Research Article
BibTex RIS Cite

The Investigation of Ni (II) Removal by Biocomposite Synthesized with the Immobilization of Candida Utilis on Chitosan

Year 2018, Volume: 39 Issue: 2, 469 - 476, 29.06.2018
https://doi.org/10.17776/csj.434258

Abstract

In this study, Ni(II) adsorption was examined with the biocomposite
prepared with the immobilization
of Candida utilis
on chitosan polymer. The FTIR and SEM analyses of chitosan-
Candida utilis biocomposite
were carried out before and after adsorption of Ni (II) ions. For the Ni(II)
adsorption by
C. utilis immobilized on
chitosan
, the Ni(II) concentrations
were changed in the concentration range of 10-100 mg/L. For the Ni(II)
adsorption by
C. utilis immobilized on
chitosan
, the optimum pH value was
determined to be 4.0, and
temperature was
determined to be 25
0C. Under these experimental conditions, the
maximum adsorbed amount of Ni(II) per unit weight of adsorbent was found to be
9.5 mg/g. The adsorption equilibrium data adjusted to the Langmuir isotherm
model. The kinetic data were represented by the pseudo-first-order kinetic
model. The enthalpy, entropy and Gibbs free energy changes were found to be
-4.61
kj/mol, 1.97 j/mol, -10.48 kj/mol, respectively. With respect to the
results obtained in this study, new chitosan-
Candida utilis biocomposites
will become an alternative for the removal of heavy metals from wastewaters.

References

  • [1]. Suhong, C., Qinyan, Y., Baoyu, G., Qian, L., Xing, X., Removal of Cr (VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study, Chemical Engineering Journal, 168 (2011) 909–917.
  • [2]. Yu., X., Tong. S., Ge. M., Wu. L., Zou. J., Cao. C., Song. W., Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals, Journal of Environmental Sciences, 25(5) (2013) 933–943.
  • [3]. Chatterjee, S.K., Bhattacharjee, I., Chandra, G., Biosorption of heavy metals from industrial waste water by Geobacillus thermode nitrificans, Journal of Hazardous Materials, 175 (2010) 117–125.
  • [4]. Lidija T., Ljiljana S., Biljana M, Maja J., Bojan M., Ivanka M., Immobilization of Candida rugosa lipase by adsorption onto biosafemeso/macroporous silica and zirconia, Biochemical Engineering Journal, 93 (2015) 73–83.
  • [5]. Jin. Y.L., Speers, R.A., Flocculation of Saccharomyces cerevisiae, Food Res Int., 31 (1998) 421-440.
  • [6]. Rapoport, A., Borovikova, B., Kokina, A., Patmalnieks, A., Polyak, N., Pavlovska, I., Mezinskis, G., Dekhtyar, Y., Immobilisation of yeast cells on the surface of hydroxyapatite, Process Biochemistry, 46 (2011) 665–670.
  • [7]. Monvisade, P., Siriphannon, P., Chitosan intercalated montmorillonite: Preparation, characterization and cationic dye adsorption, Applied calay Science, (2009) 427.
  • [8]. Cheung. W.H., Ng. J.C.Y., McKay. G., Equilibrium studies for the sorption of lead from effluents using chitosan, Chemosphere, 52 (2003) 1021-1030.
  • [9]. Aksu, Z., Yener, J.,A comparative adsorption/biosorption study of mono-chlorinat phenols onto various sorbents, Waste Management, 21 (2001) 695-702.
  • [10]. Bayat, B., Comparative study of adsorption properties of Turkish fly ashes, The case of nickel(II), copper(II) and zinc(II), Journal of Hazardous Materials, 95(3) (2002) 251-273.
  • [11]. Khesami, L., Capart, R., Removal of Chromium (VI) from aqueous solutions by activated carbons: kinetic and equilibrium studies, Journal of Hazardous Materials, 123 (2005) 223-132.
  • [12]. Fenglian, F., Qi, W., Removal of heavy metal ions wastewaters, Journal of Environmental Management, 92 (2011) 407-418.
  • [13]. Tünay, O., Kabdaşlı, I. Fiziksel Kimya,1. Baskı, İ.T.Ü. Yayınları, İstanbul, (1996) 168.
  • [14]. Van Oss C.J., Chaudhury, M.K., Good, R.J., Interfacial Lifshitz van der Waals and polar interaction in macroscopic systems, Chem Rev. 88 (1988) 927–941.
  • [15]. Lu, S., Gibss, S.W., Copper removal from wastewater using spent grain as biosorben’, Bioresource Technology, 77 (2008) 7-17.
  • [16]. Ertugay, N., Bayhan, Y.K., Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricusbisporus, Journal of Hazardous Materials, 154 (2008) 432-439.
  • [17]. Kul, A.R., Koyuncu, H., Adsorption of Pb (II) ions from aqueous solution by native and activated bentonite: Kinetic, equilibrium and thermodynamic study, Journal of Hazardous Materials, (2010) 332-339.
  • [18]. Kirtikumar, C., Kishor, P., Bhalchandra, M., Immobilization of Candida cylindracea lipase on poly lactic acid polyvinyl alcohol and chitosan based ternary blend film, Characterization activity stability and its application for N-acylation reactions, Process Biochemistry. 48 (2010) 1335–1347.
  • [19]. Zhao, Y., Tan, Y., Guo, Y., Gu, X., Wang, X., Zhang, Y., Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils, Environ. Pollut. 180 (2013) 206–213.
  • [20]. Xiaoli, L., Yanfeng, L., Zhengfang, Y., Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution, Chemical Engineering Journal, 178 (2011) 60–68.

