Research Article
BibTex RIS Cite

Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry

Year 2018, Volume: 31 Issue: 1, 53 - 64, 01.03.2018

Abstract

Monolayer
films modified
polycrystalline
gold electrode
has
been fabricated by using self assembled monolayer method of
1,6-hexanedithiol and
1-hexanethiol
and
used for electro-catalytic oxidations of iron(II). A calibration curve was
obtained for Fe(II) in a wide concentration range from 5.00×10-8 mol.L
1
 to 3.85×10-5 mol.L1
and detection limit of 1.6×10-8 mol.L
1
on
the Au-HDT electrode. Additionally, on the Au-HT electrode, the linear range from
1.00×10
8
mol.L1
to 2.56×10
5
mol.L1
and
detection limit of 3.20×10
8
mol.L1
for the determination of Fe(II) were achieved. Validity of the method and
applicability of the electrodes are successfully tested by determination of
Fe(II) in
real samples.

References

  • [1] Liu, X.W. and Millero, F.J., "The solubility of iron in seawater", Mar. Chem., 77: 43-54, (2002). [2] Lieu, P.T., Heiskala, M., Peterson, P.A., Yang, Y., "The roles of iron in health and disease", Mol. Aspects Med., 22: 1-87, (2001). [3] Kassem, M.A. and Amin, A.S., "Spectrophotometric determination of iron in environmental and food samples using solid phase extraction", Food Chem., 141: 1941–1946, (2013). [4] Shaw-Stiffel, T.A., Chronic hepatitis 5nd ed., in: G.L. Mandell, J.E. Bennett, R. Dolin, et al., Principles and practice of infectious diseases, New York: Churchill Livingstone (2000). [5] WHO 2003 & European Community, Iron in Drinking-water, http://www.who.int/water_sanitation_health/dwq/chemicals/iron.pdf, 1998 (accessed 11.03.2017) [6] Bowie, A.R., Achterberg, E.P., Mantoura, R.F.C., Worsfold, P.J., "Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection", Anal. Chim. Acta, 361: 189-200, (1998). [7]. De Jong, J.T.M, Boye, M., Schoemann, V.F., Nolting, R.F., De Baar, H.J.W., "Shipboard techniques based on flow injection analysis for measuring dissolved Fe, Mn and Al in seawater", J. Environ. Monit., 2: 496-502, (2000). [8] Weeks, D.A. and Bruland, K.W., "Improved method for shipboard determination of iron in seawater by flow injection analysis", Anal. Chim. Acta, 453: 21-32, (2002). [9] Johnson, K.S., Coale, K.H., and Jannasch, H.W., "Analytical chemistry in oceanography", Anal. Chem., 64: 1065-1075, (1992). [10] Rijkenberg, M.J.A., Fischer, A.C., Kroon, J.J., Gerringa, L.J.A., Timmermans, K.R., Wolterbeek, H.T., De Baar, H.J.W., "The influence of UV irradiation on the photoreduction of iron in the Southern Ocean", Mar. Chem., 93: 119-129, (2005). [11] Measures, C.I., Yuan, J. and Resing, J., "Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection", Mar. Chem., 50: 3-12, (1995). [12] Blain, S. and Treguer, P., "Iron(II) and iron(III) determination in seawater at the nanomolar level with selective online preconcentration and spectrophotometric determination", Anal. Chim. Acta, 308: 425-432, (1995). [13] Cha, K.W. and Park, K.W., "Determination of iron(III) with salicylic acid by the fluorescence quenching method", Talanta, 46: 1567-1571, (1998). [14] Pozdniakova, S. and Padarauskas, A., "Speciation of metals in different oxidation states by capillary electrophoresis using pre-capillary complexation with complexones", Analyst, 123: 1497-1500, (1998). [15] Waite, T.D. and Morel, F.M., "Preparation and Properties of a New Carbon Paste Iron Selective Electrodes and Their Applications", Anal. Chem., 56: 787-792, (1984). [16] Mahmoud, W.H., "Iron ion‐selective electrodes for direct potentiometry and potentiotitrimetry in pharmaceuticals", Anal. Chim. Acta, 436: 199-206, (2001). [17] Saleh, M.B., "Iron(III) ionophores based on formyl salicylic acid derivatives as sensors for ion-selective electrodes", Analyst, 125: 179-183, (2000). [18] Bersier, P.M., Howell, J., Bruntlett, C., "Advanced electroanalytical techniques versus atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry in environmental analysis", Analyst, 119: 219-232, (1994). [19] Van den Berg, C.M.G. and Huang, Z.Q., "Determination of iron in seawater using cathodic stripping voltammetry preceded by adsorptive