Research Article
BibTex RIS Cite

Kuraklık stresinin Triticum spelta genotiplerinin verim ve verim bileşenleri üzerine olan etkileri

Year 2023, Volume: 27 Issue: 1, 83 - 93, 24.03.2023
https://doi.org/10.29050/harranziraat.1241691

Abstract

Kuraklık, tarımsal üretimde önemli verim kayıplarına neden olan önemli bir çevresel strestir.
Kuraklık stresi bitkilerin büyüme ve gelişimi üzerine olan olumsuz etkilerinin yanında ürünlerin
kalitesi üzerinde de önemli etki yapar. Çalışmada hekzaploid yabani buğday türü olan Triticum
spelta genotiplerinin kuraklığa karşı dayanıklılıkları test edilmiştir. 18 farklı T. spelta genotipi ile
sera koşullarında yürütülen çalışma tesadüf parselleri deneme desenine göre 4’er tekerrürlü
olarak gerçekleştirilmiştir. Çalışma 3 farklı su stresi uygulaması (TK70-kontrol, TK35, TK45)
altında yapılmıştır. Tane olgunluk döneminde bitkiler hasat edilmiş ve bitkilerde kuru madde
verimi, tane verimi, 1000 tane ağırlığı, hasat indeks ile stres tolerans indeks değerleri ve
tanede N, P ve K konsantrasyonları belirlenmiştir. Sonuç olarak, farklı su stresi uygulamaları
altındaki T. spelta genotiplerinin kontrol uygulamasına (TK70) göre TK35 ve TK45
uygulamalarında kuru madde verimleri, tane verimleri ve 1000 tane ağırlıklarında istat iksel
olarak (p<0.05) önemli oranlarda azalmaların olduğu görülmüştür. Kontrol koşullarına göre
TK35 ve TK45 uygulamalarında kuru madde verimi, tane verimi, hasat indeks ile stres tolerans
indeksi değerleri bakımından SP434, SP521 ve SP2 numaralı T. spelta genotiplerinde daha fazla
çıkmıştır. Kuraklık derecesinin artışı ile paralel şekilde genotiplerin tane N, P ve K
konsantrasyonlarının da önemli oranda (p<0.05) arttığı ortaya çıkmıştır. Elde edilen sonuçlara
göre farklı T. spelta genotiplerinin kuraklığa karşı verdiği tepkilerin farklı olduğu ve SP434,
SP521 ve SP2 numaralı genotiplerin diğer genotiplere göre kuraklığa karşı daha toleranslı
olduğu görülmüştür.

Thanks

Bu çalışma, birinci yazarın ikinci yazar danışmanlığında hazırladığı yüksek lisans tezinden üretilmiştir.

