Research Article
BibTex RIS Cite

CT-DNA/BSA Binding Studies of Thiosemicarbazone-Derivated Zn(II) Complex

Year 2022, Volume: 43 Issue: 1, 45 - 52, 30.03.2022
https://doi.org/10.17776/csj.1004338

Abstract

Zn(II) complex of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone { Zn(HMAT)2} was synthesized and characterized by 1H NMR, UV–Vis and FT-IR spectroscopies. Further, X-ray powder diffraction (XRD) analysis of Zn(HMAT)2 was carried out to point out the complexation. The binding affinities of Zn(HMAT)2 with calf thymus DNA (CT-DNA) have been studied by using fluorescence and absorption titration technics. In addition, bovine serum albumin (BSA) binding studies were recorded by fluorescence and UV–Vis spectroscopy. Zn(HMAT)2 is a strong binders of CT-DNA with binding constant (Kb) 3.65×107 M−1. The binding parameters KSV (for EB), Kq (for BSA) and Kb (for BSA) were determined as 8.2×107 M−1, 1.8×1014 M−1 s−1 and 2×107 M−1 respectively.

References

  • [1] Deng J.G., Li T., Su G., Qin Q.P., Liu Y., Gou Y., Co(III) complexes based on a-N-heterocyclic thiosemicarbazone ligands: DNA binding, DNA cleavage, and topoisomerase I/II inhibitory activity studies, J. Mol. Struct., 1167 (2018) 33-43.
  • [2] Li V.S., Choi D., Wang Z., Jimenez L.S., Tang M.S., Kohn H., Role of the C-10 substituent in mitomycin C-1-DNA bonding, J. Am. Chem. Soc., 118 (10) (1996) 2326–2331.
  • [3] Zuber G., Quada J.C., Hecht S.M., Sequence selective cleavage of a DNA octanucleotide by chlorinated bithiazoles and bleomycins, J. Am. Chem. Soc., 120 (36) (1998) 9368–9369.
  • [4] Kalaiarasi G., Umadevi C., Shanmugapriya A., Kalaivani P., Dallemer F., Prabhakaran R., DNA(CT), protein (BSA) binding studies, anti-oxidant and cytotoxicity studies of new binuclear Ni(II) complexes containing 4(N)-substituted thiosemicarbazones, Inorg. Chim. Acta, 453 (2016) 547-558.
  • [5] Giannini F., Suss-Fink G., Furrer J., Efficient Oxidation of Cysteine and Glutathione Catalyzed by a Dinuclear Areneruthenium Trithiolato Anticancer Complex, Inorg. Chem., 50 (21) (2011) 10552-10554.
  • [6] Suda Y., Arano A., Fukui Y., Koshida S., Wakao M., Nishimura T., Kusumoto S., Sobel M., Immobilization and Clustering of Structurally Defined Oligosaccharides for Sugar Chips:  An Improved Method for Surface Plasmon Resonance Analysis of Protein−Carbohydrate Interactions, Bioconjugate Chem., 17(5) (2006) 1125-1135.
  • [7] Mahon A.B., Arora P.S., Design, synthesis and protein-targeting properties of thioether-linked hydrogen bond surrogate helices, Chem. Commun., 48 (2012) 1416-1418.
  • [8] shaq M., Taslimi P., Shafiq Z., Khana S., Salmas R.E., Zangeneh M.M., Saeed A., Zangeneh A., Sadeghian N., Asari A., Mohamad H., Synthesis, bioactivity and binding energy calculations of novel 3-ethoxysalicylaldehyde based thiosemicarbazone derivatives, Bioorg. Chem., 100 (2020) 103924-103933.
  • [9] Zhang X., Li S., Yang L., Fan C., Synthesis, characterization of Ag(I), Pd(II) and Pt(II) complexes of a triazine-3-thione and their interactions with bovine serum albumin, Spectrochim. Acta Part A, 68(3) (2007) 763–770.
  • [10] Bessega T., Chaves O.A., Martins F.M., Acunha T.V., Back D.F., Iglesias B.A., Oliveira G.M., Coordination of Zn(II), Pd(II) and Pt(II) with ligands derived from diformylpyridine and thiosemicarbazide: Synthesis, structural characterization, DNA/BSA binding properties and molecular docking analysis, Inorg. Chim. Acta, 496 (2019) 119049-119058.
  • [11] Kumar S.M., Kesavan M.P., Kumar G.G.V., Sankarganesh M., Chakkaravarthi G., Rajagopal G., Rajesh J., New heteroleptic Zn(II) complexes of thiosemicarbazone and diimine Co-Ligands: Structural analysis and their biological impacts, J. Mol. Struct., 1153 (2018) 1-11.