collection with the hanging mercury drop electrode", J. Electroanal. Chem., 177: 269-280, (1984). [20] Ugo, P., Moretto, L.M., Rudello, D., Birriel, E., Chevalet, J., "Trace iron determination by cyclic and multiple square‐wave voltammetry at nafion coated electrodes. Application to Pore‐Water Analysis", Electroanalysis, 13: 661-668, (2001). [21] Obata, H. and van den Berg, C.M.G., "Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry", Anal. Chem., 73: 2522–2528, (2001). [22] Van den Berg, C.M.G., "Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene", Anal. Chem., 78: 156–163, (2006). [23] Murray, R.W., in: Bard, A.J. (Eds.), In Electroanalytical Chemistry, Marcel Dekker, New York, (1984). [24] Jens, K., Terborg, L., Nowak, S., Telgmann, L., Tokmak, F., Kramer, B.K., Gunsel, A., Wiesmuller, G.A., Waldeck, J., Bremer, C., Karst, U., "Analysis of the Contrast Agent Magnevist® and its Transmetallation Products in Blood Plasma by CE/ESI-TOF-MS", Analytical Chem., 81: 3600–3607, (2009). [25] Mandler, D., "Formation, Characterization, and Applications of Organic and Inorganic Nanometric Films", Israel Journal of Chem., 50: 306–311, (2010). [26] Shervedani, R.K. and Bagherzadeh, M., "Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer", Sensors and Actuators B, 139: 657–664, (2009). [27] Hong, H.G., Park, W. and Yu, E., "Voltammetric determination of electron transfer kinetic parameters in hydroquinone-terminated self-assembled monolayers on gold", J. Electroanal. Chem., 476: 177-181, (1999). [28] Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chem. Rev., 105: 1103–1169, (2005). [29] Chaki, N.K. and Vijayamohanan, K., "Self-assembled monolayers as a tunable platform for biosensor applications", Biosens. Bioel., 17: 1–12, (2002). [30] Ma, H.Y., Yang, C., Yina, B.S., Lia, G.Y., Chen, S.H., Luo, J.L., "Electrochemical characterization of copper surface modified by n-alkanethiols in chloride-containing solutions", Applied Surface Science, 218: 143–153, (2003). [31] Su, L., Gao, F. and Mao, L., "Electrochemical properties of carbon nanotube (CNT) film electrodes prepared by controllable adsorption of CNTs onto an alkanethiol monolayer self-assembled on gold electrodes", Anal. Chem., 78: 2651–2657, (2006). [32] Guo, X., Kulkarni, A., Doepke, A., Halsall, H.B., Iyer, S., Heineman, W.R., "Carbohydrate-based label-free detection of Escherichia coli ORN 178 using elec-trochemical impedance spectroscopy", Anal. Chem., 84: 241–246, (2012). [33] Barreiros dos Santos M.,, Agusil, J.P., Prieto-Simón, B., Sporer, C., Teixeira, V., Samitier, J., "Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy", Biosens. Bioelectron., 45: 174–180, (2013). [34] Geng, P., Zhang, X., Meng, W., Wang, Q., Zhang, W., Jin, L., Feng, Z., Wu, Z., "Self-assembled monolayers-based immunosensor for detection of Escherichia coliusing electrochemical impedance spectroscopy", Electrochim. Acta, 53: 4663–4668, (2008). [35] Brett, C.M.A., Kresak, S., Hianik, T., Brett, A.M.O., "Studies on self-assembled alkanethiol monolayers formed at applied potential on polyerystalline gold electrodes", Electroanalysis, 15: 557-565, (2003). [36] Leniart, A., Brycht, M., Burnat, B., Skrzypek, S., "Voltammetric determination of the herbicide propham on glassycarbon electrode modified with multi-walled carbon nanotubes", Sensors and Actuators B, 231: 54–63, (2016). [37] Lavanya, J. and Gomathi, N., "High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybridmaterial as an enhanced electrochemical sensing platform", Talanta, 144: 655–661, (2015). [38] Lei, W., Si, W.M., Hao, Q.L., Han, Z., Zhang, Y.H., Xia, M.Z., "Nitrogen-doped graphene modified electrode for nimodipine sensing", Sensor. Actuat. B. Chem., 212: 207–213, (2015). [39] Murray, R.W., Electroanalytical Chemistry, Marcel Dekker, New York, (1984). [40] Gosser, D.K., Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanisms, Wiley-VCH, New York, (1993). [41] Ermer, J., Miller J.H.McB., (Eds.), Method Validation in Pharmaceutical Analysis, Wiley-VCH Publication, Weinheim, (2005).
Year 2018, Volume: 31 Issue: 1, 53 - 64, 01.03.2018