References

  • Akıncı, Ş. & Lösel, D. M. (2012). Plant water-stress response mechanisms. Water stress, 15, 42.
  • Ali, M. F. F. & Pırlak, L. (2021). Morphological and Physiological Effects of Drought Stress on Some Strawberry Cultivars. Selcuk Journal of Agriculture and Food Sciences, 35(3), 194-201.
  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465.
  • Bremner, J. (1965). Total nitrogen. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 1149-1178.
  • Burgos, S., Stamp, P. & Schmid, J. (2001). Agronomic and physiological study of cold and flooding tolerance of spelt (Triticum spelta L.) and wheat (Triticum aestivum L.). Journal of Agronomy and Crop Science, 187(3), 195-202.
  • Caglar, K. (1949). Toprak su koruma mühendisliği. Çukurova Üniversitesi Ziraat Fakültesi, Yayın(108).
  • Carson, P. (1975). Recommended potassium test. Bull Dep Agric Econ ND Agric Exp Stn ND State Univ Agric Appl Sci.
  • Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., . . . Stanca, A. M. (2008). Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research, 105(1-2), 1-14.
  • Change, I. C. (2013). The physical science basis: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. K., Tignor, M., Allen, SK, Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, PM, Eds, 1535.
  • Denčid, S., Kastori, R., Kobiljski, B. & Duggan, B. (2000). Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica, 113(1), 43-52.
  • Dikici, M. (2020). Drought analysis with different indices for the Asi Basin (Turkey). Scientific Reports, 10(1), 1-12.
  • Dolferus, R. (2014). To grow or not to grow: a stressful decision for plants. Plant Science, 229, 247-261.
  • Ehdaie, B., Alloush, G., Madore, M. & Waines, J. (2006). Genotypic variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water‐soluble carbohydrates. Crop science, 46(5), 2093-2103.
  • Fernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. Paper presented at the Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13-16, Shanhua, Taiwan, 1992.
  • Haile, F. J. (2000). Drought stress, insects, and yield loss. In Biotic stress and yield loss (pp. 131-148): CRC press.
  • Hobbs, P. & Sayre, K. (2001). Managing experimental breeding trials. Application of Physiology in Wheat Breeding (9706480773). Retrieved from
  • Hussain, M. & Mumtaz, S. (2014). Climate change and managing water crisis: Pakistan’s perspective. Reviews on environmental health, 29(1-2), 71-77.
  • Jackson, M. (1967). Soil Chemical Analysis Prentice Hall of India Private Limited New Delhi p. 498.
  • Jafari, A., Paknejad, F. & JAMI, A. M. (2009). Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids.
  • Kacar, B. & İnal, A. (2008). Bitki Analizleri. Nobel Yayın No: 1241. Fen Bilimleri, 63(1).
  • Kılıç, H. & Yağbasanlar, T. (2010). The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 164-170.
  • Kirkham, M. B. (2014). Principles of soil and plant water relations: Academic Press.
  • Kogan, F., Adamenko, T. & Guo, W. (2013). Global and regional drought dynamics in the climate warming era. Remote Sensing Letters, 4(4), 364-372.
  • Kotal, B. D., Arpita, D. & Choudhury, B. (2010). Genetic variability and association of characters in wheat (Triticum aestivum L.). Asian journal of crop science, 2(3), 155-160.
  • Lindsay, W. L. & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428.
  • Mardeh, A. S.-S., Ahmadi, A., Poustini, K. & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98(2-3), 222-229.
  • Mittler, R. & Blumwald, E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annual review of plant biology, 61(1), 443-462.
  • Nambiar, E. (1977). The effects of drying of the topsoil and of micronutrients in the subsoil on micronutrient uptake by an intermittently defoliated ryegrass. Plant and Soil, 46(1), 185-193.
  • Nicolas, M. & Turner, N. (1993). Use of chemical desiccants and senescing agents to select wheat lines maintaining stable grain size during post-anthesis drought. Field Crops Research, 31(1-2), 155-171.
  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate: US Department of Agriculture.
  • Özseven, İ. & Bayram, M. (2005). Marmara Bölgesinde dört ekmeklik buğday (Triticum Aestivum Var. Aestivum L.) çeşidinde değişik azot dozlarının verim ve verim unsurlarına etkilerinin araştırılması. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 14(1-2), 56-74.
  • Öztürk, A. (1999). Kuraklığın kışlık buğdayın gelişmesi ve verimine etkisi. Turkish Journal of Agriculture and Forestry, 23(1), 531-540.
  • Pirasteh‐Anosheh, H., Saed‐Moucheshi, A., Pakniyat, H. & Pessarakli, M. (2016). Stomatal responses to drought stress. Water stress and crop plants: A sustainable approach, 1, 24-40.
  • Reddy, A. R., Chaitanya, K. V. & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of plant physiology, 161(11), 1189-1202.
  • Riboldi, L. B., Oliveira, R. F. & Angelocci, L. R. (2016). Leaf turgor pressure in maize plants under water stress. Australian Journal of Crop Science, 10(6), 878-886.
  • Rüegger, A., Winzeler, M. & Winzeler, H. (1993). The influence of different nitrogen levels and seeding rates on the dry matter production and nitrogen uptake of spelt (Triticum spelta L.) and wheat (Triticum aestivum L.) under field conditions. Journal of Agronomy and Crop Science, 171(2), 124-132.
  • Sharma, P., Jha, A. B. & Dubey, R. S. (2019). Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In Handbook of Plant and Crop Stress, Fourth Edition (pp. 93-136): CRC press.
  • Tanguilig, V., Yambao, E., O’toole, J. & De Datta, S. (1987). Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize, and soybean. Plant and Soil, 103(2), 155-168.
  • Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R. & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17-22.
  • Zhang, F.-J., Zhang, K.-K., Du, C.-Z., Li, J., Xing, Y.-X., Yang, L.-T. & Li, Y.-R. (2015). Effect of drought stress on anatomical structure and chloroplast ultrastructure in leaves of sugarcane. Sugar Tech, 17(1), 41-48.