Candida Utilis’in Kitosana Tutuklanması ile Sentezlenen Biyokompozit ile Ni (II) Gideriminin İncelenmesi

Year 2018, Volume: 39 Issue: 2, 469 - 476, 29.06.2018
https://doi.org/10.17776/csj.434258

Abstract

Bu çalışmada, kitosan
polimeri üzerine Candida utilis’in tutuklanması
ile hazırlanan biyokompozit ile  Ni (II)
adsorpsiyonu incelenmiştir. Kitosan-Candida
utilis
biyokompozitinin FTIR ve SEM analizleri Ni (II) iyonlarının
adsorpsiyonundan önce ve sonra gerçekleştirildi. Kitosan üzerine tutuklanan C.utilis’in  Ni (II) adsorpsiyonunda, Ni
(II) konsantrasyonları 10-100 mg / L konsantrasyon aralığında değiştirilmiştir.
Kitosan üzerine C.utilis’in  Ni
(II) adsorpsiyonu için ile elde edilen optimum pH değerinin 4.0 ve sıcaklık
değerlerinin 25 ° C olduğu belirlenmiştir. Bu deney koşulları altında,
adsorbanın maksimum adsorbe edilmiş Ni (II) miktarı 9.5 mg / g olarak
bulunmuştur. Adsorpsiyon denge verileri Langmuir izoterm modeline uygun olduğu
belirlenmiştir. Kinetik veriler, yalancı birinci dereceden kinetik modeline
uygun olduğu tespit edilmiştir. Entalpi, entropi ve Gibbs serbest enerji
değişimleri sırasıyla -4.61 kj / mol, 1.97 j / mol, -10.48 kj / mol olarak
bulunmuştur. Bu çalışmada elde edilen sonuçlarla ilgili olarak, yeni chitosan-Candida utilis biyokompozitinin 
kullanımı, atıksularki ağır
metallerin uzaklaştırılmasında bir alternatif haline gelecektir.

