro, F. JavierBotana., (2022). Pitting and intergranular corrosion of Scalmalloy® aluminium alloy additively manufactured by Selective Laser Melting (SLM). Corrosion Science, Volume 201, https://doi.org/10.1016/j.corsci.2022.110273.
  • Nagy, D., Zhao, D., & Benjamin, D. (2017). Nature-Based Hybrid Computational Geometry System for Optimizing Component Structure. Humanizing Digital Reality, page 167–176, https://doi.org/10.1007/978-981-10-6611-5_15.
  • Neo Kekana, Mxolisi B. Shongwe, Khumbulani Mpofu, Rumbidzai Muvunzi., (2022). A review on factors influencing mechanical properties of AlSi12 alloy processed by selective laser melting. The International Journal of Advanced Manufacturing Technology, Volume121, issue 7-8, pages 4313–4323.
  • nTopology, 2021. Cobra Aero Reimagines the Combustion Engine Cylinder using Multiphysics Simulation & Field Driven Design. URL: https://ntopology.com/case-studies/cobra-aero-multiphysics-simulation-drone-engine/ (Erişim tarihi: 01 Nisan, 2022).
  • Orme, M. E., Gschweitl, M., Ferrari, M., Vernon, R., Madera, I. J., Yancey, R., & Mouriaux, F. (2017). Additive Manufacturing of Lightweight, Optimized, Metallic Components Suitable for Space Flight. Journal of Spacecraft and Rockets, 54(5), 1050–1059. https://doi.org/10.2514/1.A33749.
  • Orme, M., Madera, I., Gschweitl, M., & Ferrari, M. (2018). Topology Optimization for Additive Manufacturing as an Enabler for Light Weight Flight Hardware. Design and Applications of Additive Manufacturing and 3D Printing, 2(4), 51. https://doi.org/10.3390/designs2040051.
  • Pereira, J. C., Gil, E., Solaberrieta, L., San Sebastián, M., Bilbao, Y., & Rodríguez, P. P. (2020). Comparison of AlSi7Mg0.6 alloy obtained by selective laser melting and investment casting processes: Microstructure and mechanical properties in as-built/as-cast and heat-treated conditions. Materials Science and Engineering: A, 778, 139124. https://doi.org/10.1016/j.msea.2020.139124.
  • Posser, T., & Freitas de Oliveira, B. (2019). Design for additive manufacturing applied for mass reduction of a two-stroke engine cylinder for portable machine. International Journal on Interactive Design and Manufacturing (IJIDeM). doi:10.1007/s12008-019-00596-1.
  • Ravindra E.Gite, Vishnu D.Wakchaure., (2023). A review on process parameters, microstructure and mechanical properties of additively manufactured AlSi10Mg alloy. Materials today: Proceedings. Volume 72, Part 3, Pages 966-986, https://doi.org/10.1016/j.matpr.2022.09.100.
  • Saltzman, D., Bichnevicius, M., Lynch, S., Simpson, T. W., Reutzel, E. W., Dickman, C., & Martukanitz, R. (2018). Design and evaluation of an additively manufactured aircraft heat exchanger. Applied Thermal Engineering, https://doi.org/10.1016/j.applthermaleng.2018.04.032.
  • Slideshare, 2018. EOS Model M400 DMLS Client, Ruag Citim, antenna bracket for the Sentinel satellite. URL: https://www.slideshare.net/JohnManley2/eos-model-m400-dmls-client-ruag-citim-antenna-bracket-for-the-sentinel-satellite (Erişim tarihi: 28 Mart, 2022).
  • Sürmen., (2019). Eklemeli İmalat (3B Baskı): Teknolojiler ve Uygulamalar. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, Cilt 24, Sayı 2, https://doi.org/10.17482/uumfd.519147.
  • The Additive Report, 2019. Minibike features ground-breaking 3D-printed fuel tank. URL: https://www.thefabricator.com/additivereport/article/additive/minibike-features-ground-breaking-3d-printed-fuel-tank (Erişim tarihi: 25 Ekim, 2022).
  • Theliving, 2016. Bionic Partition. URL: http://www.thelivingnewyork.com/ (Erişim tarihi: 18 Nisan, 2022).
  • Z. Gobetz, A. Rowen, C. Dickman, K. Meinert and R. Martukanitz., (2016). Utilization of additive manufacturing for aerospace heat exchangers. Defense Technical Information Center, page 31-35.
  • 3Dnatives, 2022. What Are the Most Innovative 3D Printing Applications in the Automotive Sector. URL: https://www.3dnatives.com/en/3d-printing-applications-in-automotive-ranking-081020204/#! (Erişim tarihi: 20 Mayıs, 2022).
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Ramazan Evrensel 0000-0003-3977-2553

Cem Ertek 0000-0001-5686-7664

Publication Date September 1, 2023
Submission Date January 28, 2023
Acceptance Date May 9, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Evrensel, R., & Ertek, C. (2023). Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu. Journal of the Institute of Science and Technology, 13(3), 2008-2025. https://doi.org/10.21597/jist.1243613
AMA Evrensel R, Ertek C. Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu. J. Inst. Sci. and Tech. September 2023;13(3):2008-2025. doi:10.21597/jist.1243613
Chicago Evrensel, Ramazan, and Cem Ertek. “Eklemeli İmalatta Alüminyum Ve Alüminyum Alaşımlarının Uygulamaları Ve Topoloji Optimizasyonu”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 2008-25. https://doi.org/10.21597/jist.1243613.
EndNote Evrensel R, Ertek C (September 1, 2023) Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu. Journal of the Institute of Science and Technology 13 3 2008–2025.
IEEE R. Evrensel and C. Ertek, “Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu”, J. Inst. Sci. and Tech., vol. 13, no. 3, pp. 2008–2025, 2023, doi: 10.21597/jist.1243613.
ISNAD Evrensel, Ramazan - Ertek, Cem. “Eklemeli İmalatta Alüminyum Ve Alüminyum Alaşımlarının Uygulamaları Ve Topoloji Optimizasyonu”. Journal of the Institute of Science and Technology 13/3 (September 2023), 2008-2025. https://doi.org/10.21597/jist.1243613.
JAMA Evrensel R, Ertek C. Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu. J. Inst. Sci. and Tech. 2023;13:2008–2025.
MLA Evrensel, Ramazan and Cem Ertek. “Eklemeli İmalatta Alüminyum Ve Alüminyum Alaşımlarının Uygulamaları Ve Topoloji Optimizasyonu”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 2008-25, doi:10.21597/jist.1243613.
Vancouver Evrensel R, Ertek C. Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu. J. Inst. Sci. and Tech. 2023;13(3):2008-25.