Abstract

References

  • [1] Liu, X.W. and Millero, F.J., "The solubility of iron in seawater", Mar. Chem., 77: 43-54, (2002). [2] Lieu, P.T., Heiskala, M., Peterson, P.A., Yang, Y., "The roles of iron in health and disease", Mol. Aspects Med., 22: 1-87, (2001). [3] Kassem, M.A. and Amin, A.S., "Spectrophotometric determination of iron in environmental and food samples using solid phase extraction", Food Chem., 141: 1941–1946, (2013). [4] Shaw-Stiffel, T.A., Chronic hepatitis 5nd ed., in: G.L. Mandell, J.E. Bennett, R. Dolin, et al., Principles and practice of infectious diseases, New York: Churchill Livingstone (2000). [5] WHO 2003 & European Community, Iron in Drinking-water, http://www.who.int/water_sanitation_health/dwq/chemicals/iron.pdf, 1998 (accessed 11.03.2017) [6] Bowie, A.R., Achterberg, E.P., Mantoura, R.F.C., Worsfold, P.J., "Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection", Anal. Chim. Acta, 361: 189-200, (1998). [7]. De Jong, J.T.M, Boye, M., Schoemann, V.F., Nolting, R.F., De Baar, H.J.W., "Shipboard techniques based on flow injection analysis for measuring dissolved Fe, Mn and Al in seawater", J. Environ. Monit., 2: 496-502, (2000). [8] Weeks, D.A. and Bruland, K.W., "Improved method for shipboard determination of iron in seawater by flow injection analysis", Anal. Chim. Acta, 453: 21-32, (2002). [9] Johnson, K.S., Coale, K.H., and Jannasch, H.W., "Analytical chemistry in oceanography", Anal. Chem., 64: 1065-1075, (1992). [10] Rijkenberg, M.J.A., Fischer, A.C., Kroon, J.J., Gerringa, L.J.A., Timmermans, K.R., Wolterbeek, H.T., De Baar, H.J.W., "The influence of UV irradiation on the photoreduction of iron in the Southern Ocean", Mar. Chem., 93: 119-129, (2005). [11] Measures, C.I., Yuan, J. and Resing, J., "Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection", Mar. Chem., 50: 3-12, (1995). [12] Blain, S. and Treguer, P., "Iron(II) and iron(III) determination in seawater at the nanomolar level with selective online preconcentration and spectrophotometric determination", Anal. Chim. Acta, 308: 425-432, (1995). [13] Cha, K.W. and Park, K.W., "Determination of iron(III) with salicylic acid by the fluorescence quenching method", Talanta, 46: 1567-1571, (1998). [14] Pozdniakova, S. and Padarauskas, A., "Speciation of metals in different oxidation states by capillary electrophoresis using pre-capillary complexation with complexones", Analyst, 123: 1497-1500, (1998). [15] Waite, T.D. and Morel, F.M., "Preparation and Properties of a New Carbon Paste Iron Selective Electrodes and Their Applications", Anal. Chem., 56: 787-792, (1984). [16] Mahmoud, W.H., "Iron ion‐selective electrodes for direct potentiometry and potentiotitrimetry in pharmaceuticals", Anal. Chim. Acta, 436: 199-206, (2001). [17] Saleh, M.B., "Iron(III) ionophores based on formyl salicylic acid derivatives as sensors for ion-selective electrodes", Analyst, 125: 179-183, (2000). [18] Bersier, P.M., Howell, J., Bruntlett, C., "Advanced electroanalytical techniques versus atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry in environmental analysis", Analyst, 119: 219-232, (1994). [19] Van den Berg, C.M.G. and Huang, Z.Q., "Determination of iron in seawater using cathodic stripping voltammetry preceded by adsorptive collection with the hanging mercury drop electrode", J. Electroanal. Chem., 177: 269-280, (1984). [20] Ugo, P., Moretto, L.M., Rudello, D., Birriel, E., Chevalet, J., "Trace iron determination by cyclic and multiple square‐wave voltammetry at nafion coated electrodes. Application to Pore‐Water Analysis", Electroanalysis, 13: 661-668, (2001). [21] Obata, H. and van den