Research Article
BibTex RIS Cite

Synthesis of Gum Arabic-Based Biopolymer Network and Determination of Its Toxicity Properties in In Vitro - In Vivo Model Systems

Year 2024, Volume: 45 Issue: 1, 54 - 63, 28.03.2024
https://doi.org/10.17776/csj.1385443

Abstract

In this study, gum arabic based network polymers were prepared using epoxy functional PEG structures. The basic physicochemical properties of these structures, their structural characterization, thermal properties and morphological properties were investigated. Toxicity properties of constructs synthesized on zebrafish (Danio rerio (Hamilton)) offspring were determined in vivo. In addition, in vitro toxicity tests were performed on L929 fibroblast cells. When the general properties of these structures were examined. Structural and thermal properties were better with increasing cross-linker rates ratios (1%, 3%, 5%). According to the toxicity test performed on zebrafish juveniles; GA-PEG-Epox (1%) constructs are non-toxic to zebrafish juveniles. The mortality rate of GA-PEG-Epox (3%) and GA-PEG-Epox (5%) structures was observed as 12.5% and 20.8%, respectively. It was observed that the structures were not toxic to zebrafish juveniles. MTT test performed on L929 fibroblast cells, high cell viability (>90%) was observed in all synthesized structures. These results are evaluated as Grade 1 according to ISO standards.

Supporting Institution

Herhangi bir kurum tarafından desteklenmemiştir. Tamamen donanımlı olan laboratuvar alt yapıları ile deneysel tüm akış gerçekleştirilmiştir.

