Research Article
BibTex RIS Cite
Year 2021, Volume: 42 Issue: 3, 702 - 714, 24.09.2021
https://doi.org/10.17776/csj.929279

Abstract

References

  • [1] Chen R. and Pagonis V., The role of simulations in the study of thermoluminescence (TL), Radiat. Meas, 71 (2014) 8–14.
  • [2] Dogan T., Thermluminescence properties of quartize rock after β-irradiation, Cumhuriyet Sci. J., 39-4 (2018) 1136-1143.
  • [3] Pagonis V., Blohm L., Brengle M., Mayonado G., Woglam P., Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-localized transition (SLT) model, Radiat. Meas., 51 (2013) 40–47.
  • [4] Mandowski A., Semi-localized transitions model for thermoluminescence, J. Phys. D: Appl. Phys. 38 (2005) 17–21.
  • [5] Mandowski A., Topology-dependent thermoluminescence kinetics, Radiat. Prot. Dosim,. 119 (2006) 23–28.
  • [6] Mandowski A., Semi-localized transitions model-General formulation and classical limits, Radiat. Meas,. 43 (2008) 199–202.
  • [7] Mandowski A., Bos A.J.J., Explanation of anomalous heating rate dependence of thermoluminescence in YPO4:Ce3+, Sm3+ based on the semi-localized transition (SLT) model, Radiat. Meas., 46 (2011) 1376–1379.
  • [8] Kitis G., Furreta C., Prokic M., Prokic V., Kinetic parameters of some tissue equivalent thermoluminescence materials, J. Phys. D Appl. Phys. 33 (2000) 1252–1262.
  • [9] Peng M., Wondraczek L., Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes, J. Am. Ceram. Soc. 93 (2010) 1437–1442.
  • [10] Kelemen A., Mesterházy D., Ignatovych M., Holovey V., Thermoluminescence characterization of newly developed Cu-doped lithium tetraborate materials, Radiat. Phys. Chem., 81 (2012) 1533–1535.
  • [11] Furetta C., Prokic M., Salamon R., Prokic V., Kitis G., Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate, Nucl. Instrum. Meth. A 456 (2001) 411–417.
  • [12] Kafadar V.E., Yildirim R.G., Zebari H., Zebari D., Investigation of thermoluminescence characteristics of Li2B4O7:Mn (TLD-800), Thermochim. Acta, 575 (2014) 300–304.
  • [13] Oglakci M., Akça S., Halefoglu Y.Z., Dogan T., Ayvacikli M., Karabulut Y., Topaksu M., Can N., Characterization and thermoluminescence behavior of beta irradiated NaBaBO3 phosphor synthesized by combustion method, Ceram. Int., 45 (2019) 7011–7017.
  • [14] Chen Z., Chen X., Huang S., Pan Y., A novel tunable green-to-red emitting phosphor Ca4Lao(BO3)3:Tb3+,Eu3+ via energy transfer with high quantum yield, Ceram. Int., 42 (2016) 13476–13484.
  • [15] Chen Z., Pan Y., Xi L., Pang R., Huang S., Liu G., Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)3:Eu3+ and Ca4EuO(BO3)3, Inorg. Chem., 55 (2016) 11249–11257.
  • [16] Wu X., Yin B., Ren Q., Zheng J., Ren Y., Hai O., Structure, luminescence, properties and energy transfer of Dy3+ and Eu3+ codoped Ca4LaO(BO3)3 phosphor, J. Alloys Compd. 822 (2020) 153562.
  • [17] Adams J.J., Ebbers C.A., Schaffers K.I., Payne S.A., Nonlinear optical properties of LaCa4O(BO3)3, Opt. Lett. 26 (2001) 217–219.
  • [18] Jiang H.D., Li D.W., Zhang K.Q., Liu H., Wang J.Y., Optical and thermal properties of nonlinear optical crystal LaCa4O(BO3)3, Chem. Phys. Lett. 372 (2003) 788–793.
  • [19] Nelson A.J., van Buuren T., Willey T.M., Bostedt C., Adams J.J., Schaffers K.I., Terminello L., Callcott T.A., Electronic structure of lanthanum calcium oxoborate LaCa4O(BO3)3, J. Electron Spectrosc. Relat. Phenom, 137–140 (2004) 541–546.
  • [20] Kelly N.D. and Dutton S.E., Magnetic Properties of Quasi-One-Dimensional Lanthanide Calcium Oxyborates Ca4LnO(BO3)3, Inorg. Chem., 59 (2020) 9188–9195.
  • [21] Lu Y. and Wang G.F., Growth and spectroscopic properties of Nd3+: LaCa4O(BO3)3 crystals, J. Cryst. Growth, 253 (2003) 270–273.
  • [22] Lu Y., Hu Z.S., Lin Z.B., Wang G.F., Growth and spectroscopic properties of Er3+∕Yb3+: LaCa4O(BO3)3 crystals, J. Cryst. Growth, 249 (2003) 159–162.
  • [23] Christoph R., Robert M., Margitta H., Jens G., Anke S., Horst S., Growth and structure of Ca4La[O(BO3)3], J. Cryst. Growth, 320 (2011) 90–94.
  • [24] McKeever S.W.S., On the analysis of complex thermoluminescence glow-curves resolution into individual peaks, Phys. Status Solidi, 62 (1980) 331–340.
  • [25] Chen R. and Kirsh Y., The Analysis of Thermally Stimulated Processes, Oxford: Pergamon Press, , (1981).
  • [26] Balian H.G., Eddy N.W., Figure of Merit (FOM), an improved Criterion over the normalised Chi-squared Test for assessing Goodness-of-fit of Gamma Ray Spectra Peaks, Nucl. Instrum. Methods, 145 (1977) 389–395.
  • [27] Peng J., Dong Z.B., Han F.Q., Tgcd: an R package for analyzing thermoluminescence glow curves, SoftwareX, 5 (2016) 112–120.
  • [28] Fan T.Y. and Kokta M.R., End-Pumped Nd:LaF3 and Nd:LaMgA11O19 Lasers, IEEE J. Quantum Electron, 25 (1989) 1845–1849.
  • [29] Halperin A. and Braner A.A., Evaluation of Thermal Activation Energies from Glow Curves, Phys. Rev., 117 (1960) 408–415.
  • [30] May C.E. and Partridge J.A., Thermoluminescent Kinetics of Alpha‐Irradiated Alkali Halides, J. Chem. Phys., 40 (1964) 1401–1409.
  • [31] Kitis G., Mouza E., Polymeris G.S., The shift of the thermoluminescence peak maximum temperature versus heating rate, trap filling and trap emptying: Predictions, experimental verification and comparison, Physica B Condens. Matter., 577 (2020) 411754.
  • [32] Pagonis V., Kitis G., Furetta C., Numerical and Practical Exercises in Thermoluminescence. USA:Springer, (2006).
  • [33] Bos A., High sensitivity thermoluminescence dosimetry, Nucl. Instrum. Methods Phys. Res., B 184 (2001) 3–28.
  • [34] Kitis G., Spiropulu M., Papadopoulos J., Charalambous S., Heating rate effects on the TL glow-peaks of three thermoluminescent phosphors, Nucl. Instrum. Meth. Phys. Resear., 73 (1993) 367–372.
  • [35] Kitis G., Tuyn J.W.N., A Simple Method to Correct for Temperature Lag in TL Glow-Curve Measurements, J. Phys.D: Appl. Phys., 31 (1998) 2065–2073.
  • [36] Furetta C. Handbook of Thermoluminescence., Singapore: Word Scientific, (2003).
  • [37] Pagonis V., Truong P., Thermoluminescence due to tunneling in nanodosimetric materials: A Monte Carlo study, Physica B: Condens. Matter., 531 (2018) 171–179.
  • [38] Annalakshmi O., Jose M.T., Amarendra G., Dosimetric characteristics of manganese doped lithium tetraborate - an improved TL phosphor, Radiat. Meas., 46 (2011) 669–675.
  • [39] Furetta C., Pellegrini R., Some dosimetric properties of Li2B4O7:Mn (TLD-800), Radiat. Eff. Defect. S., 58 (1-2) (1981) 17–23.
  • [40] Townsend P.D. Taylor G., Wintersgill M.C., A model for the activation Energies observed in TL of TLD 100, Rad. Effects, 41 (1979) 11–16.

