Research Article
BibTex RIS Cite

Yeni Bir Co(II)-Baskılı Polimer/Kriyojel Sistem Kullanılarak Kobalt(II)'ın Seçici Olarak Ayrılması

Year 2018, Volume: 39 Issue: 4, 920 - 927, 24.12.2018
https://doi.org/10.17776/csj.455103

Abstract

Bu çalışmanın amacı, iyon baskılama tekniği ile sulu çözeltilerden
Co(II) iyonunun seçici olarak ayrılmasını ve ön derişimini araştırmaktı. Bu
amaçla, Co(II)-metakriloilhistidin ((MAH)2-Co(II)) kompleks monomer sentezlendi
ve 2-hidroksietil metakrilat (HEMA) varlığında polimerleştirildi. Ardından, 5.0
mol*L-1 HNO3 ile bağlı Co(II) iyonları polimerden
söküldü. Böylece, hedef iyonun (Co(II)), p-HEMA-MAH kriyojel kolonuna tekrardan
bağlanması için spesifik boşluklar oluşturuldu. Hazırlanan metal kompleks ve
baskılı-kriyojel FTIR ve SEM ile karakterize edilmiştir. Optimum adsorpsiyon
koşullarını belirlemek için, pH, başlangıç konsantrasyonu, akış hızı, iyonik
şiddet gibi çeşitli parametrelerin etkisi araştırılmıştır. Maksimum adsorbe
edilen Co(II) miktarı, pH 8.0'de 1 mL*dk-1 akış hızında 106.0 mg*g-1
olarak tespit edilmiştir. Seçicilik deneyleri için, bağlanma çalışmaları Cu(II)
ve Ni(II) varlığında gerçekleştirilmiş olup k (seçicilik katsayısı) değerleri
sırasıyla Co(II)/Cu(II) ve Co(II)/Ni(II) ikili karışımı için 8.9 ve 3.8 olarak
bulunmuştur. Kolonun tekrar kullanımı araştırılmış ve ardışık on bir deneyde
bile adsorpsiyon kapasitesinde önemli bir azalma olmadığı tespit edilmiştir.