  • [12] Mathews N.A., Kurup M.R.P., In vitro biomolecular interaction studies and cytotoxic activities of copper(II) and zinc(II) complexes bearing ONS donor thiosemicarbazones, Appl. Organomet. Chem., 35(1) (2020) 6056.
  • [13] Balakrishnan N., Haribabu J., Krishnan D.A., Swaminathan S., Mahendiran D., Bhuvanesh N.S.P., Karvembu R., Zinc(II) complexes of indole thiosemicarbazones: DNA/protein binding, molecular docking and in vitro cytotoxicity studies, Polyhedron, 170 (2019) 188–201.
  • [14] Haribabu J., Priyarega S., Bhuvanesh N.S.P., Karvembu R., Synthesis and molecular structure of the zinc(II) complex bearing an N, S donor ligand, J. Struct. Chem., 61(1) (2020) 66-72.
  • [15] Zhang Y.Z., Zhou B., Liu Y.X., Zhou C.X., Ding X.L., Liu Y., Fluorescence Study on the Interaction of Bovine Serum Albumin with P-Aminoazobenzene, J. Fluores., 18 (2008) 109-118.
  • [16] Zareia L., Asadi Z., Samolova E., Dusek M., Amirghofran Z., Pyrazolate as bridging ligand in stabilization of self-assemble Cu(II) Schiff base complexes: Synthesis, structural investigations, DNA/protein (BSA) binding and growth inhibitory effects on the MCF7, CT-26, MDA-MB-231 cell lines, Inorg. Chim. Acta, 509 (20201) 19674-119687.
  • [17] Ghosh K.S., Sen S., Sahoo B.K., Dasgupta S., A spectroscopic investigation into the interactions of 3′-O-carboxy esters of thymidine with bovine serum albumin, Biopolymers: Orig. Res. Biomol., 91 (9) (2009) 737–744.
  • [18] Ucar A., Findik M., Kuzu M., Pehlivanoglu S., Sayin U., Sayin Z., Akgemci E.G., Cytotoxic effects, microbiological analysis and inhibitory properties on carbonic anhydrase isozyme activities of 2 hydroxy 5 methoxyacetophenone thiosemicarbazone and its Cu(II), Co(II), Zn(II) and Mn(II) complexes, Res. Chem. Intermed., 47 (2021) 533-550.
  • [19] Akgemci E.G., Saf A.O., Tasdemir H.U., Türkkan E., Bingol H., Turan S.O., Akkiprik M., Spectrophotometric, voltammetric and cytotoxicity studies of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone and its N(4)-substituted derivatives: A combined experimental–computational study, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 136 (2015) 719-725.
  • [20] Kotian A., Kamat V., Naik K., Kokare D.G., Kumara K., Lokanath N.K., Revankar V.K., Hydroxyacetone derived N4-methyl substituted thiosemicarbazone: Syntheses, crystal structures and spectroscopic characterization of later first-row transition metal complexes, J. Mol. Struct., 1224 (2021) 129055-129062.
  • [21] Santoro A., Vileno B., Palacios Ò., Díazd M.D.P., Riegel G., Gaiddon C., Krężel A., Faller P., Reactivity of Cu(II)-, Zn(II)- and Fe(II)- thiosemicarbazone complexes with glutathione and metallothionein: from stability to dissociation to transmetallation, Metallomics, 11 (2019) 994-1004.
  • [22] Cıkla I.K., Güveli S., Yavuz M., Demirci T.B., Ülküseven B., 5-Methyl-2-hydroxy-acetophenone-thiosemicarbazone and its nickel(II) complex: Crystallographic, spectroscopic (IR, NMR and UV) and DFT studies, Polyhedron, 105 (2016) 104-114.
  • [23] Sharma D., Jasinski J.P., Smolinski V.A., Kaur M., Paul K., Sharma R., Synthesis and structure of complexes (NiII, AgI) of substituted benzaldehyde thiosemicarbazones and antitubercular activity of NiII complex, Inorg. Chim. Acta, 499 (2020) 119187-119194.
  • [24] Konakanchi R., Haribabu J., Prashanth J., Nishtala V.B., Mallela R., Manchala S., Gandamalla D., Karvembu R., Reddy B.V., Yellu N.R., Kotha L.R., Synthesis, Structural, Biological Evaluation, Molecular Docking and DFT Studies of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) Complexes bearing Heterocyclic Thiosemicarbazone ligand, Appl. Organomet. Chem., 32 (8) (2018) 4415.
  • [25] Arafath M.A., Adam F., Razali M.R., Hassan L.E.A., Ahamed M.B.K., Majid A.M.S.A., Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3 nitrobenzaldehyde, J. Mol. Struct., 1130 (2017) 791-798.