References

  • [1] Singh A.V., Biopolymers in Drug Delivery: A Review, Pharmacologyonline, 1 (2011) 666-674.
  • [2] Gopi S., Amalraj A., Kalarikkal N., Zhang J., Thomas S., Guo Q., Preparation and Characterization of Nanocomposite Films Based on Gum Arabic, Maltodextrin and Polyethylene Glycol Reinforced with Turmeric Nanofiber Isolated from Turmeric Spent. Mater. Sci. Eng. C., 97 (2019) 723-729.
  • [3] Andrade-Mahecha M.M., Pelissari F.M., Tapia-Blácido D.R., Menegalli F.C., Achira as A Source of Biodegradable Materials: Isolation and Characterization of Nanofibers. Carbohydr. Polym., 123 (2015) 406–415.
  • [4] Wang W., Cai Z., Yu J., Xua Z., Changes in Composition, Structure and Properties of Jute Fibers After Chemical Treatments, Fibers Polym., 10 (2009) 776–780.
  • [5] Gopi S., Amalraj A., Sukumaran N.P., Haponiuk J.T., Thomas S, Biopolymers and Their Composites for Drug Delivery: A Brief Review, Macromol. Symp., 380 (2018) 1800114.
  • [6] Rani S., Kadam V., Rose N.M., Jose S., Yadav S., Shakyawar D.B., Wheat Starch, Gum Arabic and Chitosan Biopolymer Treatment of Wool Fabric for Improved Shrink Resistance Finishing, Int. J. Biol. Macromol., 163 (2020) 1044–1052.
  • [7] Khan M., Shah L.A., Rehman T., Khan A., Iqbal A., Ullah M., Alam S, Synthesis of Physically Cross-Linked Gum Arabic-Based Polymer Hydrogels with Enhanced Mechanical, Load Bearing and Shape Memory Behavior, Iran. Polym. J., 29 (2020) 351–360.
  • [8] Sarika P., Cinthya K., Jayakrishnan A., Anilkumar P., James N.R., Modified Gum Arabic Cross-Linked Gelatin Scaffold for Bio-Medical Applications, Mater. Sci. Eng. C., 43 (2014) 272–279.
  • [9] Tsai R.Y., Kuo T.Y., Hung S.C., Lin C.M., Hsien T.Y., Wang D.M., Hsieh H.J., Use of Gum Arabic to Improve the Fabrication of Chitosan–Gelatin-Based Nanofibers for Tissue Engineering, Carbohydr Polym., 115 (2015) 525–532.
  • [10] Teijeiro-Valiño C., Yebra-Pimentel E., Guerra-Varela J., Csaba N., Alonso M.J., Sánchez L., Assessment of the Permeability and Toxicity of Polymeric Nanocapsules Using the Zebrafish Model, Nanomedicine (Lond)., 12 (2017) 2069-2082.
  • [11] Macrae C.A., Peterson R.T., Zebrafish as Tools for Drug Discovery, Nat Rev Drug Discov., 14 (2015) 721-731.
  • [12] Magyary I., Recent Advances and Future Trends in Zebrafish Bioassays for Aquatic Ecotoxicology, Ecocycles., 4 (2018) 12-18.
  • [13] Moșneang C.L., Dumitrescu E., Muselin F., Ciulan V., Grozea A., Cristina R.T., Use of Zebra Fish Eggs as Early Indicators of Aquatic Environmental Pollution, Pol. J. Environ. Stud., 24 (2015) 2079-2085.
  • [14] Zon L.I., Peterson R.T., In Vivo Drug Discovery in The Zebrafish, Nat Rev Drug Discov., 4 (2005) 35-44.
  • [15] Howe K, Clark MD, Torroja CF et al., The Zebrafish Reference Genome Sequence and Its Relationship to The Human Genome, Nature, 496 (2013) 498-503.
  • [16] Mcgrath P., Li C.Q., Zebrafish: A Predictive Model for Assessing Drug-Induced Toxicity, Drug Discovery Today, 13 (2008) 394-401.
  • [17] Truzzi F., Mandrioli D., Gnudi F., Scheepers P.T.J., Silbergeld E.K., Belpoggi F., Dinelli G., Comparative Evaluation of the Cytotoxicity of Glyphosate-Based Herbicides and Glycine in L929 and Caco2 Cells, Front. Public Health., 9 (2021) 643898.
  • [18] Ibrahim S.M., Yin T.Y., Misran M., Arabic Gum Grafted PEGDMA Hydrogels: Synthesis, Physico-Chemical Characterization and In-vitro Release of Hydrophobic Drug, Macromol. Res., 28 (2020) 1220-1231.
  • [19] Amalraj A., Raj K.K.J, Haponiuk J.T., Thomas S., Gopi S., Preparation, Characterization, and Antimicrobial Activity of Chitosan/Gum Arabic/Polyethylene Glycol Composite Films İncorporated with Black Pepper Essential Oil and Ginger Essential Oil as Potential Packaging and Wound Dressing Materials, Adv. Compos. Hybrid Mater., 3 (2020) 485–497.
  • [20] Namasivayam S.K.R., Rabel A.M., Prasana R., Bharani R.S.A., Nachiyar C.V., Gum Acacia PEG İron Oxide Nanocomposite (GA-PEG-IONC) İnduced Pharmacotherapeutic Activity on The Las R Gene Expression of Pseudomonas Aeruginosa and HOXB13 Expression of Prostat Cancer (Pc 3) Cell Line. A Green Therapeutic Approach of Molecular Mechanism İnhibition, Int. J. Biol. Macromol., 190 (2021) 940–959.