References

  • [1]. Forster C.F. and Was D.A.J., Biosorption of Heavy Metals: an Introduction, Biosorbents for Metal Ions Chapter 1, Taylor and Francis, London. 1997.
  • [2]. Ministry of the Environment programs and initiatives. Cobalt in the environment. Address: http://foodshedproject.ca/wp-content/uploads/2015/12/CoFacts.pdf
  • [3]. Swain B., Cho S.S, Lee G.H. and Uhm S., Extraction/Separation of Cobalt by Solvent Extraction: A Review, J. Korean. Ind. Eng. Chem. 26(2015) 631-639.
  • [4]. Soylak M., Kaya B. and Tuzen M., Copper(II)-8-hydroxquinoline coprecipitation system for preconcentration and separation of cobalt(II) and manganese(II) in real samples, J. Hazard Mater. 147(2007) 832-837.
  • [5]. Aşçı Y. and Kaya Ş., Removal of cobalt ions from water by ion-exchange method, Desalin. Water Treat. 52(2014) 267-273.
  • [6]. Elsheikh R., Ayman A.G., Elsayed H.A. and Alamin E.M. Cloud point extraction, preconcenration and spectrophotometric determination of cobalt in water samples, J. Pharm Pharm. Sci. 7(2015) 213-221.
  • [7]. Ince M., Kaya G. and Yaman M., Solid phase extraction and preconcentration of cobalt in mineral waters with PAR-loaded Amberlite XAD-7 and flame atomic absorption spectrometry, Environ. Chem. Lett. 8(2010) 283–288.
  • [8]. Wulff G. and Sarhan A., Use of polymers with enzyme-analogous structures for the resolution of racemates, Chem., Int. Ed. Engl., 11(1972) 341–346.
  • [9]. Tamahkar E. and Denizli A., Metal ion coordination interactions for biomolecule recognition: a Review, Hittite J. Sci. Eng. 1(2014) 21–26.
  • [10]. Göktürk I., Üzek R., Uzun L. and Denizli A., Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles, Artif. Cells. Nanomed. Biotechnol. 44(2016) 1133–1140.
  • [11]. Çavuş A., Baysal Z. and Alkan H., Preparation of poly(hydroxyethyl methacrylate) cryogels containing L-histidine for insulin recognition, Colloids Surf. B: Biointerfaces. 107(2013) 84–89.
  • [12]. Tamahkar E., Bereli N., Say R. and Denizli A., Molecularly imprinted supermacroporous cryogels for cytochrome c recognition, J. Sep. Sci. 34(2011) 3433–3440.
  • [13]. Gedikli M., Ceylan Ş., Erzengin M. and Odabaşı M., A novel matrix for hydrophobic interaction chromatography and its application in lysozyme adsorption, Acta Biochim. Pol. 61(2014) 731–737.
  • [14]. Odabaşı M., Baydemir G., Karatas M. and Derazshamshir A., Preparation and Characterization of Metal-Chelated Poly(HEMA-MAH) Monolithic Cryogels and Their Use for DNA Adsorption, J. Appl. Polym. Sci. 116(2010) 1306–1312.
  • [15]. Balamurugan K., Gokulakrishnan K. and Prakasam T., Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers, Saudi Pharm. J. 20(2012) 53–61.
  • [16]. Yan H., Row K.H and Yang G., Water-compatible molecularly imprinted polymers for selective extraction of ciprofloxacin from human urine, Talanta, 75(2008), 227–232.
  • [17]. Say R., Birlik E., Ersöz A., Yilmaz F., Gedikbey T. and Denizli A., Preconcentration of copper on ion-selective imprinted polymer microbeads, Anal. Chim. Acta. 480(2003) 251–258.
  • [18]. Guo B., Deng F., Zhao Y., Luo X., Luo S. and Au, C. Magnetic ion-imprinted and −SH functionalized polymer for selective removal of Pb(II) from aqueous samples, Appl. Surf. Sci. 292(2014) 438-446.
  • [19]. Candan, N., Tuzmen, N., Andac, M., Andac, C., Say, R. and Denizli A., Cadmium removal out of human plasma using ion imprinted beads in a magnetic column, Mater. Sci. Eng. C, 29(2009) 144-152.
  • [20]. Andersson L.I., Selective solid-phase extraction of bio- and environmental samples using molecularly imprinted polymers, Bioseparation, 10(2001) 353–364.
  • [21]. Mohamed R., Richoz-Payot J., Gremaud E., Mottier P., Yilmaz E., Tabet J.C. and Guy P.A., Advantages of Molecularly Imprinted Polymers LC-ESI-MS/MS for the Selective Extraction and Quantification of Chloramphenicol in Milk-Based Matrixes. Comparison with a Classical Sample Preparation, Anal. Chem., 79(2007) 9557–9565.
  • [22]. Andaç M., Say R. and Denizli A., Molecular recognition based cadmium removal from human plasma, J. Chromatogr. B, 811 (2004) 119-126.
  • [23]. Chen L., Wang X., Lu W., Wua X. and Lia J., Molecular imprinting: perspectives and applications, Chem. Soc. Rev., 45(2016) 2137-2211.
  • [24]. Zhang Z., Li J., Song X., Ma J. and Chen L., Hg2+ ion-imprinted polymers sorbents based on dithizone–Hg2+chelation for mercury speciation analysis in environmental and biological samples, RSC Adv., 4(2014) 46444–46453.
  • [25]. Yilmaz V., Arslan Z., Hazer O. and Yilmaz H., Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES), Microchem J. 114(2014) 66–72.
  • [26]. Yavuz H., Say R. and Denizli A., Iron removal from human plasma based on molecular recognition using imprinted beads, Mater. Sci. Eng. C,25(2005) 521-528.
  • [27]. Ersöz A., Say R. and Denizli A., Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns, Anal. Chim. Acta., 502(2004) 91-97.
  • [28]. Hür D., Ekti S.F. and Say R., N-Acylbenzotriazole mediated synthesis of some methacrylamido amino acids, Lett. Org. Chem., 4(2007) 585-587.
  • [29]. Denizli, A., Salih, B. and Pişkin, E., New sorbents for removal of heavy metal ions: diamine-glowdischarge treated poly hydroxyethylmethacrylate microspheres, J. Chromatogr. A, 773(1997) 169.
  • [30]. Özkütük E.B. and Karabörk M. Fe3+-Imprinted Polymeric Systems, Hacettepe J. Biol.and Chem., 35 (2007) 195-202.