Berg, C.M.G., "Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry", Anal. Chem., 73: 2522–2528, (2001). [22] Van den Berg, C.M.G., "Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene", Anal. Chem., 78: 156–163, (2006). [23] Murray, R.W., in: Bard, A.J. (Eds.), In Electroanalytical Chemistry, Marcel Dekker, New York, (1984). [24] Jens, K., Terborg, L., Nowak, S., Telgmann, L., Tokmak, F., Kramer, B.K., Gunsel, A., Wiesmuller, G.A., Waldeck, J., Bremer, C., Karst, U., "Analysis of the Contrast Agent Magnevist® and its Transmetallation Products in Blood Plasma by CE/ESI-TOF-MS", Analytical Chem., 81: 3600–3607, (2009). [25] Mandler, D., "Formation, Characterization, and Applications of Organic and Inorganic Nanometric Films", Israel Journal of Chem., 50: 306–311, (2010). [26] Shervedani, R.K. and Bagherzadeh, M., "Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer", Sensors and Actuators B, 139: 657–664, (2009). [27] Hong, H.G., Park, W. and Yu, E., "Voltammetric determination of electron transfer kinetic parameters in hydroquinone-terminated self-assembled monolayers on gold", J. Electroanal. Chem., 476: 177-181, (1999). [28] Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chem. Rev., 105: 1103–1169, (2005). [29] Chaki, N.K. and Vijayamohanan, K., "Self-assembled monolayers as a tunable platform for biosensor applications", Biosens. Bioel., 17: 1–12, (2002). [30] Ma, H.Y., Yang, C., Yina, B.S., Lia, G.Y., Chen, S.H., Luo, J.L., "Electrochemical characterization of copper surface modified by n-alkanethiols in chloride-containing solutions", Applied Surface Science, 218: 143–153, (2003). [31] Su, L., Gao, F. and Mao, L., "Electrochemical properties of carbon nanotube (CNT) film electrodes prepared by controllable adsorption of CNTs onto an alkanethiol monolayer self-assembled on gold electrodes", Anal. Chem., 78: 2651–2657, (2006). [32] Guo, X., Kulkarni, A., Doepke, A., Halsall, H.B., Iyer, S., Heineman, W.R., "Carbohydrate-based label-free detection of Escherichia coli ORN 178 using elec-trochemical impedance spectroscopy", Anal. Chem., 84: 241–246, (2012). [33] Barreiros dos Santos M.,, Agusil, J.P., Prieto-Simón, B., Sporer, C., Teixeira, V., Samitier, J., "Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy", Biosens. Bioelectron., 45: 174–180, (2013). [34] Geng, P., Zhang, X., Meng, W., Wang, Q., Zhang, W., Jin, L., Feng, Z., Wu, Z., "Self-assembled monolayers-based immunosensor for detection of Escherichia coliusing electrochemical impedance spectroscopy", Electrochim. Acta, 53: 4663–4668, (2008). [35] Brett, C.M.A., Kresak, S., Hianik, T., Brett, A.M.O., "Studies on self-assembled alkanethiol monolayers formed at applied potential on polyerystalline gold electrodes", Electroanalysis, 15: 557-565, (2003). [36] Leniart, A., Brycht, M., Burnat, B., Skrzypek, S., "Voltammetric determination of the herbicide propham on glassycarbon electrode modified with multi-walled carbon nanotubes", Sensors and Actuators B, 231: 54–63, (2016). [37] Lavanya, J. and Gomathi, N., "High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybridmaterial as an enhanced electrochemical sensing platform", Talanta, 144: 655–661, (2015). [38] Lei, W., Si, W.M., Hao, Q.L., Han, Z., Zhang, Y.H., Xia, M.Z., "Nitrogen-doped graphene modified electrode for nimodipine sensing", Sensor. Actuat. B. Chem., 212: 207–213, (2015). [39] Murray, R.W., Electroanalytical Chemistry, Marcel Dekker, New York, (1984). [40] Gosser, D.K., Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanisms, Wiley-VCH, New York, (1993). [41] Ermer, J., Miller J.H.McB., (Eds.), Method Validation in Pharmaceutical Analysis, Wiley-VCH Publication, Weinheim, (2005).
There are 1 citations in total.