  • [26] Nyawade E.A., Sibuyi N.R.S., Meyer M., Lalancette R., Onani M.O., Synthesis, characterization and anticancer activity of new 2-acetyl-5-methyl thiophene and cinnamaldehyde thiosemicarbazones and their palladium(II) complexes, Inorg. Chim. Acta, 515 (2021) 20036-120045.
  • [27] Savir S., Wei Z.J., Liew J.W.K., Vythilingam I., Lim Y.A.L., Saad H.M., Sim K.S., Tan K.W., Synthesis, cytotoxicity and antimalarial activities of thiosemicarbazones and their nickel (II) complexes, J. Mol. Struct., 1211 (2020) 128090-128099.
  • [28] Amuthakala S., Bharath S., Rahiman A.K., Thiosemicarbazone-based bifunctional chemosensors for simultaneous detection of inorganic cations and fluoride anion, J. Mol. Struct., 1219 (2020) 128640-128654.
  • [29] Huseynova M., Farzaliyev V., Medjidov A., Aliyeva M., Taslimi P., Sahin O., Yalçın B., Novel zinc compound with thiosemicarbazone of glyoxylic acid: Synthesis, crystal structure, and bioactivity properties, J. Mol. Struct., 1200 (2020) 127082-127091.
  • [30] Kalantari R., Asad Z., DNA/BSA binding of a new oxovanadium (IV) complex of glycylglycine derivative Schiff base ligand, J. Mol. Struct., 1219 (2020) 128664-128675.
  • [31] Jacob J.M., Kurup M.R.P., Nisha K., Serdaroglu G., Kaya S., Mixed ligand copper(II) chelates derived from an O, N, S- donor tridentate thiosemicarbazone: Synthesis, spectral aspects, FMO and NBO analysis, Polyhedron, 189 (2020) 114736-114746.
  • [32] Li Q.X., Tang H.A., Li Y.Z., Wang M., Wang L.F., Xia C.G., Synthesis, characterization, and antibacterial activity of novel Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes with vitamin K3-thiosemicarbazone, J. Inorg. Biochem., 78 (2) (2000) 167-174.
  • [33] Palve A.M., Garje S.S., Preparation of zinc sulfide nanocrystallites from single-molecule precursors, J. Cryst. Growth, 326 (1) (2011) 157-162.
  • [34] Attralarasan S., Febena A.S., Raj M.V.A, Madhavan J., Synthesis, Characterization and DFT Calculations ofnThiosemicarbazone 4-Methoxy Benzaldehyde Zinc Chloride, Mechanics, Materials Science & Engineering, 9 (2017).
  • [35] Kumar L.V., Sundaresan S., Gopinathan R.N., Antioxidant, antidiabetic and anticancer studies of nickel complex of Vanillin-4-Methyl-4-Phenyl-3-Thiosemicarbazone, Mater. Today 41 (3) (2021) 669-675. [36] Ayyannan G., Mohanraj M., Gopiraman M., Uthayamalar R., Raja G., Bhuvanesh N., Nandhakumar R., Jayabalakrishnan C., New Palladium(II) complexes with ONO chelated hydrazone ligand: Synthesis, characterization, DNA/BSA interaction, antioxidant and cytotoxicity, Inorg. Chim. Acta, 512 (2020) 119868.
  • [37] Bashiri M., Jarrahpour A.S., Nabavizadeh M., Karimian S., Rastegari B., Haddadi E., Turos E., Potent antiproliferative active agents: novel bis Schiff bases and bis spiro β-lactams bearing isatin tethered with butylene and phenylene as spacer and DNA/BSA binding behavior as well as studying molecular docking, Medic. Chem. Res., 30 (2021) 258–284.
  • [38] Amitha G.S., Vasudevan S., DNA binding and cleavage studies of novel Betti base substituted quaternary Cu(II) and Zn(II) phthalocyanines, Polyhedron, 190 (2020) 114773-114782.
  • [39] Husain M.A., Ishqi H.M., Sarwar T., Rehman S.U., Tabish M., Interaction of indomethacin with calf thymus DNA: a multi-spectroscopic, thermodynamic and molecular modelling approach, Med. Chem. Comm., 8 (2017) 1283.
  • [40] Tian Z., Huang Y., Zhang Y., Song L., Qiao Y., Xu X., Wang C., Spectroscopic and molecular modeling methods to study the interaction between naphthalimide-polyamine conjugates and DNA, J. Photochem. Photobiol. B., 158 (2016) 1–15.
  • [41] Mo D., Shi J., Zhao D., Zhang Y., Guan Y., Shen Y., Bian H., Huang F., Wu S., Synthesis and characterization of FeIII/CoIII/CuII complexes with Schiff base ligand and their hybrid proteins, SOD activity and asymmetric catalytic oxidation of sulfides, J. Mol. Struct., 1223 (2021) 129229-129238.