Effects of Drought Stress on Yield and Yield Components of Triticum Spelta Genotypes

Year 2023, Volume: 27 Issue: 1, 83 - 93, 24.03.2023
https://doi.org/10.29050/harranziraat.1241691

Abstract

Drought is an important environmental stress that causes significant yield losses in agricultural
production. Besides the negative effects of drought stress on the growth and development of
plants, it also has an important effect on the quality of the products. In the study, the drought
resistance of Triticum spelta genotypes, which is a hexaploid wild wheat species, was tested.
The study was carried out in greenhouse conditions with 18 different T. Spelta genotypes, in a
randomized plot design with 4 replications. The study was conducted under three different
drought treatments (TK35, TK45 and TK70-control). In plants harvested in the grain maturity
period; plant yield, grain yield, 1000 grain yield, harvest index, stress tolerance index and grain
N, P and K concentrations were determined. Compared to the control application (TK70) of all
T. Spelta genotypes tested under three different drought stresses, statistically significant
decreases were observed in the dry matter yields, grain yields and 1000 grain yields of the
genotypes (p<0.01 and p<0.05) in TK35 and TK45 applications. According to the control
conditions, plant yield, grain yield, harvest index and stress tolerance index values were higher
in SP434, SP521 and SP2 genotypes in TK35 and TK45 applications. It was found that the grain
N, P and K concentrations of the genotypes increased significantly (p<0.01, p<0.05) with the increase in the degree of drought. According to the results obtained, it was revealed that the responses of different T. Spelta genotypes to drought were different, and among the genotypes, the genotypes SP434, SP521 and SP2 were more resistant to drought than other genotypes.

