Research Article
BibTex RIS Cite
Year 2023, Volume: 44 Issue: 2, 389 - 395, 30.06.2023
https://doi.org/10.17776/csj.1226987

Abstract

References

  • [1] Bøtter-Jensen L., McKeever S.W.S., Wintle A.G., Optically stimulated luminescence dosimetry, Elsevier, (2003) 27-44.
  • [2] McKeever S.W.S., Thermoluminescence of solids, Cambridge University Press, (1985) 127-152. [3] Akselrod M.S., Agersnap Larsen N., Whitley V., McKeever S.W.S., Thermal quenching of F-center luminescence in Al2O3:C, J. Appl. Phys., 84(6) (1988) 3364-3373.
  • [4] Aşlar E., Meriç N., Şahiner E., Kitis G., Polymeris G. S., Calculation of thermal quenching parameters in BeO ceramics using solely TL measurements, Radiat. Meas., 103 (2017) 13-25.
  • [5] Bulur E., Göksu H.Y., OSL from BeO ceramics: new observations from an old material, Radiat. Meas., 29(6) (1998) 639-650.
  • [6] Chithambo M.L., The analysis of time-resolved optically stimulated luminescence: II. Computer simulations and experimental results, J. Phys. D., 40(7) (2007) 1880-1889.
  • [7] Yukihara E.G., Luminescence properties of BeO optically stimulated luminescence (OSL) detectors, Radiat. Meas., 46(6-7) (2011) 580-587.
  • [8] Bulur E., Saraç B.E., Time-resolved OSL studies on BeO ceramics, Radiat. Meas., 59 (2013) 129-138.
  • [9] Altunal V., Guckan V., Ozdemir A., Sotelo A., Yegingil Z., Effect of sintering temperature on dosimetric properties of BeO ceramic pellets synthesized using precipitation method, Nucl. Instrum. Methods Phys. Res. B, 441 (2019) 46-55.
  • [10] Bos A.J.J., High sensitivity thermoluminescence dosimetry, Nucl. Instrum. Methods Phys. Res. B, 184(1-2) (2001) 3-28.
  • [11] Taylor G.C., Lilley E., The analysis of thermoluminescent glow peaks in LiF (TLD-100), J. Phys. D, 11(4) (1978) 567-581.
  • [12] Pradhan A.S., Bhatt R.C., Influence of heating rates on the response of TLD phosphors, Int. J. Appl. Radiat. Isot., 30(8) (1979) 508-510.
  • [13] Caprile P.F., Sánchez-Nieto B., Pino A.M., Delgado J.F., Effects of heating rate and dose on trapping parameters of TLD-100 crystals, Health Phys., 104(2) (2013) 218-223.
  • [14] Singh R., Kainth H.S., Effect of heating rate on thermoluminescence output of LiF:Mg,Ti (TLD-100) in dosimetric applications, Nucl. Instrum. Methods Phys. Res. B, 426 (2018) 22-29.
  • [15] Pradhan A.S., Influence of heating rate on the TL response of LiF TLD-700, LiF:Mg,Cu,P and Al2O3:C, Radiat. Prot. Dosim., 58(3) (1995) 205-209.
  • [16] Luo L.Z., Velbeck K.J., Moscovitch M., Rotunda J.E. LiF:Mg,Cu,P glow curve shape dependence on heating rate. Radiat. Prot. Dosim., 119(1-4) (2006) 184-190.
  • [17] Pradhan A.S., Thermal quenching and two peak method-influence of heating rates in TLDs, Radiat. Prot. Dosim., 65(1-4) (1996) 73-78.
  • [18] İflazoğlu S., Kafadar V.E., Yazici B., Yazici A.N., Thermoluminescence kinetic parameters of TLD-600 and TLD-700 after 252Cf Neutron+ Gamma and 90Sr-90Y beta radiations, Chin. Phys. Lett., 34(1) (2017) 017801.
  • [19] Oster L., Eliyahu I., Horowitz Y.S., Reshes G., Shapiro A., Garty G., Demonstration of the potential and difficulties of combined TL and OSL measurements of TLD-600 and TLD-700 for the determination of the dose components in complex neutron-gamma radiation fields, Radiat. Prot. Dosim., 188(3) (2020) 383-388.
  • [20] Youssian D., Horowitz Y.S., Estimation of gamma dose in neutron dosimetry using peak 4 to peak 5 ratios in LiF: Mg,Ti (TLD-100/600), Radiat. Prot. Dosim., 77(3) (1998) 151-158.
  • [21] Yasuda H., Fujitaka K., Non-linearity of the high temperature peak area ratio of 6LiF: Mg,Ti (TLD-600), Radiat. Meas., 32(4) (2000) 355-360

Investigation of Thermal Quenching Effect for Lithium Fluoride (LiF) Type Dosimeters

Year 2023, Volume: 44 Issue: 2, 389 - 395, 30.06.2023
https://doi.org/10.17776/csj.1226987

Abstract

Thermal quenching is described as a decrease in luminescence efficiency with increasing measurement temperature. Luminescence intensity decreases with increasing heating rates in the presence of thermal quenching. In such a case, the heating rate to be used in the measurements becomes important. Lithium fluoride (LiF) type dosimeters have been widely used in radiation dosimetry for many years. In this study, thermal quenching effect was investigated for LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (TLD-100H), 6LiF:Mg,Ti(TLD-600) and 7LiF:Mg,Ti (TLD-700) at two different doses (10, 1000mGy) using 90Sr/90Y beta source. TLD-100, TLD-600 and TLD-700 showed different thermal quenching behaviors according to dose values, while TLD-100H had the same characteristics at both doses. On the other hand, other dosimeters showed thermal quenching based on the total area at 10mGy, while they did not show thermal quenching when ROI was used. Again, thermal quenching was not observed at 1000mGy for all dosimeters. In conclusion, it is recommended to use ROI or low heating rate during measurements at a low dose (in the order of mGy) for TLD-100, TLD-600 and TLD-700, while desired heating rate can be used at a high dose (Gy) for all dosimeters.