  • [42] are W.R., Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process, J. Phys. Chem., 66 (3) (1962) 455–458.
  • [43] Singh R., Afzal M., Zaki M., Ahmad M., Tabassum S., Bharadwaj P.K., Synthesis, structure elucidation and DFT studies of a new coumarin-derived Zn(II) complex: in vitro DNA/HSA binding profile and pBR322 cleavage pathway, RSC Adv., 4 (2014) 43504.
  • [44] Ambika S., Manojkumar Y., Arunachalam S., Gowdhami B., Sundaram K.K.M., Solomon R.V, Venuvanalingam P., Akbarsha M.A., Sundararaman M., Biomolecular Interaction, AntiNCancer and Anti-Angiogenic Properties of Cobalt(III) Schiff Base Complexes, Sci. Rep., 9 (2019) 2721.
  • [45] Li Y., Yang Z., Li T., Synthesis, characterisation, in vitro DNA binding properties and antioxidant activities of Ln(III) complexes with chromone-3-carbaldehyde- (2´-hydroxy) benzoyl hydrazone, Prog. React. Kinet. Mech., 40 (4) (2015) 313-329.
  • [46] Zhang Y.P., Li Y., Xu G.C., Li J.Y., Luo H.Y., Li J.Y., Zhang Li., Jia D.Z., Synthesis, crystal structure, DNA/bovine serum albümin binding and antitumor activity of two transition metal complexes with 4‐acylpyrazolone derivative, Appl. Organometal Chem., 33 (2019) 4668.
  • [47] Asadizadeha S., Amirnasra M., Tirani F.F., Mansouria A., Schenk K., DNA-BSA interaction, cytotoxicity and molecular docking of mononuclear zinc complexes with reductively cleaved N2S2 Schiff base ligands, Inorganica Chimica Acta, 483 (2018) 310–320.
  • [48] Narwane M., Dorairaj D.P., Chang Y.L, Karvembu R., Huang Y.H., Chang H.W., Hsu S.C.N., Tris-(2-pyridyl)-pyrazolyl Borate Zinc(II) Complexes: Synthesis, DNA/Protein Binding and In Vitro Cytotoxicity Studies, Molecules, 26 (2021) 7341.
  • [49] Liu J.J., Liu X.R., Zhao S.S., Yang Z.W., Yang Z., Syntheses, crystal structures, thermal stabilities, CT-DNA, and BSA binding characteristics of a new acylhydrazone and its Co(II), Cu(II), and Zn(II) complexes, Journal Of Coordination Chemistry, 73 (2020) 1159–1176.
  • [50] Amitha G.S., Vasudevan S., DNA/BSA binding studies of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine, Polyhedron, 175 (2020) 114208.
  • [51] Bessegaa T., Chaves O.A., Martins F.M., Acunha T.V., Back D.F., Iglesias B.A., Oliveira G.M., Coordination of Zn(II), Pd(II) and Pt(II) with ligands derived from diformylpyridine and thiosemicarbazide: Synthesis, structural characterization, DNA/BSA binding properties and molecular docking analysis, Inorganica Chimica Acta, 496 (2019) 119049.
  • [52] Ramilo-Gomes F., Addis Y., Tekamo I., Cavaco I., Campos D., Pavan I.R., Gomes C.S.B., Brito V., Santos A.O., Domingues F., Luís A., Marques M.M., Pessoa J.C., Ferreira S., Silvestre S., Correia I., Antimicrobial and antitumor activity of S-methyl dithiocarbazate Schiff base zinc(II) complexes, Journal of Inorganic Biochemistry, 216 (2021) 111331.
  • [53] Daryanavard M., Jannesari Z., Javeri M., Abyar F., A new mononuclear zinc(II) complex: Crystal structure, DNA- and BSAbinding, and molecular modeling; in vitro cytotoxicity of the Zn(II) complex and its nanocomplex, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 233 (2020) 118175.
  • [54] Sakthi M., Ramu A., Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes, Journal of Molecular Structure, 1149 (2017) 727-735.
  • [55] Gacki M., Kafarska K., Pietrzak A., Glowniak I.K., Wolf W.M., Synthesis, characterization, crystal structure and biological activity of metal(II) complexes with theophylline, J. Saudi Chem. Soc., 23 (3) (2019) 346-354.
  • [56] Haribabu J., Sabapathi G., Tamizh M.M., Balachandran C., Bhuvanesh N.S.P., Venuvanalingam P., Karvembu R., Water-Soluble Mono- and Binuclear Ru(η6 p cymene) Complexes Containing Indole Thiosemicarbazones: Synthesis, DFT Modeling, Biomolecular Interactions, and In Vitro Anticancer Activity through Apoptosis, Organomet, 37 (8) (2018) 1242–1257.
