Research Article
BibTex RIS Cite
Year 2024, Volume: 45 Issue: 3, 578 - 584, 30.09.2024
https://doi.org/10.17776/csj.1453508

Abstract

Project Number

122E150

References

  • [1] Wang S., Zheng M., Lou C., Chen S., Guo H., Gao Y., Lv H., Yuan X., Zhang X., Shang P. , Evaluating the biological safety on mice at 16 T static magnetic field with 700 MHz radio-frequency electromagnetic field, Ecotoxicology and Environmental Safety, 230 113125 (2021).
  • [2] Brown M. A., Semelka R. C. , MRI: Basic Principles and Applications, Wiley-Blackwell, (2010).
  • [3] Kobayashi M., Pascual-Leone A., Transcranial magnetic stimulation in neurology, Lancet Neurology, 2(3) (2003) 145–156.
  • [4] Veiseh O., Gunn J. W., Zhang M., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Advanced Drug Delivery Reviews, 62(3) (2010) 284–304.
  • [5] Dobson J., Magnetic micro- and nano-particle-based targeting for drug and gene delivery, Nanomedicine, 1(1) (2006) 31–37.
  • [6] Ripka P., Janosek M. , Advances in magnetic field sensors, IEEE Sensors Journal, 10(6) (2010) 1108–1116.
  • [7] Rotundo S., Brizi D., Flori A., Giovannetti G., Menichetti L., Monorchio A., Shaping and Focusing Magnetic Field in the Human Body: State-of-the-Art and Promising Technologies, Sensors, 22(14) (2022) 5132.
  • [8] Stauffer P. R., Sneed P. K., Hashemi H., Phillips T. L. , Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants, IEEE Transactions on Biomedical Engineering, 41 (1994) 17–28.
  • [9] Nemkov V., Ruffini R., Goldstein R., Jackowski J., DeWeese T. L., Ivkov R. , Magnetic field generating inductor for cancer hyperthermia research, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 30(5) (2011).
  • [10] Nieskoski M. D., Trembly B. S., Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia, IEEE Transactions on Biomedical Engineering, 61 (2014) 1642–1650.
  • [11] Hadadian Y., Azimbagirad M., Navas E. A., Pavan T. Z., A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions, Review of Scientific Instruments, 90 (2019) 074701.
  • [12] Cano M. E., Barrera A., Estrada J. C., Hernandez A., Cordova T., An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements, Review of Scientific Instruments, 82 (2011) 114904.
  • [13] Mazon E. E., Sámano A. H., Calleja H., Quintero L. H., Paz J. A., Cano M. E., A frequency tuner for resonant inverters suitable for magnetic hyperthermia applications, Measurement Science and Technology, 28 (2017) 095901.
  • [14] Brizi D., Fontana N., Giovannetti G., Flori A., Menichetti L., Doumett S., Baldi G., Monorchio A., A novel approach for determining the electromagnetic properties of a colloidal fluid with magnetic nanoparticles for hyperthermia applications, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2 (2018) 70–77.
  • [15] Di Barba P., Dughiero F., Sieni E. , Magnetic field synthesis in the design of inductors for magnetic fluid hyperthermia, IEEE Transactions on Magnetics, 46, (2010) 2931–2934.
  • [16] Frijia F., Flori A., Giovannetti G., Design, simulation, and test of surface and volume radio frequency coils for 13C magnetic resonance imaging and spectroscopy, Review of Scientific Instruments, 92 (2021) 081402.
  • [17] Bordelon D. E., Goldstein R. C., Nemkov V. S., Kumar A., Jackowski J. K., DeWeese T. L., Ivkov R., Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications, IEEE Transactions on Magnetics, 48 (2011) 47–52.