References

  • Akıncı, Ş. & Lösel, D. M. (2012). Plant water-stress response mechanisms. Water stress, 15, 42.
  • Ali, M. F. F. & Pırlak, L. (2021). Morphological and Physiological Effects of Drought Stress on Some Strawberry Cultivars. Selcuk Journal of Agriculture and Food Sciences, 35(3), 194-201.
  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465.
  • Bremner, J. (1965). Total nitrogen. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 1149-1178.
  • Burgos, S., Stamp, P. & Schmid, J. (2001). Agronomic and physiological study of cold and flooding tolerance of spelt (Triticum spelta L.) and wheat (Triticum aestivum L.). Journal of Agronomy and Crop Science, 187(3), 195-202.
  • Caglar, K. (1949). Toprak su koruma mühendisliği. Çukurova Üniversitesi Ziraat Fakültesi, Yayın(108).
  • Carson, P. (1975). Recommended potassium test. Bull Dep Agric Econ ND Agric Exp Stn ND State Univ Agric Appl Sci.
  • Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., . . . Stanca, A. M. (2008). Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research, 105(1-2), 1-14.
  • Change, I. C. (2013). The physical science basis: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. K., Tignor, M., Allen, SK, Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, PM, Eds, 1535.
  • Denčid, S., Kastori, R., Kobiljski, B. & Duggan, B. (2000). Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica, 113(1), 43-52.
  • Dikici, M. (2020). Drought analysis with different indices for the Asi Basin (Turkey). Scientific Reports, 10(1), 1-12.
  • Dolferus, R. (2014). To grow or not to grow: a stressful decision for plants. Plant Science, 229, 247-261.
  • Ehdaie, B., Alloush, G., Madore, M. & Waines, J. (2006). Genotypic variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water‐soluble carbohydrates. Crop science, 46(5), 2093-2103.
  • Fernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. Paper presented at the Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13-16, Shanhua, Taiwan, 1992.
  • Haile, F. J. (2000). Drought stress, insects, and yield loss. In Biotic stress and yield loss (pp. 131-148): CRC press.
  • Hobbs, P. & Sayre, K. (2001). Managing experimental breeding trials. Application of Physiology in Wheat Breeding (9706480773). Retrieved from
  • Hussain, M. & Mumtaz, S. (2014). Climate change and managing water crisis: Pakistan’s perspective. Reviews on environmental health, 29(1-2), 71-77.
  • Jackson, M. (1967). Soil Chemical Analysis Prentice Hall of India Private Limited New Delhi p. 498.
  • Jafari, A., Paknejad, F. & JAMI, A. M. (2009). Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids.
  • Kacar, B. & İnal, A. (2008). Bitki Analizleri. Nobel Yayın No: 1241. Fen Bilimleri, 63(1).
  • Kılıç, H. & Yağbasanlar, T. (2010). The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 164-170.
  • Kirkham, M. B. (2014). Principles of soil and plant water relations: Academic Press.
  • Kogan, F., Adamenko, T. & Guo, W. (2013). Global and regional drought dynamics in the climate warming era. Remote Sensing Letters, 4(4), 364-372.
  • Kotal, B. D., Arpita, D. & Choudhury, B. (2010). Genetic variability and association of characters in wheat (Triticum aestivum L.). Asian journal of crop science, 2(3), 155-160.
  • Lindsay, W. L. & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428.
  • Mardeh, A. S.-S., Ahmadi, A., Poustini, K. & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98(2-3), 222-229.
  • Mittler, R. & Blumwald, E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annual review of plant biology, 61(1), 443-462.
  • Nambiar, E. (1977). The effects of drying of the topsoil and of micronutrients in the subsoil on micronutrient uptake by an intermittently defoliated ryegrass. Plant and Soil, 46(1), 185-193.
  • Nicolas, M. & Turner, N. (1993). Use of chemical desiccants and senescing agents to select wheat lines maintaining stable grain size during post-anthesis drought. Field Crops Research, 31(1-2), 155-171.
  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate: US Department of Agriculture.
  • Özseven, İ. & Bayram, M. (2005). Marmara Bölgesinde dört ekmeklik buğday (Triticum Aestivum Var. Aestivum L.) çeşidinde değişik azot dozlarının verim ve verim unsurlarına etkilerinin araştırılması. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 14(1-2), 56-74.
  • Öztürk, A. (1999). Kuraklığın kışlık buğdayın gelişmesi ve verimine etkisi. Turkish Journal of Agriculture and Forestry, 23(1), 531-540.
  • Pirasteh‐Anosheh, H., Saed‐Moucheshi, A., Pakniyat, H. & Pessarakli, M. (2016). Stomatal responses to drought stress. Water stress and crop plants: A sustainable approach, 1, 24-40.
  • Reddy, A. R., Chaitanya, K. V. & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of plant physiology, 161(11), 1189-1202.
  • Riboldi, L. B., Oliveira, R. F. & Angelocci, L. R. (2016). Leaf turgor pressure in maize plants under water stress. Australian Journal of Crop Science, 10(6), 878-886.
  • Rüegger, A., Winzeler, M. & Winzeler, H. (1993). The influence of different nitrogen levels and seeding rates on the dry matter production and nitrogen uptake of spelt (Triticum spelta L.) and wheat (Triticum aestivum L.) under field conditions. Journal of Agronomy and Crop Science, 171(2), 124-132.
  • Sharma, P., Jha, A. B. & Dubey, R. S. (2019). Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In Handbook of Plant and Crop Stress, Fourth Edition (pp. 93-136): CRC press.
  • Tanguilig, V., Yambao, E., O’toole, J. & De Datta, S. (1987). Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize, and soybean. Plant and Soil, 103(2), 155-168.
  • Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R. & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17-22.
  • Zhang, F.-J., Zhang, K.-K., Du, C.-Z., Li, J., Xing, Y.-X., Yang, L.-T. & Li, Y.-R. (2015). Effect of drought stress on anatomical structure and chloroplast ultrastructure in leaves of sugarcane. Sugar Tech, 17(1), 41-48.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Soil Sciences and Ecology
Journal Section Araştırma Makaleleri
Authors

Yusuf Tutuş 0000-0003-2438-2739

Halil Erdem 0000-0002-3296-1549

Publication Date March 24, 2023
Submission Date January 24, 2023
Published in Issue Year 2023 Volume: 27 Issue: 1

Cite

APA Tutuş, Y., & Erdem, H. (2023). Kuraklık stresinin Triticum spelta genotiplerinin verim ve verim bileşenleri üzerine olan etkileri. Harran Tarım Ve Gıda Bilimleri Dergisi, 27(1), 83-93. https://doi.org/10.29050/harranziraat.1241691

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.