Year 2022, Volume: 43 Issue: 1, 45 - 52, 30.03.2022
https://doi.org/10.17776/csj.1004338

Abstract

References

  • [1] Deng J.G., Li T., Su G., Qin Q.P., Liu Y., Gou Y., Co(III) complexes based on a-N-heterocyclic thiosemicarbazone ligands: DNA binding, DNA cleavage, and topoisomerase I/II inhibitory activity studies, J. Mol. Struct., 1167 (2018) 33-43.
  • [2] Li V.S., Choi D., Wang Z., Jimenez L.S., Tang M.S., Kohn H., Role of the C-10 substituent in mitomycin C-1-DNA bonding, J. Am. Chem. Soc., 118 (10) (1996) 2326–2331.
  • [3] Zuber G., Quada J.C., Hecht S.M., Sequence selective cleavage of a DNA octanucleotide by chlorinated bithiazoles and bleomycins, J. Am. Chem. Soc., 120 (36) (1998) 9368–9369.
  • [4] Kalaiarasi G., Umadevi C., Shanmugapriya A., Kalaivani P., Dallemer F., Prabhakaran R., DNA(CT), protein (BSA) binding studies, anti-oxidant and cytotoxicity studies of new binuclear Ni(II) complexes containing 4(N)-substituted thiosemicarbazones, Inorg. Chim. Acta, 453 (2016) 547-558.
  • [5] Giannini F., Suss-Fink G., Furrer J., Efficient Oxidation of Cysteine and Glutathione Catalyzed by a Dinuclear Areneruthenium Trithiolato Anticancer Complex, Inorg. Chem., 50 (21) (2011) 10552-10554.
  • [6] Suda Y., Arano A., Fukui Y., Koshida S., Wakao M., Nishimura T., Kusumoto S., Sobel M., Immobilization and Clustering of Structurally Defined Oligosaccharides for Sugar Chips:  An Improved Method for Surface Plasmon Resonance Analysis of Protein−Carbohydrate Interactions, Bioconjugate Chem., 17(5) (2006) 1125-1135.
  • [7] Mahon A.B., Arora P.S., Design, synthesis and protein-targeting properties of thioether-linked hydrogen bond surrogate helices, Chem. Commun., 48 (2012) 1416-1418.
  • [8] shaq M., Taslimi P., Shafiq Z., Khana S., Salmas R.E., Zangeneh M.M., Saeed A., Zangeneh A., Sadeghian N., Asari A., Mohamad H., Synthesis, bioactivity and binding energy calculations of novel 3-ethoxysalicylaldehyde based thiosemicarbazone derivatives, Bioorg. Chem., 100 (2020) 103924-103933.
  • [9] Zhang X., Li S., Yang L., Fan C., Synthesis, characterization of Ag(I), Pd(II) and Pt(II) complexes of a triazine-3-thione and their interactions with bovine serum albumin, Spectrochim. Acta Part A, 68(3) (2007) 763–770.
  • [10] Bessega T., Chaves O.A., Martins F.M., Acunha T.V., Back D.F., Iglesias B.A., Oliveira G.M., Coordination of Zn(II), Pd(II) and Pt(II) with ligands derived from diformylpyridine and thiosemicarbazide: Synthesis, structural characterization, DNA/BSA binding properties and molecular docking analysis, Inorg. Chim. Acta, 496 (2019) 119049-119058.
  • [11] Kumar S.M., Kesavan M.P., Kumar G.G.V., Sankarganesh M., Chakkaravarthi G., Rajagopal G., Rajesh J., New heteroleptic Zn(II) complexes of thiosemicarbazone and diimine Co-Ligands: Structural analysis and their biological impacts, J. Mol. Struct., 1153 (2018) 1-11.
  • [12] Mathews N.A., Kurup M.R.P., In vitro biomolecular interaction studies and cytotoxic activities of copper(II) and zinc(II) complexes bearing ONS donor thiosemicarbazones, Appl. Organomet. Chem., 35(1) (2020) 6056.
  • [13] Balakrishnan N., Haribabu J., Krishnan D.A., Swaminathan S., Mahendiran D., Bhuvanesh N.S.P., Karvembu R., Zinc(II) complexes of indole thiosemicarbazones: DNA/protein binding, molecular docking and in vitro cytotoxicity studies, Polyhedron, 170 (2019) 188–201.
  • [14] Haribabu J., Priyarega S., Bhuvanesh N.S.P., Karvembu R., Synthesis and molecular structure of the zinc(II) complex bearing an N, S donor ligand, J. Struct. Chem., 61(1) (2020) 66-72.
