Research Article
BibTex RIS Cite

Development of a Sensitive Electrochemical Sensor for Tryptophan Detection with Ir-Pd/CNT Modified Electrodes

Year 2025, Volume: 46 Issue: 3, 464 - 470, 30.09.2025
https://doi.org/10.17776/csj.1609100

Abstract

In this study, a novel carbon nanotube-supported bimetallic Iridium-Palladium (Ir-Pd) catalyst, denoted as Ir(50%)-Pd(50%)/CNT, was successfully synthesized using the sodium borohydride reduction method for the electrochemical detection of L-Tryptophan (L-Trp). The catalyst was characterized using Elemental Dispersion X-ray (EDX-SEM) and X-ray Diffraction (XRD) techniques, confirming the effective dispersion of Ir and Pd nanoparticles on the carbon nanotube surface. Electrochemical performance was evaluated using Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV), and Electrochemical Impedance Spectroscopy (EIS) to optimize the sensor's detection capabilities. The resulting Ir-Pd/CNT/GCE sensor demonstrated a linear response over the concentration range of 100-1000 µM, and an exceptional limit of detection (LOD) of 0.02 µM at a signal-to-noise ratio (S/N) of 3. These findings indicate the potential of the Ir-Pd/CNT/GCE sensor for highly sensitive L-Trp detection in various applications, including biomedical, environmental, and food monitoring. This study emphasizes the promising role of bimetallic catalysts in enhancing the performance of electrochemical sensors for amino acid detection.