  • [21] Zavareh S., Samandari G., Polyethylene Glycol as an Epoxy Modifier with Extremely High Toughening Effect: Formation of Nanoblend Morphology, Polym. Eng. Sci., 54 (2013) 1833-1838.
  • [22] Masuelli M.A., Hydrodynamic Properties of Whole Arabic Gum, Am. J. Food Technol., 1 (2013) 60-66.
  • [23] Motawie A.M., Sherif M.H., Badr M.M., Amer A.A., Shehat A.S., Synthesis and Characterization of Waterborne Epoxy Resins for Coating Application, Aust. J. Basic & Appl. Sci., 4 (2010) 1376-1382.
  • [24] Westerfield M., The zebrafish book, 5th Edition; A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press; Eugene, Oregon (2007).
  • [25] Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.F., Stages of Embryonic-Development of the Zebrafish, Dev Dynam., 203 (1995) 253-310.
  • [26] Resmi R., Yoonus J., Beena B, A Novel Greener Synthesis of ZnO Nanoparticles from Nilgiriantusciliantus Leaf Extract and Evaluation of Its Biomedical Applications, Mater. Today: Proc., 46 (2021) 3062-3068.
  • [27] Bashir M., Haripriya S., Assessment of Physical and Structural Characteristics of Almond Gum, Int. J. Biol. Macromol., 93 (2016) 476–482.
  • [28] Ibekwe C.A., Oyatogun G.M., Esan T.A., Oluwasegun K.M., Synthesis and Characterization of Chitosan/Gum Arabic Nanoparticles for Bone Regeneration, American Journal of Materials Science and Engineering, 5 (2017) 28-36.
  • [29] Stuart B.H., Infrared Spectroscopy: Fundamentals and Applications, first ed., John Wiley & Sons Ltd, West Sussex, 2004.
  • [30] Vodnar D.C., Pop O.L., Socacıu C., Monitoring Lactic Acid Fermentation in Media Containing Dandelion (Taraxacum officinale) by FTIR Spectroscopy, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40 (2012) 65-68.
  • [31] Mudgil D., Barak S., Khatkar B.S., X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum., Int. J. Biol. Macromol., 50 (2012) 1035–1039.
  • [32] Nepa E.I., Conwaya B.R., Characterization of Grewia Gum, a Potential Pharmaceutical Excipient, J. Excipients and Food Chem., 1 (2010) 30-40.
  • [33] Zohuriaan M.J., Shokrolahi F., Thermal Studies on Natural and Modified Gums, Polym. Test., 23 (2004) 575-579.
  • [34] Daoub R.M.A., Elmubarak A.H., Misran M., Hassan E.A., Osman M.E., Characterization and Functional Properties of Some Natural Acacia Gums, J. Saudi Soc. Agric. Sci., 17 (2018) 241-249.
  • [35] Wang C., Yang Z., Song W., Zhong Y., Sun M., Gan T., Bao B., Quantifying Gel Properties of İndustrial Waste-Based Geopolymers and Their Application in Pb2+ and Cu2+ Removal, J. Clean. Prod., 315 (2021) 128203.
  • [36] Karaca Acari I., Yilmaz I., Koytepe S., Ates B., Balcıoglu S., Seckin T., Synthesis, Characterization of Polyhedral Oligomeric Silsesquioxane-Metronidazole Conjugate and Determination of Antibacterial, Biocompatible Properties, Acta Chim Pharm Indica., 8 (2018) 134-148.
  • [37] De A., Nayak A.K., Kundu A., Das B., Samanta A., Chapter 7 - Gum arabic-based nanomaterials in drug delivery and biomedical applications. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications, (2021) 165-182.
  • [38] Abreu F.O.M. da S., Silva N.A. da., Sipauba M. de S., Pires T.F.M., Bomfim T.A., Monteiro Junior O.A. de C., Forte M.M. de C., Chitosan and Gum Arabic Nanoparticles for Heavy Metal Adsorption, Polímeros, 28 (2018) 231-238.
  • [39] Errich A., Azzaoui K., Mejdoubi E., Hammouti B., Abidi N., Akartasse N., Benidire L., Hajjaji S.EL., Sabbahi R., Lamhamdi A., Toxic Heavy Metals Removal Using a Hydroxyapatite and Hydroxyethyl Cellulose Modified with A New Gum Arabic, Indones. J. Sci. Technol., 6 (2021) 41-64.
  • [40] Saeedi-Jurkuyeha A., Jafarib A.J., Kalantarya R.R., Esrafilia A.A., Novel Synthetic Thin-Film Nanocomposite Forward Osmosis Membrane Modified by Graphene Oxide and Polyethylene Glycol for Heavy Metals Removal from Aqueous Solutions, React. Funct. Polym., 146 (2019) 104397
Year 2024, Volume: 45 Issue: 1, 54 - 63, 28.03.2024
https://doi.org/10.17776/csj.1385443