Thermoluminescence characteristics and kinetic analysis of beta irradiated Ca4LaO(BO3)3 phosphor

Year 2021, Volume: 42 Issue: 3, 702 - 714, 24.09.2021
https://doi.org/10.17776/csj.929279

Abstract

Thermoluminescence (TL) properties of synthesized Ca4LaO(BO3)3 exposed to beta radiation were analyzed and TL kinetic parameters of activation energy E (eV), the frequency factor s (s-1), and order of kinetics b were determined in this study. TL glow curve recorded in 25–500 °C range presented two TL maxima around 70 and 200 °C and therefore, thermal cleaning was utilized for the further investigations on a single TL maximum. To investigate dosimetric characterizations of Ca4LaO(BO3)3, additive dose and various heating rates, reusability, and storage time measurements were performed. Ca4LaO(BO3)3 has a linear dose range between 10 to 100 Gy with a heating rate of 2 °C/s. An anomalous case of heating rate behavior was attained for the TL measurements carried out using variable heating rates between 0.1 and 10 °C/s which was considered through the semi-localized transition model. Reusability and storage time measurements indicated the results within the 5% standard deviation. The kinetic parameters were estimated by the initial rise (IR) and glow curve deconvolution (GCD) methods. Continuously distributed trapping levels were identified by TM–Tstop with E ranging from 1.25 to 1.45 eV. GCD identified that the glow curve expressed general order kinetics and consist of three overlapping traps.