References

  • Martins AC, Gloria MB., Changes on the levels of serotonin precursors–tryptophan and 5-hydroxytryptophan–during roasting of Arabica and Robusta coffee, Food Chemistry, 118(3) (2010) 529-33.
  • Reynolds DM., Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy, Water Research, 37(13) (2003) 3055-60.
  • Li, H., Li, F., Han, C., Cui, Z., Xie, G., Zhang, A., Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles, Sensors and Actuators B: Chemical, 145(1) (2010) 194-199.
  • Lian, W., Ma, D. J., Xu, X. U., Chen, Y., & Wu, Y. L., Rapid high‐performance liquid chromatography method for determination of tryptophan in gastric juice, Journal of Digestive Diseases, 13(2) (2012) 100-106.
  • Shahrokhian, S., Fotouhi, L., Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan, Sensors and Actuators B: Chemical, 123(2) (2007) 942-949.
  • Fan, Y., Liu, J. H., Lu, H. T., Zhang, Q., Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film, Microchimica Acta., 173 (2011) 241-247.
  • Güney, S., Yıldız, G., Determination of tryptophan using electrode modified with poly (9-aminoacridine) functionalized multi-walled carbon nanotubes, Electrochimica Acta., 57 (2011) 290-296.
  • Deng, K. Q., Zhou, J. H., Li, X. F., Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine, Colloids and Surfaces B: Biointerfaces, 101 (2013) 183-188.
  • Kivrak, H., Selcuk, K., Er, O. F., Aktas, N., Nanostructured electrochemical cysteine sensor based on carbon nanotube supported Ru, Pd, and Pt catalysts, Materials Chemistry and Physics, 267 (2021) 124689.
  • Imanzadeh, H., Sefid-Sefidehkhan, Y., Afshary, H., Afruz, A., Amiri, M., Nanomaterial-based electrochemical sensors for detection of amino acids, Journal of Pharmaceutical and Biomedical Analysis, 230 (2023) 115390.
  • Mousavi, S. F., Alimoradi, M., Shirmardi, A., Zare-Shahabadi, V., Preparation, characterization and electrochemical application of an Ag/zeolite nanocomposite: Application to sub-micromolar quantitation of tryptophan, Journal of Porous Materials, 27 (2020) 1505-1514.
  • Wu, Y., Deng, P., Tian, Y., Ding, Z., Li, G., Liu, J., He, Q., Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode, Bioelectrochemistry, 131 (2020) 107393.
  • Naganathan, D., Thangamani, P., Selvam, T., Narayanasamy, T., Ce doped ZnO/f-MWCNT moss ball like nanocomposite: a strategy for high responsive current detection of L-tryptophan, Microchimica Acta., 185 (2018) 1-9.
  • Ghoreishi, S. M., Malekian, M., Curve resolution on overlapped voltammograms for simultaneous determination of tryptophan and tyrosine at carbon paste electrode modified with ZnFe2O4 nanoparticles, Journal of Electroanalytical Chemistry, 805 (2017) 1-10.
  • Zhou, S., Deng, Z., Wu, Z., Xie, M., Tian, Y., Wu, Y., He, Q., Ta2O5/rGO nanocomposite modified electrodes for detection of tryptophan through electrochemical rout, Nanomaterials., 9(6) (2019) 811.
  • Zou, J., Mao, D., Wee, A. T. S., & Jiang, J., Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for L-tyrosine, Applied Surface Science, 467(2019) 608-618.
  • Tasić, Ž. Z., Mihajlović, M. B. P., Radovanović, M. B., Simonović, A. T., Medić, D. V., Antonijević, M. M., Electrochemical determination of L-tryptophan in food samples on graphite electrode prepared from waste batteries, Scientific Reports, 12(1) ( 2022) 5469.
  • Lima, D., Pessôa, C. A., Wohnrath, K., Marcolino-Junior, L. H., Bergamini, M. F., A feasible and efficient voltammetric sensor based on electropolymerized L-arginine for the detection of L-tryptophan in dietary supplements, Microchemical Journal, 181 (2022) 107709.
  • Wang, Z., and Dai, Z., Carbon nanomaterial-based electrochemical biosensors: an overview, Nanoscale, 7(15) (2015) 6420-6431.
  • Yang, X., Feng, B., He, X., Li, F., Ding, Y., Fei, J., Carbon nanomaterial based electrochemical sensors for biogenic amines, Microchimica Acta., 180 (2013) 935-956.
  • Tian, K., Alex, S., Siegel, G., Tiwari, A., Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode, Materials Science and Engineering, C, 46 ( 2015) 548-552.
  • Lee, H., Hong, Y. J., Baik, S., Hyeon, T., Kim, D. H., Enzyme‐based glucose sensor: from invasive to wearable device, Advanced Healthcare Materials, 7(8) (2018) 1701150.
  • Hansen, F.A., Kubáň, P., Øiestad, E.L. and Pedersen-Bjergaard, S., Electromembrane extraction of highly polar bases from biological samples–Deeper insight into bis (2-ethylhexyl) phosphate as ionic carrier. Analytica Chimica Acta, 1115 (2020) 23-32.
  • Yu, P., Zeng, Y., Zeng, Y., Dong, H., Hu, H., Liu, Y., Zheng, M., Xiao, Y., Lu, X. and Liang, Y., Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochimica Acta, 327 (2019) 134999.
  • Rauf, S., Ait Lahcen, A., Aljedaibi, A., Beduk, T., de Oliveira Filho, J.I. and Salama, K.N., Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosensors and Bioelectronics, 180 (2021) 113116.
  • Ulas, B., Caglar, A., Yılmaz, S., Ecer, U., Yilmaz, Y., Sahan, T. and Kivrak, H., Towards more active and stable PdAgCr electrocatalysts for formic acid electrooxidation: the role of optimization via response surface methodology. International Journal of Energy Research, 43(15) (2019) 8985-9000.
  • Selçuk, K., Kivrak, H. and Aktaş, N., Novel CNT supported molybdenum catalyst for detection of L-cysteine in its natural environment. Catalysts, 11(12) (2021) 1561.
  • Kivrak, H., Selcuk, K., Er, O.F. and Aktas, N., Nanostructured electrochemical cysteine sensor based on carbon nanotube supported Ru, Pd, and Pt catalysts. Materials Chemistry and Physics, 267 (2021) 124689.
  • Pralhad, T. and Kale R., Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis, Journal of Pharmaceutical and Biomedical Analysis, 34(2) (2004) 333-339.
  • Liu, X., Dai, C., Wu, D., Fisher, A., Liu, Z., Cheng, D., Facile synthesis of PdAgCo trimetallic nanoparticles for formic acid electrochemical oxidation, Chemistry Letter, 45(7) (2016) 732-734.