Abstract

References

  • [1] Singh A.V., Biopolymers in Drug Delivery: A Review, Pharmacologyonline, 1 (2011) 666-674.
  • [2] Gopi S., Amalraj A., Kalarikkal N., Zhang J., Thomas S., Guo Q., Preparation and Characterization of Nanocomposite Films Based on Gum Arabic, Maltodextrin and Polyethylene Glycol Reinforced with Turmeric Nanofiber Isolated from Turmeric Spent. Mater. Sci. Eng. C., 97 (2019) 723-729.
  • [3] Andrade-Mahecha M.M., Pelissari F.M., Tapia-Blácido D.R., Menegalli F.C., Achira as A Source of Biodegradable Materials: Isolation and Characterization of Nanofibers. Carbohydr. Polym., 123 (2015) 406–415.
  • [4] Wang W., Cai Z., Yu J., Xua Z., Changes in Composition, Structure and Properties of Jute Fibers After Chemical Treatments, Fibers Polym., 10 (2009) 776–780.
  • [5] Gopi S., Amalraj A., Sukumaran N.P., Haponiuk J.T., Thomas S, Biopolymers and Their Composites for Drug Delivery: A Brief Review, Macromol. Symp., 380 (2018) 1800114.
  • [6] Rani S., Kadam V., Rose N.M., Jose S., Yadav S., Shakyawar D.B., Wheat Starch, Gum Arabic and Chitosan Biopolymer Treatment of Wool Fabric for Improved Shrink Resistance Finishing, Int. J. Biol. Macromol., 163 (2020) 1044–1052.
  • [7] Khan M., Shah L.A., Rehman T., Khan A., Iqbal A., Ullah M., Alam S, Synthesis of Physically Cross-Linked Gum Arabic-Based Polymer Hydrogels with Enhanced Mechanical, Load Bearing and Shape Memory Behavior, Iran. Polym. J., 29 (2020) 351–360.
  • [8] Sarika P., Cinthya K., Jayakrishnan A., Anilkumar P., James N.R., Modified Gum Arabic Cross-Linked Gelatin Scaffold for Bio-Medical Applications, Mater. Sci. Eng. C., 43 (2014) 272–279.
  • [9] Tsai R.Y., Kuo T.Y., Hung S.C., Lin C.M., Hsien T.Y., Wang D.M., Hsieh H.J., Use of Gum Arabic to Improve the Fabrication of Chitosan–Gelatin-Based Nanofibers for Tissue Engineering, Carbohydr Polym., 115 (2015) 525–532.
  • [10] Teijeiro-Valiño C., Yebra-Pimentel E., Guerra-Varela J., Csaba N., Alonso M.J., Sánchez L., Assessment of the Permeability and Toxicity of Polymeric Nanocapsules Using the Zebrafish Model, Nanomedicine (Lond)., 12 (2017) 2069-2082.
  • [11] Macrae C.A., Peterson R.T., Zebrafish as Tools for Drug Discovery, Nat Rev Drug Discov., 14 (2015) 721-731.
  • [12] Magyary I., Recent Advances and Future Trends in Zebrafish Bioassays for Aquatic Ecotoxicology, Ecocycles., 4 (2018) 12-18.
  • [13] Moșneang C.L., Dumitrescu E., Muselin F., Ciulan V., Grozea A., Cristina R.T., Use of Zebra Fish Eggs as Early Indicators of Aquatic Environmental Pollution, Pol. J. Environ. Stud., 24 (2015) 2079-2085.
  • [14] Zon L.I., Peterson R.T., In Vivo Drug Discovery in The Zebrafish, Nat Rev Drug Discov., 4 (2005) 35-44.
  • [15] Howe K, Clark MD, Torroja CF et al., The Zebrafish Reference Genome Sequence and Its Relationship to The Human Genome, Nature, 496 (2013) 498-503.
  • [16] Mcgrath P., Li C.Q., Zebrafish: A Predictive Model for Assessing Drug-Induced Toxicity, Drug Discovery Today, 13 (2008) 394-401.