Thanks

The author would like to thank Assoc. Prof. Dr. Y. Z. Halefoğlu (Çukurova University) for the valuable support on the phosphor synthesis and A. Yücel (Inonu University) on the XRD analysis. The author would also appreciate Prof. Dr. M. Topaksu and Assoc. Prof. Dr. S. Akça Özalp for the valuable discussions on the TL results.

References

  • [1] Chen R. and Pagonis V., The role of simulations in the study of thermoluminescence (TL), Radiat. Meas, 71 (2014) 8–14.
  • [2] Dogan T., Thermluminescence properties of quartize rock after β-irradiation, Cumhuriyet Sci. J., 39-4 (2018) 1136-1143.
  • [3] Pagonis V., Blohm L., Brengle M., Mayonado G., Woglam P., Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-localized transition (SLT) model, Radiat. Meas., 51 (2013) 40–47.
  • [4] Mandowski A., Semi-localized transitions model for thermoluminescence, J. Phys. D: Appl. Phys. 38 (2005) 17–21.
  • [5] Mandowski A., Topology-dependent thermoluminescence kinetics, Radiat. Prot. Dosim,. 119 (2006) 23–28.
  • [6] Mandowski A., Semi-localized transitions model-General formulation and classical limits, Radiat. Meas,. 43 (2008) 199–202.
  • [7] Mandowski A., Bos A.J.J., Explanation of anomalous heating rate dependence of thermoluminescence in YPO4:Ce3+, Sm3+ based on the semi-localized transition (SLT) model, Radiat. Meas., 46 (2011) 1376–1379.
  • [8] Kitis G., Furreta C., Prokic M., Prokic V., Kinetic parameters of some tissue equivalent thermoluminescence materials, J. Phys. D Appl. Phys. 33 (2000) 1252–1262.
  • [9] Peng M., Wondraczek L., Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes, J. Am. Ceram. Soc. 93 (2010) 1437–1442.
  • [10] Kelemen A., Mesterházy D., Ignatovych M., Holovey V., Thermoluminescence characterization of newly developed Cu-doped lithium tetraborate materials, Radiat. Phys. Chem., 81 (2012) 1533–1535.
  • [11] Furetta C., Prokic M., Salamon R., Prokic V., Kitis G., Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate, Nucl. Instrum. Meth. A 456 (2001) 411–417.
  • [12] Kafadar V.E., Yildirim R.G., Zebari H., Zebari D., Investigation of thermoluminescence characteristics of Li2B4O7:Mn (TLD-800), Thermochim. Acta, 575 (2014) 300–304.
  • [13] Oglakci M., Akça S., Halefoglu Y.Z., Dogan T., Ayvacikli M., Karabulut Y., Topaksu M., Can N., Characterization and thermoluminescence behavior of beta irradiated NaBaBO3 phosphor synthesized by combustion method, Ceram. Int., 45 (2019) 7011–7017.
  • [14] Chen Z., Chen X., Huang S., Pan Y., A novel tunable green-to-red emitting phosphor Ca4Lao(BO3)3:Tb3+,Eu3+ via energy transfer with high quantum yield, Ceram. Int., 42 (2016) 13476–13484.
  • [15] Chen Z., Pan Y., Xi L., Pang R., Huang S., Liu G., Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)3:Eu3+ and Ca4EuO(BO3)3, Inorg. Chem., 55 (2016) 11249–11257.
  • [16] Wu X., Yin B., Ren Q., Zheng J., Ren Y., Hai O., Structure, luminescence, properties and energy transfer of Dy3+ and Eu3+ codoped Ca4LaO(BO3)3 phosphor, J. Alloys Compd. 822 (2020) 153562.
  • [17] Adams J.J., Ebbers C.A., Schaffers K.I., Payne S.A., Nonlinear optical properties of LaCa4O(BO3)3, Opt. Lett. 26 (2001) 217–219.
  • [18] Jiang H.D., Li D.W., Zhang K.Q., Liu H., Wang J.Y., Optical and thermal properties of nonlinear optical crystal LaCa4O(BO3)3, Chem. Phys. Lett. 372 (2003) 788–793.
  • [19] Nelson A.J., van Buuren T., Willey T.M., Bostedt C., Adams J.J., Schaffers K.I., Terminello L., Callcott T.A., Electronic structure of lanthanum calcium oxoborate LaCa4O(BO3)3, J. Electron Spectrosc. Relat. Phenom, 137–140 (2004) 541–546.