  • [15] Zhang Y.Z., Zhou B., Liu Y.X., Zhou C.X., Ding X.L., Liu Y., Fluorescence Study on the Interaction of Bovine Serum Albumin with P-Aminoazobenzene, J. Fluores., 18 (2008) 109-118.
  • [16] Zareia L., Asadi Z., Samolova E., Dusek M., Amirghofran Z., Pyrazolate as bridging ligand in stabilization of self-assemble Cu(II) Schiff base complexes: Synthesis, structural investigations, DNA/protein (BSA) binding and growth inhibitory effects on the MCF7, CT-26, MDA-MB-231 cell lines, Inorg. Chim. Acta, 509 (20201) 19674-119687.
  • [17] Ghosh K.S., Sen S., Sahoo B.K., Dasgupta S., A spectroscopic investigation into the interactions of 3′-O-carboxy esters of thymidine with bovine serum albumin, Biopolymers: Orig. Res. Biomol., 91 (9) (2009) 737–744.
  • [18] Ucar A., Findik M., Kuzu M., Pehlivanoglu S., Sayin U., Sayin Z., Akgemci E.G., Cytotoxic effects, microbiological analysis and inhibitory properties on carbonic anhydrase isozyme activities of 2 hydroxy 5 methoxyacetophenone thiosemicarbazone and its Cu(II), Co(II), Zn(II) and Mn(II) complexes, Res. Chem. Intermed., 47 (2021) 533-550.
  • [19] Akgemci E.G., Saf A.O., Tasdemir H.U., Türkkan E., Bingol H., Turan S.O., Akkiprik M., Spectrophotometric, voltammetric and cytotoxicity studies of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone and its N(4)-substituted derivatives: A combined experimental–computational study, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 136 (2015) 719-725.
  • [20] Kotian A., Kamat V., Naik K., Kokare D.G., Kumara K., Lokanath N.K., Revankar V.K., Hydroxyacetone derived N4-methyl substituted thiosemicarbazone: Syntheses, crystal structures and spectroscopic characterization of later first-row transition metal complexes, J. Mol. Struct., 1224 (2021) 129055-129062.
  • [21] Santoro A., Vileno B., Palacios Ò., Díazd M.D.P., Riegel G., Gaiddon C., Krężel A., Faller P., Reactivity of Cu(II)-, Zn(II)- and Fe(II)- thiosemicarbazone complexes with glutathione and metallothionein: from stability to dissociation to transmetallation, Metallomics, 11 (2019) 994-1004.
  • [22] Cıkla I.K., Güveli S., Yavuz M., Demirci T.B., Ülküseven B., 5-Methyl-2-hydroxy-acetophenone-thiosemicarbazone and its nickel(II) complex: Crystallographic, spectroscopic (IR, NMR and UV) and DFT studies, Polyhedron, 105 (2016) 104-114.
  • [23] Sharma D., Jasinski J.P., Smolinski V.A., Kaur M., Paul K., Sharma R., Synthesis and structure of complexes (NiII, AgI) of substituted benzaldehyde thiosemicarbazones and antitubercular activity of NiII complex, Inorg. Chim. Acta, 499 (2020) 119187-119194.
  • [24] Konakanchi R., Haribabu J., Prashanth J., Nishtala V.B., Mallela R., Manchala S., Gandamalla D., Karvembu R., Reddy B.V., Yellu N.R., Kotha L.R., Synthesis, Structural, Biological Evaluation, Molecular Docking and DFT Studies of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) Complexes bearing Heterocyclic Thiosemicarbazone ligand, Appl. Organomet. Chem., 32 (8) (2018) 4415.
  • [25] Arafath M.A., Adam F., Razali M.R., Hassan L.E.A., Ahamed M.B.K., Majid A.M.S.A., Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3 nitrobenzaldehyde, J. Mol. Struct., 1130 (2017) 791-798.
  • [26] Nyawade E.A., Sibuyi N.R.S., Meyer M., Lalancette R., Onani M.O., Synthesis, characterization and anticancer activity of new 2-acetyl-5-methyl thiophene and cinnamaldehyde thiosemicarbazones and their palladium(II) complexes, Inorg. Chim. Acta, 515 (2021) 20036-120045.
  • [27] Savir S., Wei Z.J., Liew J.W.K., Vythilingam I., Lim Y.A.L., Saad H.M., Sim K.S., Tan K.W., Synthesis, cytotoxicity and antimalarial activities of thiosemicarbazones and their nickel (II) complexes, J. Mol. Struct., 1211 (2020) 128090-128099.
  • [28] Amuthakala S., Bharath S., Rahiman A.K., Thiosemicarbazone-based bifunctional chemosensors for simultaneous detection of inorganic cations and fluoride anion, J. Mol. Struct., 1219 (2020) 128640-128654.