  • [18] Gresits I., Thuróczy G., Sági O., Gyüre-Garami B., Márkus B. G., Simon F., Non-calorimetric determination of absorbed power during magnetic nanoparticle based hyperthermia, Scientific Reports, 8, (2018) 1–9.
  • [19] Giovannetti G., Landini L., Santarelli M. F., Positano V., A fast and accurate simulator for the design of birdcage coils in MRI, Magnetic Resonance Materials in Physics, Biology and Medicine, 15 (2002) 36–44.
  • [20] Du X., Graedel T. E., Global rare earth in-use stocks in NdFeB permanent magnets, Journal of Industrial Ecology, 15 (2011) 836–843.
  • [21] Colbert A. P., Wahbeh H., Harling N., Connelly E., Schiffke H. C., Forsten C., William L. G., Marko S. M., James J. S., Patricia E., Valerie K., Static magnetic field therapy: a critical review of treatment parameters, Evidence-Based Complementary and Alternative Medicine, 6 (2009) 133–139.
  • [22] Lim K. T., Cho C. S., Choung Y. H., Influence of static magnetic field stimulation on cells for tissue engineering, Tissue Engineering and Regenerative Medicine, 6(1–3) (2009) 250–258.
  • [23] Yun H. M., Ahn S. J., Park K. R., Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation, Biomaterials, 85 (2016) 88–98.
  • [24] Zhao J., Li Y., Deng K., Yun P., Gong Y., Therapeutic Effects of Static Magnetic Field on Wound Healing in Diabetic Rats, Journal of Diabetes Research, (1-3) (2017) 1–5.
  • [25] Henry S. L., Concannon M. J., Yee G. J., The Effect of Magnetic Fields on Wound Healing Experimental Study and Review of the Literature, Eplasty, 8, (2008) e40.
  • [26] Vergallo C., Dini L., Szamosvölgyi Z., Tenuzzo B. A., Carata E., Panzarini E., László J., In Vitro Analysis of the Anti-Inflammatory Effect of Inhomogeneous Static Magnetic Field-Exposure on Human Macrophages and Lymphocytes, PLoS One, 8(8) (2013).
  • [27] Zhang L., Wang J., Wang H., Wang W., Li Z., Liu J., Zhang X., Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation, Oncotarget, 7(27) (2016) 41527–41539.
  • [28] Tasić T., Djordjević D., De Luka S., Trbovich A., Japundžić-Žigon N., Static magnetic field reduces blood pressure short-term variability and enhances baroreceptor reflex sensitivity in spontaneously hypertensive rats, International Journal of Radiation Biology, 93(5) (2017) 527–534.
  • [29] Brown C. S., Ling F. W., Wan J. Y., Pilla A. A., Efficacy of static magnetic field therapy in chronic pelvic pain: a double-blind pilot study, American Journal of Obstetrics and Gynecology, 187(6) (2002) 1581–1587.
  • [30] Darendeliler M. A., Darendeliler A., Sinclair P. M., Effects of static magnetic and pulsed electromagnetic fields on bone healing, The International Journal of Adult Orthodontics and Orthognathic Surgery, 12(1) (1997) 43–53.
  • [31] Gümüşay M., Gülbağça F., Aydemir I., Sayğılı S., Kaya A., Tuğlu M. İ., Sıçan Derisinde Oluşturulan Yara Modeli Üzerinde İyileşme Sağlanması için Elektromanyetik Alan Sistemi Geliştirilmesi ve Sensör Uygulaması, EMO Dergisi, (2016) 678-681.
  • [32] Shang W., Chen G., Li Y., Zhuo Y., Wang Y., Fang Z., Ren H., Static Magnetic Field Accelerates Diabetic Wound Healing by Facilitating Resolution of Inflammation, J Diabetes Res. (2019).
  • [33] Health Protection Agency., Static Magnetic Fields, (2008).