References

  • [1]. Suhong, C., Qinyan, Y., Baoyu, G., Qian, L., Xing, X., Removal of Cr (VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study, Chemical Engineering Journal, 168 (2011) 909–917.
  • [2]. Yu., X., Tong. S., Ge. M., Wu. L., Zou. J., Cao. C., Song. W., Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals, Journal of Environmental Sciences, 25(5) (2013) 933–943.
  • [3]. Chatterjee, S.K., Bhattacharjee, I., Chandra, G., Biosorption of heavy metals from industrial waste water by Geobacillus thermode nitrificans, Journal of Hazardous Materials, 175 (2010) 117–125.
  • [4]. Lidija T., Ljiljana S., Biljana M, Maja J., Bojan M., Ivanka M., Immobilization of Candida rugosa lipase by adsorption onto biosafemeso/macroporous silica and zirconia, Biochemical Engineering Journal, 93 (2015) 73–83.
  • [5]. Jin. Y.L., Speers, R.A., Flocculation of Saccharomyces cerevisiae, Food Res Int., 31 (1998) 421-440.
  • [6]. Rapoport, A., Borovikova, B., Kokina, A., Patmalnieks, A., Polyak, N., Pavlovska, I., Mezinskis, G., Dekhtyar, Y., Immobilisation of yeast cells on the surface of hydroxyapatite, Process Biochemistry, 46 (2011) 665–670.
  • [7]. Monvisade, P., Siriphannon, P., Chitosan intercalated montmorillonite: Preparation, characterization and cationic dye adsorption, Applied calay Science, (2009) 427.
  • [8]. Cheung. W.H., Ng. J.C.Y., McKay. G., Equilibrium studies for the sorption of lead from effluents using chitosan, Chemosphere, 52 (2003) 1021-1030.
  • [9]. Aksu, Z., Yener, J.,A comparative adsorption/biosorption study of mono-chlorinat phenols onto various sorbents, Waste Management, 21 (2001) 695-702.
  • [10]. Bayat, B., Comparative study of adsorption properties of Turkish fly ashes, The case of nickel(II), copper(II) and zinc(II), Journal of Hazardous Materials, 95(3) (2002) 251-273.
  • [11]. Khesami, L., Capart, R., Removal of Chromium (VI) from aqueous solutions by activated carbons: kinetic and equilibrium studies, Journal of Hazardous Materials, 123 (2005) 223-132.
  • [12]. Fenglian, F., Qi, W., Removal of heavy metal ions wastewaters, Journal of Environmental Management, 92 (2011) 407-418.
  • [13]. Tünay, O., Kabdaşlı, I. Fiziksel Kimya,1. Baskı, İ.T.Ü. Yayınları, İstanbul, (1996) 168.
  • [14]. Van Oss C.J., Chaudhury, M.K., Good, R.J., Interfacial Lifshitz van der Waals and polar interaction in macroscopic systems, Chem Rev. 88 (1988) 927–941.
  • [15]. Lu, S., Gibss, S.W., Copper removal from wastewater using spent grain as biosorben’, Bioresource Technology, 77 (2008) 7-17.
  • [16]. Ertugay, N., Bayhan, Y.K., Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricusbisporus, Journal of Hazardous Materials, 154 (2008) 432-439.
  • [17]. Kul, A.R., Koyuncu, H., Adsorption of Pb (II) ions from aqueous solution by native and activated bentonite: Kinetic, equilibrium and thermodynamic study, Journal of Hazardous Materials, (2010) 332-339.
  • [18]. Kirtikumar, C., Kishor, P., Bhalchandra, M., Immobilization of Candida cylindracea lipase on poly lactic acid polyvinyl alcohol and chitosan based ternary blend film, Characterization activity stability and its application for N-acylation reactions, Process Biochemistry. 48 (2010) 1335–1347.
  • [19]. Zhao, Y., Tan, Y., Guo, Y., Gu, X., Wang, X., Zhang, Y., Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils, Environ. Pollut. 180 (2013) 206–213.
  • [20]. Xiaoli, L., Yanfeng, L., Zhengfang, Y., Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution, Chemical Engineering Journal, 178 (2011) 60–68.
There are 20 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Feray Kip

Ünsal Açıkel

Publication Date June 29, 2018
Submission Date April 11, 2017
Acceptance Date April 24, 2018
Published in Issue Year 2018Volume: 39 Issue: 2

Cite

APA Kip, F., & Açıkel, Ü. (2018). The Investigation of Ni (II) Removal by Biocomposite Synthesized with the Immobilization of Candida Utilis on Chitosan. Cumhuriyet Science Journal, 39(2), 469-476. https://doi.org/10.17776/csj.434258