  • [29] Huseynova M., Farzaliyev V., Medjidov A., Aliyeva M., Taslimi P., Sahin O., Yalçın B., Novel zinc compound with thiosemicarbazone of glyoxylic acid: Synthesis, crystal structure, and bioactivity properties, J. Mol. Struct., 1200 (2020) 127082-127091.
  • [30] Kalantari R., Asad Z., DNA/BSA binding of a new oxovanadium (IV) complex of glycylglycine derivative Schiff base ligand, J. Mol. Struct., 1219 (2020) 128664-128675.
  • [31] Jacob J.M., Kurup M.R.P., Nisha K., Serdaroglu G., Kaya S., Mixed ligand copper(II) chelates derived from an O, N, S- donor tridentate thiosemicarbazone: Synthesis, spectral aspects, FMO and NBO analysis, Polyhedron, 189 (2020) 114736-114746.
  • [32] Li Q.X., Tang H.A., Li Y.Z., Wang M., Wang L.F., Xia C.G., Synthesis, characterization, and antibacterial activity of novel Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes with vitamin K3-thiosemicarbazone, J. Inorg. Biochem., 78 (2) (2000) 167-174.
  • [33] Palve A.M., Garje S.S., Preparation of zinc sulfide nanocrystallites from single-molecule precursors, J. Cryst. Growth, 326 (1) (2011) 157-162.
  • [34] Attralarasan S., Febena A.S., Raj M.V.A, Madhavan J., Synthesis, Characterization and DFT Calculations ofnThiosemicarbazone 4-Methoxy Benzaldehyde Zinc Chloride, Mechanics, Materials Science & Engineering, 9 (2017).
  • [35] Kumar L.V., Sundaresan S., Gopinathan R.N., Antioxidant, antidiabetic and anticancer studies of nickel complex of Vanillin-4-Methyl-4-Phenyl-3-Thiosemicarbazone, Mater. Today 41 (3) (2021) 669-675. [36] Ayyannan G., Mohanraj M., Gopiraman M., Uthayamalar R., Raja G., Bhuvanesh N., Nandhakumar R., Jayabalakrishnan C., New Palladium(II) complexes with ONO chelated hydrazone ligand: Synthesis, characterization, DNA/BSA interaction, antioxidant and cytotoxicity, Inorg. Chim. Acta, 512 (2020) 119868.
  • [37] Bashiri M., Jarrahpour A.S., Nabavizadeh M., Karimian S., Rastegari B., Haddadi E., Turos E., Potent antiproliferative active agents: novel bis Schiff bases and bis spiro β-lactams bearing isatin tethered with butylene and phenylene as spacer and DNA/BSA binding behavior as well as studying molecular docking, Medic. Chem. Res., 30 (2021) 258–284.
  • [38] Amitha G.S., Vasudevan S., DNA binding and cleavage studies of novel Betti base substituted quaternary Cu(II) and Zn(II) phthalocyanines, Polyhedron, 190 (2020) 114773-114782.
  • [39] Husain M.A., Ishqi H.M., Sarwar T., Rehman S.U., Tabish M., Interaction of indomethacin with calf thymus DNA: a multi-spectroscopic, thermodynamic and molecular modelling approach, Med. Chem. Comm., 8 (2017) 1283.
  • [40] Tian Z., Huang Y., Zhang Y., Song L., Qiao Y., Xu X., Wang C., Spectroscopic and molecular modeling methods to study the interaction between naphthalimide-polyamine conjugates and DNA, J. Photochem. Photobiol. B., 158 (2016) 1–15.
  • [41] Mo D., Shi J., Zhao D., Zhang Y., Guan Y., Shen Y., Bian H., Huang F., Wu S., Synthesis and characterization of FeIII/CoIII/CuII complexes with Schiff base ligand and their hybrid proteins, SOD activity and asymmetric catalytic oxidation of sulfides, J. Mol. Struct., 1223 (2021) 129229-129238.
  • [42] are W.R., Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process, J. Phys. Chem., 66 (3) (1962) 455–458.
  • [43] Singh R., Afzal M., Zaki M., Ahmad M., Tabassum S., Bharadwaj P.K., Synthesis, structure elucidation and DFT studies of a new coumarin-derived Zn(II) complex: in vitro DNA/HSA binding profile and pBR322 cleavage pathway, RSC Adv., 4 (2014) 43504.
  • [44] Ambika S., Manojkumar Y., Arunachalam S., Gowdhami B., Sundaram K.K.M., Solomon R.V, Venuvanalingam P., Akbarsha M.A., Sundararaman M., Biomolecular Interaction, AntiNCancer and Anti-Angiogenic Properties of Cobalt(III) Schiff Base Complexes, Sci. Rep., 9 (2019) 2721.