Selective Separation of Cobalt Using a New Co(II)-Imprinted Polymer/Cryogel System

Year 2018, Volume: 39 Issue: 4, 920 - 927, 24.12.2018
https://doi.org/10.17776/csj.455103

Abstract

The aim of the present study was to investigate selective separation and
preconcentration of Co(II) ions in aqueous solutions by ion imprinted
technique. For this purpose, Co(II)-methacryloylhistidine((MAH)2-Co(II))
complex monomer has been synthesized and polymerized with presence of
2-hydroxyethyl methacrylate (HEMA) followed by flushed out of bonded Co(II)
ions from polymer with 5.0 mol*L-1 HNO3. Thus, specific
cavities for re-binding of target ions (Co(II)) have been created onto
p-HEMA-MAH cryogel column. Prepared metal complex and Co-imprinted
polymer/cryogel system have been characterized by FTIR and SEM. The effect of
various parameters such as pH, initial concentration, flow rate, ionic strength
have been investigated to determine optimal adsorption conditions. The maximum
amount of adsorbed Co(II) has found as 106.0 mg*g-1 at pH 8.0 with
flow rate of 1 mL*min-1. For selectivity experiments, binding
studies were carried out presence of Cu(II) and Ni(II). The k (selectivity
coefficient) values have found as 8.9 and 3.8 for Co(II)/Cu(II) and
Co(II)/Ni(II) binary mixture, respectively. The reuse of column also has been
investigated and there was no significant decrease at adsorption capacity even
in consecutive eleven experiments.