  • [17] Truzzi F., Mandrioli D., Gnudi F., Scheepers P.T.J., Silbergeld E.K., Belpoggi F., Dinelli G., Comparative Evaluation of the Cytotoxicity of Glyphosate-Based Herbicides and Glycine in L929 and Caco2 Cells, Front. Public Health., 9 (2021) 643898.
  • [18] Ibrahim S.M., Yin T.Y., Misran M., Arabic Gum Grafted PEGDMA Hydrogels: Synthesis, Physico-Chemical Characterization and In-vitro Release of Hydrophobic Drug, Macromol. Res., 28 (2020) 1220-1231.
  • [19] Amalraj A., Raj K.K.J, Haponiuk J.T., Thomas S., Gopi S., Preparation, Characterization, and Antimicrobial Activity of Chitosan/Gum Arabic/Polyethylene Glycol Composite Films İncorporated with Black Pepper Essential Oil and Ginger Essential Oil as Potential Packaging and Wound Dressing Materials, Adv. Compos. Hybrid Mater., 3 (2020) 485–497.
  • [20] Namasivayam S.K.R., Rabel A.M., Prasana R., Bharani R.S.A., Nachiyar C.V., Gum Acacia PEG İron Oxide Nanocomposite (GA-PEG-IONC) İnduced Pharmacotherapeutic Activity on The Las R Gene Expression of Pseudomonas Aeruginosa and HOXB13 Expression of Prostat Cancer (Pc 3) Cell Line. A Green Therapeutic Approach of Molecular Mechanism İnhibition, Int. J. Biol. Macromol., 190 (2021) 940–959.
  • [21] Zavareh S., Samandari G., Polyethylene Glycol as an Epoxy Modifier with Extremely High Toughening Effect: Formation of Nanoblend Morphology, Polym. Eng. Sci., 54 (2013) 1833-1838.
  • [22] Masuelli M.A., Hydrodynamic Properties of Whole Arabic Gum, Am. J. Food Technol., 1 (2013) 60-66.
  • [23] Motawie A.M., Sherif M.H., Badr M.M., Amer A.A., Shehat A.S., Synthesis and Characterization of Waterborne Epoxy Resins for Coating Application, Aust. J. Basic & Appl. Sci., 4 (2010) 1376-1382.
  • [24] Westerfield M., The zebrafish book, 5th Edition; A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press; Eugene, Oregon (2007).
  • [25] Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.F., Stages of Embryonic-Development of the Zebrafish, Dev Dynam., 203 (1995) 253-310.
  • [26] Resmi R., Yoonus J., Beena B, A Novel Greener Synthesis of ZnO Nanoparticles from Nilgiriantusciliantus Leaf Extract and Evaluation of Its Biomedical Applications, Mater. Today: Proc., 46 (2021) 3062-3068.
  • [27] Bashir M., Haripriya S., Assessment of Physical and Structural Characteristics of Almond Gum, Int. J. Biol. Macromol., 93 (2016) 476–482.
  • [28] Ibekwe C.A., Oyatogun G.M., Esan T.A., Oluwasegun K.M., Synthesis and Characterization of Chitosan/Gum Arabic Nanoparticles for Bone Regeneration, American Journal of Materials Science and Engineering, 5 (2017) 28-36.
  • [29] Stuart B.H., Infrared Spectroscopy: Fundamentals and Applications, first ed., John Wiley & Sons Ltd, West Sussex, 2004.
  • [30] Vodnar D.C., Pop O.L., Socacıu C., Monitoring Lactic Acid Fermentation in Media Containing Dandelion (Taraxacum officinale) by FTIR Spectroscopy, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40 (2012) 65-68.