Details

Journal Section Chemistry
Authors

Tuğba Tabanlıgil Calam

Erdoğan Hasdemir

Publication Date March 1, 2018
Published in Issue Year 2018 Volume: 31 Issue: 1

Cite

APA Tabanlıgil Calam, T., & Hasdemir, E. (2018). Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry. Gazi University Journal of Science, 31(1), 53-64.
AMA Tabanlıgil Calam T, Hasdemir E. Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry. Gazi University Journal of Science. March 2018;31(1):53-64.
Chicago Tabanlıgil Calam, Tuğba, and Erdoğan Hasdemir. “Application of 1,6-Hexanedithiol and 1-Hexanethiol Self-Assembled Monolayers on Polycrystalline Gold Electrode for Determination of Fe(II) Using Square Wave Voltammetry”. Gazi University Journal of Science 31, no. 1 (March 2018): 53-64.
EndNote Tabanlıgil Calam T, Hasdemir E (March 1, 2018) Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry. Gazi University Journal of Science 31 1 53–64.
IEEE T. Tabanlıgil Calam and E. Hasdemir, “Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry”, Gazi University Journal of Science, vol. 31, no. 1, pp. 53–64, 2018.
ISNAD Tabanlıgil Calam, Tuğba - Hasdemir, Erdoğan. “Application of 1,6-Hexanedithiol and 1-Hexanethiol Self-Assembled Monolayers on Polycrystalline Gold Electrode for Determination of Fe(II) Using Square Wave Voltammetry”. Gazi University Journal of Science 31/1 (March 2018), 53-64.
JAMA Tabanlıgil Calam T, Hasdemir E. Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry. Gazi University Journal of Science. 2018;31:53–64.
MLA Tabanlıgil Calam, Tuğba and Erdoğan Hasdemir. “Application of 1,6-Hexanedithiol and 1-Hexanethiol Self-Assembled Monolayers on Polycrystalline Gold Electrode for Determination of Fe(II) Using Square Wave Voltammetry”. Gazi University Journal of Science, vol. 31, no. 1, 2018, pp. 53-64.
Vancouver Tabanlıgil Calam T, Hasdemir E. Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry. Gazi University Journal of Science. 2018;31(1):53-64.