References

  • [1]. Forster C.F. and Was D.A.J., Biosorption of Heavy Metals: an Introduction, Biosorbents for Metal Ions Chapter 1, Taylor and Francis, London. 1997.
  • [2]. Ministry of the Environment programs and initiatives. Cobalt in the environment. Address: http://foodshedproject.ca/wp-content/uploads/2015/12/CoFacts.pdf
  • [3]. Swain B., Cho S.S, Lee G.H. and Uhm S., Extraction/Separation of Cobalt by Solvent Extraction: A Review, J. Korean. Ind. Eng. Chem. 26(2015) 631-639.
  • [4]. Soylak M., Kaya B. and Tuzen M., Copper(II)-8-hydroxquinoline coprecipitation system for preconcentration and separation of cobalt(II) and manganese(II) in real samples, J. Hazard Mater. 147(2007) 832-837.
  • [5]. Aşçı Y. and Kaya Ş., Removal of cobalt ions from water by ion-exchange method, Desalin. Water Treat. 52(2014) 267-273.
  • [6]. Elsheikh R., Ayman A.G., Elsayed H.A. and Alamin E.M. Cloud point extraction, preconcenration and spectrophotometric determination of cobalt in water samples, J. Pharm Pharm. Sci. 7(2015) 213-221.
  • [7]. Ince M., Kaya G. and Yaman M., Solid phase extraction and preconcentration of cobalt in mineral waters with PAR-loaded Amberlite XAD-7 and flame atomic absorption spectrometry, Environ. Chem. Lett. 8(2010) 283–288.
  • [8]. Wulff G. and Sarhan A., Use of polymers with enzyme-analogous structures for the resolution of racemates, Chem., Int. Ed. Engl., 11(1972) 341–346.
  • [9]. Tamahkar E. and Denizli A., Metal ion coordination interactions for biomolecule recognition: a Review, Hittite J. Sci. Eng. 1(2014) 21–26.
  • [10]. Göktürk I., Üzek R., Uzun L. and Denizli A., Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles, Artif. Cells. Nanomed. Biotechnol. 44(2016) 1133–1140.
  • [11]. Çavuş A., Baysal Z. and Alkan H., Preparation of poly(hydroxyethyl methacrylate) cryogels containing L-histidine for insulin recognition, Colloids Surf. B: Biointerfaces. 107(2013) 84–89.
  • [12]. Tamahkar E., Bereli N., Say R. and Denizli A., Molecularly imprinted supermacroporous cryogels for cytochrome c recognition, J. Sep. Sci. 34(2011) 3433–3440.
  • [13]. Gedikli M., Ceylan Ş., Erzengin M. and Odabaşı M., A novel matrix for hydrophobic interaction chromatography and its application in lysozyme adsorption, Acta Biochim. Pol. 61(2014) 731–737.
  • [14]. Odabaşı M., Baydemir G., Karatas M. and Derazshamshir A., Preparation and Characterization of Metal-Chelated Poly(HEMA-MAH) Monolithic Cryogels and Their Use for DNA Adsorption, J. Appl. Polym. Sci. 116(2010) 1306–1312.
  • [15]. Balamurugan K., Gokulakrishnan K. and Prakasam T., Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers, Saudi Pharm. J. 20(2012) 53–61.
  • [16]. Yan H., Row K.H and Yang G., Water-compatible molecularly imprinted polymers for selective extraction of ciprofloxacin from human urine, Talanta, 75(2008), 227–232.
  • [17]. Say R., Birlik E., Ersöz A., Yilmaz F., Gedikbey T. and Denizli A., Preconcentration of copper on ion-selective imprinted polymer microbeads, Anal. Chim. Acta. 480(2003) 251–258.
  • [18]. Guo B., Deng F., Zhao Y., Luo X., Luo S. and Au, C. Magnetic ion-imprinted and −SH functionalized polymer for selective removal of Pb(II) from aqueous samples, Appl. Surf. Sci. 292(2014) 438-446.
  • [19]. Candan, N., Tuzmen, N., Andac, M., Andac, C., Say, R. and Denizli A., Cadmium removal out of human plasma using ion imprinted beads in a magnetic column, Mater. Sci. Eng. C, 29(2009) 144-152.
  • [20]. Andersson L.I., Selective solid-phase extraction of bio- and environmental samples using molecularly imprinted polymers, Bioseparation, 10(2001) 353–364.
  • [21]. Mohamed R., Richoz-Payot J., Gremaud E., Mottier P., Yilmaz E., Tabet J.C. and Guy P.A., Advantages of Molecularly Imprinted Polymers LC-ESI-MS/MS for the Selective Extraction and Quantification of Chloramphenicol in Milk-Based Matrixes. Comparison with a Classical Sample Preparation, Anal. Chem., 79(2007) 9557–9565.
  • [22]. Andaç M., Say R. and Denizli A., Molecular recognition based cadmium removal from human plasma, J. Chromatogr. B, 811 (2004) 119-126.
  • [23]. Chen L., Wang X., Lu W., Wua X. and Lia J., Molecular imprinting: perspectives and applications, Chem. Soc. Rev., 45(2016) 2137-2211.
  • [24]. Zhang Z., Li J., Song X., Ma J. and Chen L., Hg2+ ion-imprinted polymers sorbents based on dithizone–Hg2+chelation for mercury speciation analysis in environmental and biological samples, RSC Adv., 4(2014) 46444–46453.
  • [25]. Yilmaz V., Arslan Z., Hazer O. and Yilmaz H., Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES), Microchem J. 114(2014) 66–72.
  • [26]. Yavuz H., Say R. and Denizli A., Iron removal from human plasma based on molecular recognition using imprinted beads, Mater. Sci. Eng. C,25(2005) 521-528.
  • [27]. Ersöz A., Say R. and Denizli A., Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns, Anal. Chim. Acta., 502(2004) 91-97.
  • [28]. Hür D., Ekti S.F. and Say R., N-Acylbenzotriazole mediated synthesis of some methacrylamido amino acids, Lett. Org. Chem., 4(2007) 585-587.
  • [29]. Denizli, A., Salih, B. and Pişkin, E., New sorbents for removal of heavy metal ions: diamine-glowdischarge treated poly hydroxyethylmethacrylate microspheres, J. Chromatogr. A, 773(1997) 169.
  • [30]. Özkütük E.B. and Karabörk M. Fe3+-Imprinted Polymeric Systems, Hacettepe J. Biol.and Chem., 35 (2007) 195-202.
There are 30 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Gurbet Canpolat

Publication Date December 24, 2018
Submission Date August 25, 2018
Acceptance Date November 12, 2018
Published in Issue Year 2018Volume: 39 Issue: 4

Cite

APA Canpolat, G. (2018). Selective Separation of Cobalt Using a New Co(II)-Imprinted Polymer/Cryogel System. Cumhuriyet Science Journal, 39(4), 920-927. https://doi.org/10.17776/csj.455103