  • [31] Mudgil D., Barak S., Khatkar B.S., X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum., Int. J. Biol. Macromol., 50 (2012) 1035–1039.
  • [32] Nepa E.I., Conwaya B.R., Characterization of Grewia Gum, a Potential Pharmaceutical Excipient, J. Excipients and Food Chem., 1 (2010) 30-40.
  • [33] Zohuriaan M.J., Shokrolahi F., Thermal Studies on Natural and Modified Gums, Polym. Test., 23 (2004) 575-579.
  • [34] Daoub R.M.A., Elmubarak A.H., Misran M., Hassan E.A., Osman M.E., Characterization and Functional Properties of Some Natural Acacia Gums, J. Saudi Soc. Agric. Sci., 17 (2018) 241-249.
  • [35] Wang C., Yang Z., Song W., Zhong Y., Sun M., Gan T., Bao B., Quantifying Gel Properties of İndustrial Waste-Based Geopolymers and Their Application in Pb2+ and Cu2+ Removal, J. Clean. Prod., 315 (2021) 128203.
  • [36] Karaca Acari I., Yilmaz I., Koytepe S., Ates B., Balcıoglu S., Seckin T., Synthesis, Characterization of Polyhedral Oligomeric Silsesquioxane-Metronidazole Conjugate and Determination of Antibacterial, Biocompatible Properties, Acta Chim Pharm Indica., 8 (2018) 134-148.
  • [37] De A., Nayak A.K., Kundu A., Das B., Samanta A., Chapter 7 - Gum arabic-based nanomaterials in drug delivery and biomedical applications. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications, (2021) 165-182.
  • [38] Abreu F.O.M. da S., Silva N.A. da., Sipauba M. de S., Pires T.F.M., Bomfim T.A., Monteiro Junior O.A. de C., Forte M.M. de C., Chitosan and Gum Arabic Nanoparticles for Heavy Metal Adsorption, Polímeros, 28 (2018) 231-238.
  • [39] Errich A., Azzaoui K., Mejdoubi E., Hammouti B., Abidi N., Akartasse N., Benidire L., Hajjaji S.EL., Sabbahi R., Lamhamdi A., Toxic Heavy Metals Removal Using a Hydroxyapatite and Hydroxyethyl Cellulose Modified with A New Gum Arabic, Indones. J. Sci. Technol., 6 (2021) 41-64.
  • [40] Saeedi-Jurkuyeha A., Jafarib A.J., Kalantarya R.R., Esrafilia A.A., Novel Synthetic Thin-Film Nanocomposite Forward Osmosis Membrane Modified by Graphene Oxide and Polyethylene Glycol for Heavy Metals Removal from Aqueous Solutions, React. Funct. Polym., 146 (2019) 104397
There are 40 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other)
Journal Section Natural Sciences
Authors

İdil Karaca Açarı 0000-0001-6783-7030

Duygu Özhan Turhan 0000-0002-7111-4289

Ali Kuruçay 0000-0002-8816-0425

Süleyman Köytepe 0000-0002-4788-278X

Burhan Ateş 0000-0001-6080-229X

Publication Date March 28, 2024
Submission Date November 3, 2023
Acceptance Date March 11, 2024
Published in Issue Year 2024Volume: 45 Issue: 1

Cite

APA Karaca Açarı, İ., Özhan Turhan, D., Kuruçay, A., Köytepe, S., et al. (2024). Synthesis of Gum Arabic-Based Biopolymer Network and Determination of Its Toxicity Properties in In Vitro - In Vivo Model Systems. Cumhuriyet Science Journal, 45(1), 54-63. https://doi.org/10.17776/csj.1385443