  • [20] Kelly N.D. and Dutton S.E., Magnetic Properties of Quasi-One-Dimensional Lanthanide Calcium Oxyborates Ca4LnO(BO3)3, Inorg. Chem., 59 (2020) 9188–9195.
  • [21] Lu Y. and Wang G.F., Growth and spectroscopic properties of Nd3+: LaCa4O(BO3)3 crystals, J. Cryst. Growth, 253 (2003) 270–273.
  • [22] Lu Y., Hu Z.S., Lin Z.B., Wang G.F., Growth and spectroscopic properties of Er3+∕Yb3+: LaCa4O(BO3)3 crystals, J. Cryst. Growth, 249 (2003) 159–162.
  • [23] Christoph R., Robert M., Margitta H., Jens G., Anke S., Horst S., Growth and structure of Ca4La[O(BO3)3], J. Cryst. Growth, 320 (2011) 90–94.
  • [24] McKeever S.W.S., On the analysis of complex thermoluminescence glow-curves resolution into individual peaks, Phys. Status Solidi, 62 (1980) 331–340.
  • [25] Chen R. and Kirsh Y., The Analysis of Thermally Stimulated Processes, Oxford: Pergamon Press, , (1981).
  • [26] Balian H.G., Eddy N.W., Figure of Merit (FOM), an improved Criterion over the normalised Chi-squared Test for assessing Goodness-of-fit of Gamma Ray Spectra Peaks, Nucl. Instrum. Methods, 145 (1977) 389–395.
  • [27] Peng J., Dong Z.B., Han F.Q., Tgcd: an R package for analyzing thermoluminescence glow curves, SoftwareX, 5 (2016) 112–120.
  • [28] Fan T.Y. and Kokta M.R., End-Pumped Nd:LaF3 and Nd:LaMgA11O19 Lasers, IEEE J. Quantum Electron, 25 (1989) 1845–1849.
  • [29] Halperin A. and Braner A.A., Evaluation of Thermal Activation Energies from Glow Curves, Phys. Rev., 117 (1960) 408–415.
  • [30] May C.E. and Partridge J.A., Thermoluminescent Kinetics of Alpha‐Irradiated Alkali Halides, J. Chem. Phys., 40 (1964) 1401–1409.
  • [31] Kitis G., Mouza E., Polymeris G.S., The shift of the thermoluminescence peak maximum temperature versus heating rate, trap filling and trap emptying: Predictions, experimental verification and comparison, Physica B Condens. Matter., 577 (2020) 411754.
  • [32] Pagonis V., Kitis G., Furetta C., Numerical and Practical Exercises in Thermoluminescence. USA:Springer, (2006).
  • [33] Bos A., High sensitivity thermoluminescence dosimetry, Nucl. Instrum. Methods Phys. Res., B 184 (2001) 3–28.
  • [34] Kitis G., Spiropulu M., Papadopoulos J., Charalambous S., Heating rate effects on the TL glow-peaks of three thermoluminescent phosphors, Nucl. Instrum. Meth. Phys. Resear., 73 (1993) 367–372.
  • [35] Kitis G., Tuyn J.W.N., A Simple Method to Correct for Temperature Lag in TL Glow-Curve Measurements, J. Phys.D: Appl. Phys., 31 (1998) 2065–2073.
  • [36] Furetta C. Handbook of Thermoluminescence., Singapore: Word Scientific, (2003).
  • [37] Pagonis V., Truong P., Thermoluminescence due to tunneling in nanodosimetric materials: A Monte Carlo study, Physica B: Condens. Matter., 531 (2018) 171–179.
  • [38] Annalakshmi O., Jose M.T., Amarendra G., Dosimetric characteristics of manganese doped lithium tetraborate - an improved TL phosphor, Radiat. Meas., 46 (2011) 669–675.
  • [39] Furetta C., Pellegrini R., Some dosimetric properties of Li2B4O7:Mn (TLD-800), Radiat. Eff. Defect. S., 58 (1-2) (1981) 17–23.
  • [40] Townsend P.D. Taylor G., Wintersgill M.C., A model for the activation Energies observed in TL of TLD 100, Rad. Effects, 41 (1979) 11–16.
There are 40 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Ziyafer Gizem Portakal Uçar 0000-0002-3827-423X

Publication Date September 24, 2021
Submission Date April 28, 2021
Acceptance Date June 28, 2021
Published in Issue Year 2021Volume: 42 Issue: 3

Cite

APA Portakal Uçar, Z. G. (2021). Thermoluminescence characteristics and kinetic analysis of beta irradiated Ca4LaO(BO3)3 phosphor. Cumhuriyet Science Journal, 42(3), 702-714. https://doi.org/10.17776/csj.929279