Static Magnetic Field Focusing With Neodymium Magnets For Wound Healing: A Numerical Study

Year 2024, Volume: 45 Issue: 3, 578 - 584, 30.09.2024
https://doi.org/10.17776/csj.1453508

Abstract

Static magnetic fields (SMFs) find widespread applications in diverse scientific, technological, and medical domains. This study explores the potential of neodymium permanent magnets in focusing and controlling SMFs, specifically emphasizing wound healing applications. Numerical simulations using COMSOL Multiphysics create a uniform static magnetic field for wound healing. The study systematically increases the number of neodymium magnets, demonstrating enhanced magnetic flux density and a focused magnetic field. The results affirm the efficacy of neodymium magnets in generating a uniform static magnetic field between 160-600 m Tesla. This research proposes neodymium permanent magnets as a promising tool for wound healing applications, offering a non-invasive and focused therapeutic approach. While the study provides valuable insights, further experimental and clinical validations are necessary to establish the real-world efficacy of this method. The work contributes to the evolving understanding of static magnetic fields as a viable therapeutic modality for various medical conditions, particularly in the context of wound healing.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TÜBİTAK )

Project Number

122E150

Thanks

The Scientific and Technological Research Council of Turkey (TÜBİTAK), project number 122E150, supports this study.

References

  • [1] Wang S., Zheng M., Lou C., Chen S., Guo H., Gao Y., Lv H., Yuan X., Zhang X., Shang P. , Evaluating the biological safety on mice at 16 T static magnetic field with 700 MHz radio-frequency electromagnetic field, Ecotoxicology and Environmental Safety, 230 113125 (2021).
  • [2] Brown M. A., Semelka R. C. , MRI: Basic Principles and Applications, Wiley-Blackwell, (2010).
  • [3] Kobayashi M., Pascual-Leone A., Transcranial magnetic stimulation in neurology, Lancet Neurology, 2(3) (2003) 145–156.
  • [4] Veiseh O., Gunn J. W., Zhang M., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Advanced Drug Delivery Reviews, 62(3) (2010) 284–304.
  • [5] Dobson J., Magnetic micro- and nano-particle-based targeting for drug and gene delivery, Nanomedicine, 1(1) (2006) 31–37.
  • [6] Ripka P., Janosek M. , Advances in magnetic field sensors, IEEE Sensors Journal, 10(6) (2010) 1108–1116.
  • [7] Rotundo S., Brizi D., Flori A., Giovannetti G., Menichetti L., Monorchio A., Shaping and Focusing Magnetic Field in the Human Body: State-of-the-Art and Promising Technologies, Sensors, 22(14) (2022) 5132.
  • [8] Stauffer P. R., Sneed P. K., Hashemi H., Phillips T. L. , Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants, IEEE Transactions on Biomedical Engineering, 41 (1994) 17–28.
  • [9] Nemkov V., Ruffini R., Goldstein R., Jackowski J., DeWeese T. L., Ivkov R. , Magnetic field generating inductor for cancer hyperthermia research, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 30(5) (2011).
  • [10] Nieskoski M. D., Trembly B. S., Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia, IEEE Transactions on Biomedical Engineering, 61 (2014) 1642–1650.
  • [11] Hadadian Y., Azimbagirad M., Navas E. A., Pavan T. Z., A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions, Review of Scientific Instruments, 90 (2019) 074701.
  • [12] Cano M. E., Barrera A., Estrada J. C., Hernandez A., Cordova T., An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements, Review of Scientific Instruments, 82 (2011) 114904.
  • [13] Mazon E. E., Sámano A. H., Calleja H., Quintero L. H., Paz J. A., Cano M. E., A frequency tuner for resonant inverters suitable for magnetic hyperthermia applications, Measurement Science and Technology, 28 (2017) 095901.
  • [14] Brizi D., Fontana N., Giovannetti G., Flori A., Menichetti L., Doumett S., Baldi G., Monorchio A., A novel approach for determining the electromagnetic properties of a colloidal fluid with magnetic nanoparticles for hyperthermia applications, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2 (2018) 70–77.
  • [15] Di Barba P., Dughiero F., Sieni E. , Magnetic field synthesis in the design of inductors for magnetic fluid hyperthermia, IEEE Transactions on Magnetics, 46, (2010) 2931–2934.