Ir-Pd/CNT Modifiye Elektrotlarla Triptofan Tespiti için Hassas Bir Elektrokimyasal Sensörün Geliştirilmesi

Year 2025, Volume: 46 Issue: 3, 464 - 470, 30.09.2025
https://doi.org/10.17776/csj.1609100

Abstract

In this study, a novel carbon nanotube-supported bimetallic Iridium-Palladium (Ir-Pd) catalyst, denoted as Ir(50%)-Pd(50%)/CNT, was successfully synthesized using the sodium borohydride reduction method for the electrochemical detection of L-Tryptophan (L-Trp). The catalyst was characterized using Elemental Dispersion X-ray (EDX-SEM) and X-ray Diffraction (XRD) techniques, confirming the effective dispersion of Ir and Pd nanoparticles on the carbon nanotube surface. Electrochemical performance was evaluated using Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV), and Electrochemical Impedance Spectroscopy (EIS) to optimize the sensor's detection capabilities. The resulting Ir-Pd/CNT/GCE sensor demonstrated a linear response over the concentration range of 100-1000 µM, and an exceptional limit of detection (LOD) of 0.02 µM at a signal-to-noise ratio (S/N) of 3. These findings indicate the potential of the Ir-Pd/CNT/GCE sensor for highly sensitive L-Trp detection in various applications, including biomedical, environmental, and food monitoring. This study emphasizes the promising role of bimetallic catalysts in enhancing the performance of electrochemical sensors for amino acid detection.