  • [45] Li Y., Yang Z., Li T., Synthesis, characterisation, in vitro DNA binding properties and antioxidant activities of Ln(III) complexes with chromone-3-carbaldehyde- (2´-hydroxy) benzoyl hydrazone, Prog. React. Kinet. Mech., 40 (4) (2015) 313-329.
  • [46] Zhang Y.P., Li Y., Xu G.C., Li J.Y., Luo H.Y., Li J.Y., Zhang Li., Jia D.Z., Synthesis, crystal structure, DNA/bovine serum albümin binding and antitumor activity of two transition metal complexes with 4‐acylpyrazolone derivative, Appl. Organometal Chem., 33 (2019) 4668.
  • [47] Asadizadeha S., Amirnasra M., Tirani F.F., Mansouria A., Schenk K., DNA-BSA interaction, cytotoxicity and molecular docking of mononuclear zinc complexes with reductively cleaved N2S2 Schiff base ligands, Inorganica Chimica Acta, 483 (2018) 310–320.
  • [48] Narwane M., Dorairaj D.P., Chang Y.L, Karvembu R., Huang Y.H., Chang H.W., Hsu S.C.N., Tris-(2-pyridyl)-pyrazolyl Borate Zinc(II) Complexes: Synthesis, DNA/Protein Binding and In Vitro Cytotoxicity Studies, Molecules, 26 (2021) 7341.
  • [49] Liu J.J., Liu X.R., Zhao S.S., Yang Z.W., Yang Z., Syntheses, crystal structures, thermal stabilities, CT-DNA, and BSA binding characteristics of a new acylhydrazone and its Co(II), Cu(II), and Zn(II) complexes, Journal Of Coordination Chemistry, 73 (2020) 1159–1176.
  • [50] Amitha G.S., Vasudevan S., DNA/BSA binding studies of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine, Polyhedron, 175 (2020) 114208.
  • [51] Bessegaa T., Chaves O.A., Martins F.M., Acunha T.V., Back D.F., Iglesias B.A., Oliveira G.M., Coordination of Zn(II), Pd(II) and Pt(II) with ligands derived from diformylpyridine and thiosemicarbazide: Synthesis, structural characterization, DNA/BSA binding properties and molecular docking analysis, Inorganica Chimica Acta, 496 (2019) 119049.
  • [52] Ramilo-Gomes F., Addis Y., Tekamo I., Cavaco I., Campos D., Pavan I.R., Gomes C.S.B., Brito V., Santos A.O., Domingues F., Luís A., Marques M.M., Pessoa J.C., Ferreira S., Silvestre S., Correia I., Antimicrobial and antitumor activity of S-methyl dithiocarbazate Schiff base zinc(II) complexes, Journal of Inorganic Biochemistry, 216 (2021) 111331.
  • [53] Daryanavard M., Jannesari Z., Javeri M., Abyar F., A new mononuclear zinc(II) complex: Crystal structure, DNA- and BSAbinding, and molecular modeling; in vitro cytotoxicity of the Zn(II) complex and its nanocomplex, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 233 (2020) 118175.
  • [54] Sakthi M., Ramu A., Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes, Journal of Molecular Structure, 1149 (2017) 727-735.
  • [55] Gacki M., Kafarska K., Pietrzak A., Glowniak I.K., Wolf W.M., Synthesis, characterization, crystal structure and biological activity of metal(II) complexes with theophylline, J. Saudi Chem. Soc., 23 (3) (2019) 346-354.
  • [56] Haribabu J., Sabapathi G., Tamizh M.M., Balachandran C., Bhuvanesh N.S.P., Venuvanalingam P., Karvembu R., Water-Soluble Mono- and Binuclear Ru(η6 p cymene) Complexes Containing Indole Thiosemicarbazones: Synthesis, DFT Modeling, Biomolecular Interactions, and In Vitro Anticancer Activity through Apoptosis, Organomet, 37 (8) (2018) 1242–1257.
There are 55 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Asuman Uçar 0000-0003-2674-3120

Mükerrem Fındık 0000-0002-9441-0814

Emine Akgemci 0000-0002-9744-1931

Publication Date March 30, 2022
Submission Date October 4, 2021
Acceptance Date February 7, 2022
Published in Issue Year 2022Volume: 43 Issue: 1

Cite

APA Uçar, A., Fındık, M., & Akgemci, E. (2022). CT-DNA/BSA Binding Studies of Thiosemicarbazone-Derivated Zn(II) Complex. Cumhuriyet Science Journal, 43(1), 45-52. https://doi.org/10.17776/csj.1004338