References

  • [1] Bøtter-Jensen L., McKeever S.W.S., Wintle A.G., Optically stimulated luminescence dosimetry, Elsevier, (2003) 27-44.
  • [2] McKeever S.W.S., Thermoluminescence of solids, Cambridge University Press, (1985) 127-152. [3] Akselrod M.S., Agersnap Larsen N., Whitley V., McKeever S.W.S., Thermal quenching of F-center luminescence in Al2O3:C, J. Appl. Phys., 84(6) (1988) 3364-3373.
  • [4] Aşlar E., Meriç N., Şahiner E., Kitis G., Polymeris G. S., Calculation of thermal quenching parameters in BeO ceramics using solely TL measurements, Radiat. Meas., 103 (2017) 13-25.
  • [5] Bulur E., Göksu H.Y., OSL from BeO ceramics: new observations from an old material, Radiat. Meas., 29(6) (1998) 639-650.
  • [6] Chithambo M.L., The analysis of time-resolved optically stimulated luminescence: II. Computer simulations and experimental results, J. Phys. D., 40(7) (2007) 1880-1889.
  • [7] Yukihara E.G., Luminescence properties of BeO optically stimulated luminescence (OSL) detectors, Radiat. Meas., 46(6-7) (2011) 580-587.
  • [8] Bulur E., Saraç B.E., Time-resolved OSL studies on BeO ceramics, Radiat. Meas., 59 (2013) 129-138.
  • [9] Altunal V., Guckan V., Ozdemir A., Sotelo A., Yegingil Z., Effect of sintering temperature on dosimetric properties of BeO ceramic pellets synthesized using precipitation method, Nucl. Instrum. Methods Phys. Res. B, 441 (2019) 46-55.
  • [10] Bos A.J.J., High sensitivity thermoluminescence dosimetry, Nucl. Instrum. Methods Phys. Res. B, 184(1-2) (2001) 3-28.
  • [11] Taylor G.C., Lilley E., The analysis of thermoluminescent glow peaks in LiF (TLD-100), J. Phys. D, 11(4) (1978) 567-581.
  • [12] Pradhan A.S., Bhatt R.C., Influence of heating rates on the response of TLD phosphors, Int. J. Appl. Radiat. Isot., 30(8) (1979) 508-510.
  • [13] Caprile P.F., Sánchez-Nieto B., Pino A.M., Delgado J.F., Effects of heating rate and dose on trapping parameters of TLD-100 crystals, Health Phys., 104(2) (2013) 218-223.
  • [14] Singh R., Kainth H.S., Effect of heating rate on thermoluminescence output of LiF:Mg,Ti (TLD-100) in dosimetric applications, Nucl. Instrum. Methods Phys. Res. B, 426 (2018) 22-29.
  • [15] Pradhan A.S., Influence of heating rate on the TL response of LiF TLD-700, LiF:Mg,Cu,P and Al2O3:C, Radiat. Prot. Dosim., 58(3) (1995) 205-209.
  • [16] Luo L.Z., Velbeck K.J., Moscovitch M., Rotunda J.E. LiF:Mg,Cu,P glow curve shape dependence on heating rate. Radiat. Prot. Dosim., 119(1-4) (2006) 184-190.
  • [17] Pradhan A.S., Thermal quenching and two peak method-influence of heating rates in TLDs, Radiat. Prot. Dosim., 65(1-4) (1996) 73-78.
  • [18] İflazoğlu S., Kafadar V.E., Yazici B., Yazici A.N., Thermoluminescence kinetic parameters of TLD-600 and TLD-700 after 252Cf Neutron+ Gamma and 90Sr-90Y beta radiations, Chin. Phys. Lett., 34(1) (2017) 017801.
  • [19] Oster L., Eliyahu I., Horowitz Y.S., Reshes G., Shapiro A., Garty G., Demonstration of the potential and difficulties of combined TL and OSL measurements of TLD-600 and TLD-700 for the determination of the dose components in complex neutron-gamma radiation fields, Radiat. Prot. Dosim., 188(3) (2020) 383-388.
  • [20] Youssian D., Horowitz Y.S., Estimation of gamma dose in neutron dosimetry using peak 4 to peak 5 ratios in LiF: Mg,Ti (TLD-100/600), Radiat. Prot. Dosim., 77(3) (1998) 151-158.
  • [21] Yasuda H., Fujitaka K., Non-linearity of the high temperature peak area ratio of 6LiF: Mg,Ti (TLD-600), Radiat. Meas., 32(4) (2000) 355-360
There are 20 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Engin Aşlar 0000-0002-1414-0317

Publication Date June 30, 2023
Submission Date December 30, 2022
Acceptance Date June 10, 2023
Published in Issue Year 2023Volume: 44 Issue: 2

Cite

APA Aşlar, E. (2023). Investigation of Thermal Quenching Effect for Lithium Fluoride (LiF) Type Dosimeters. Cumhuriyet Science Journal, 44(2), 389-395. https://doi.org/10.17776/csj.1226987