References

  • Martins AC, Gloria MB., Changes on the levels of serotonin precursors–tryptophan and 5-hydroxytryptophan–during roasting of Arabica and Robusta coffee, Food Chemistry, 118(3) (2010) 529-33.
  • Reynolds DM., Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy, Water Research, 37(13) (2003) 3055-60.
  • Li, H., Li, F., Han, C., Cui, Z., Xie, G., Zhang, A., Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles, Sensors and Actuators B: Chemical, 145(1) (2010) 194-199.
  • Lian, W., Ma, D. J., Xu, X. U., Chen, Y., & Wu, Y. L., Rapid high‐performance liquid chromatography method for determination of tryptophan in gastric juice, Journal of Digestive Diseases, 13(2) (2012) 100-106.
  • Shahrokhian, S., Fotouhi, L., Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan, Sensors and Actuators B: Chemical, 123(2) (2007) 942-949.
  • Fan, Y., Liu, J. H., Lu, H. T., Zhang, Q., Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film, Microchimica Acta., 173 (2011) 241-247.
  • Güney, S., Yıldız, G., Determination of tryptophan using electrode modified with poly (9-aminoacridine) functionalized multi-walled carbon nanotubes, Electrochimica Acta., 57 (2011) 290-296.
  • Deng, K. Q., Zhou, J. H., Li, X. F., Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine, Colloids and Surfaces B: Biointerfaces, 101 (2013) 183-188.
  • Kivrak, H., Selcuk, K., Er, O. F., Aktas, N., Nanostructured electrochemical cysteine sensor based on carbon nanotube supported Ru, Pd, and Pt catalysts, Materials Chemistry and Physics, 267 (2021) 124689.
  • Imanzadeh, H., Sefid-Sefidehkhan, Y., Afshary, H., Afruz, A., Amiri, M., Nanomaterial-based electrochemical sensors for detection of amino acids, Journal of Pharmaceutical and Biomedical Analysis, 230 (2023) 115390.
  • Mousavi, S. F., Alimoradi, M., Shirmardi, A., Zare-Shahabadi, V., Preparation, characterization and electrochemical application of an Ag/zeolite nanocomposite: Application to sub-micromolar quantitation of tryptophan, Journal of Porous Materials, 27 (2020) 1505-1514.
  • Wu, Y., Deng, P., Tian, Y., Ding, Z., Li, G., Liu, J., He, Q., Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode, Bioelectrochemistry, 131 (2020) 107393.
  • Naganathan, D., Thangamani, P., Selvam, T., Narayanasamy, T., Ce doped ZnO/f-MWCNT moss ball like nanocomposite: a strategy for high responsive current detection of L-tryptophan, Microchimica Acta., 185 (2018) 1-9.
  • Ghoreishi, S. M., Malekian, M., Curve resolution on overlapped voltammograms for simultaneous determination of tryptophan and tyrosine at carbon paste electrode modified with ZnFe2O4 nanoparticles, Journal of Electroanalytical Chemistry, 805 (2017) 1-10.
  • Zhou, S., Deng, Z., Wu, Z., Xie, M., Tian, Y., Wu, Y., He, Q., Ta2O5/rGO nanocomposite modified electrodes for detection of tryptophan through electrochemical rout, Nanomaterials., 9(6) (2019) 811.
  • Zou, J., Mao, D., Wee, A. T. S., & Jiang, J., Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for L-tyrosine, Applied Surface Science, 467(2019) 608-618.
  • Tasić, Ž. Z., Mihajlović, M. B. P., Radovanović, M. B., Simonović, A. T., Medić, D. V., Antonijević, M. M., Electrochemical determination of L-tryptophan in food samples on graphite electrode prepared from waste batteries, Scientific Reports, 12(1) ( 2022) 5469.
  • Lima, D., Pessôa, C. A., Wohnrath, K., Marcolino-Junior, L. H., Bergamini, M. F., A feasible and efficient voltammetric sensor based on electropolymerized L-arginine for the detection of L-tryptophan in dietary supplements, Microchemical Journal, 181 (2022) 107709.
  • Wang, Z., and Dai, Z., Carbon nanomaterial-based electrochemical biosensors: an overview, Nanoscale, 7(15) (2015) 6420-6431.
  • Yang, X., Feng, B., He, X., Li, F., Ding, Y., Fei, J., Carbon nanomaterial based electrochemical sensors for biogenic amines, Microchimica Acta., 180 (2013) 935-956.
  • Tian, K., Alex, S., Siegel, G., Tiwari, A., Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode, Materials Science and Engineering, C, 46 ( 2015) 548-552.
  • Lee, H., Hong, Y. J., Baik, S., Hyeon, T., Kim, D. H., Enzyme‐based glucose sensor: from invasive to wearable device, Advanced Healthcare Materials, 7(8) (2018) 1701150.
  • Hansen, F.A., Kubáň, P., Øiestad, E.L. and Pedersen-Bjergaard, S., Electromembrane extraction of highly polar bases from biological samples–Deeper insight into bis (2-ethylhexyl) phosphate as ionic carrier. Analytica Chimica Acta, 1115 (2020) 23-32.
  • Yu, P., Zeng, Y., Zeng, Y., Dong, H., Hu, H., Liu, Y., Zheng, M., Xiao, Y., Lu, X. and Liang, Y., Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochimica Acta, 327 (2019) 134999.
  • Rauf, S., Ait Lahcen, A., Aljedaibi, A., Beduk, T., de Oliveira Filho, J.I. and Salama, K.N., Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosensors and Bioelectronics, 180 (2021) 113116.
  • Ulas, B., Caglar, A., Yılmaz, S., Ecer, U., Yilmaz, Y., Sahan, T. and Kivrak, H., Towards more active and stable PdAgCr electrocatalysts for formic acid electrooxidation: the role of optimization via response surface methodology. International Journal of Energy Research, 43(15) (2019) 8985-9000.
  • Selçuk, K., Kivrak, H. and Aktaş, N., Novel CNT supported molybdenum catalyst for detection of L-cysteine in its natural environment. Catalysts, 11(12) (2021) 1561.
  • Kivrak, H., Selcuk, K., Er, O.F. and Aktas, N., Nanostructured electrochemical cysteine sensor based on carbon nanotube supported Ru, Pd, and Pt catalysts. Materials Chemistry and Physics, 267 (2021) 124689.
  • Pralhad, T. and Kale R., Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis, Journal of Pharmaceutical and Biomedical Analysis, 34(2) (2004) 333-339.
  • Liu, X., Dai, C., Wu, D., Fisher, A., Liu, Z., Cheng, D., Facile synthesis of PdAgCo trimetallic nanoparticles for formic acid electrochemical oxidation, Chemistry Letter, 45(7) (2016) 732-734.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Sensor Technology
Journal Section Natural Sciences
Authors

Ömrüye Özok Arıcı 0000-0002-4164-8650

Publication Date September 30, 2025
Submission Date December 28, 2024
Acceptance Date July 9, 2025
Published in Issue Year 2025 Volume: 46 Issue: 3

Cite

APA Özok Arıcı, Ö. (2025). Ir-Pd/CNT Modifiye Elektrotlarla Triptofan Tespiti için Hassas Bir Elektrokimyasal Sensörün Geliştirilmesi. Cumhuriyet Science Journal, 46(3), 464-470. https://doi.org/10.17776/csj.1609100