  • [16] Frijia F., Flori A., Giovannetti G., Design, simulation, and test of surface and volume radio frequency coils for 13C magnetic resonance imaging and spectroscopy, Review of Scientific Instruments, 92 (2021) 081402.
  • [17] Bordelon D. E., Goldstein R. C., Nemkov V. S., Kumar A., Jackowski J. K., DeWeese T. L., Ivkov R., Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications, IEEE Transactions on Magnetics, 48 (2011) 47–52.
  • [18] Gresits I., Thuróczy G., Sági O., Gyüre-Garami B., Márkus B. G., Simon F., Non-calorimetric determination of absorbed power during magnetic nanoparticle based hyperthermia, Scientific Reports, 8, (2018) 1–9.
  • [19] Giovannetti G., Landini L., Santarelli M. F., Positano V., A fast and accurate simulator for the design of birdcage coils in MRI, Magnetic Resonance Materials in Physics, Biology and Medicine, 15 (2002) 36–44.
  • [20] Du X., Graedel T. E., Global rare earth in-use stocks in NdFeB permanent magnets, Journal of Industrial Ecology, 15 (2011) 836–843.
  • [21] Colbert A. P., Wahbeh H., Harling N., Connelly E., Schiffke H. C., Forsten C., William L. G., Marko S. M., James J. S., Patricia E., Valerie K., Static magnetic field therapy: a critical review of treatment parameters, Evidence-Based Complementary and Alternative Medicine, 6 (2009) 133–139.
  • [22] Lim K. T., Cho C. S., Choung Y. H., Influence of static magnetic field stimulation on cells for tissue engineering, Tissue Engineering and Regenerative Medicine, 6(1–3) (2009) 250–258.
  • [23] Yun H. M., Ahn S. J., Park K. R., Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation, Biomaterials, 85 (2016) 88–98.
  • [24] Zhao J., Li Y., Deng K., Yun P., Gong Y., Therapeutic Effects of Static Magnetic Field on Wound Healing in Diabetic Rats, Journal of Diabetes Research, (1-3) (2017) 1–5.
  • [25] Henry S. L., Concannon M. J., Yee G. J., The Effect of Magnetic Fields on Wound Healing Experimental Study and Review of the Literature, Eplasty, 8, (2008) e40.
  • [26] Vergallo C., Dini L., Szamosvölgyi Z., Tenuzzo B. A., Carata E., Panzarini E., László J., In Vitro Analysis of the Anti-Inflammatory Effect of Inhomogeneous Static Magnetic Field-Exposure on Human Macrophages and Lymphocytes, PLoS One, 8(8) (2013).
  • [27] Zhang L., Wang J., Wang H., Wang W., Li Z., Liu J., Zhang X., Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation, Oncotarget, 7(27) (2016) 41527–41539.
  • [28] Tasić T., Djordjević D., De Luka S., Trbovich A., Japundžić-Žigon N., Static magnetic field reduces blood pressure short-term variability and enhances baroreceptor reflex sensitivity in spontaneously hypertensive rats, International Journal of Radiation Biology, 93(5) (2017) 527–534.
  • [29] Brown C. S., Ling F. W., Wan J. Y., Pilla A. A., Efficacy of static magnetic field therapy in chronic pelvic pain: a double-blind pilot study, American Journal of Obstetrics and Gynecology, 187(6) (2002) 1581–1587.
  • [30] Darendeliler M. A., Darendeliler A., Sinclair P. M., Effects of static magnetic and pulsed electromagnetic fields on bone healing, The International Journal of Adult Orthodontics and Orthognathic Surgery, 12(1) (1997) 43–53.
  • [31] Gümüşay M., Gülbağça F., Aydemir I., Sayğılı S., Kaya A., Tuğlu M. İ., Sıçan Derisinde Oluşturulan Yara Modeli Üzerinde İyileşme Sağlanması için Elektromanyetik Alan Sistemi Geliştirilmesi ve Sensör Uygulaması, EMO Dergisi, (2016) 678-681.
  • [32] Shang W., Chen G., Li Y., Zhuo Y., Wang Y., Fang Z., Ren H., Static Magnetic Field Accelerates Diabetic Wound Healing by Facilitating Resolution of Inflammation, J Diabetes Res. (2019).
  • [33] Health Protection Agency., Static Magnetic Fields, (2008).
There are 33 citations in total.

Details

Primary Language English
Subjects Bioengineering (Other)
Journal Section Natural Sciences
Authors

Elif Feyza Aydın 0009-0008-3743-6672

Reyhan Zengin 0000-0001-8631-3339

Project Number 122E150
Publication Date September 30, 2024
Submission Date March 15, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2024Volume: 45 Issue: 3

Cite

APA Aydın, E. F., & Zengin, R. (2024). Static Magnetic Field Focusing With Neodymium Magnets For Wound Healing: A Numerical Study. Cumhuriyet Science Journal, 45(3), 578-584. https://doi.org/10.17776/csj.1453508