Review
BibTex RIS Cite

Current View on Muscle Hypertrophy: Sarcomerogenesis

Year 2021, Volume: 3 Issue: 2, 156 - 168, 31.12.2021
https://doi.org/10.47778/ejsse.957282

Abstract

The nature of exercise induced skeletal muscle hypertrophy is still a controversial phenomenon today. Various factors and limitations at the center of the process, such as muscle hypertrophy measurement methods and the training methods used, have prevented the correct definition of hypertrophic adaptation and mechanisms in the past. Along with the innovations and developments in sports science, long-term studies comparing various training methods with different measurement techniques raise doubts about the accuracy of hypertrophy definitions in previous sources. The largest lack of these definitions is related to the phenomenon of serial hypertrophy. In this respect, this review aims to examine many factors affecting skeletal muscle hypertrophy and to compile the effects of these factors on serial hypertrophy. In this review, a new and up-to-date approach to the definition of hypertrophy and hypertrophic adaptations has been tried to be brought together with the literature. In this direction, 62 studies and resources made between 1969 and 2020 were researched. As a result, it was emphasized that full range of motion, eccentric training and fast eccentric training caused more serial hypertrophy within the scope of increases in fiber and fascicle length, while partial range of motion, concentric training and slow eccentric training caused greater increases in fiber diameter. Research shows that different morphological adaptations may occur with muscle fiber hypertrophy during resistance training periods.

References

  • Alegre, L. M., Jiménez, F., Gonzalo-Orden, J. M., Martín-Acero, R. & Aguado, X. (2006). Effects of dynamic resistance training on fascicle lengthand isometric strength. Journal of Sports Sciences, 24(5), 501–508. DOI: 10.1080/02640410500189322
  • Allen, D. G., Whitehead, N. P. & Yeung, E. W. (2005). Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. The Journal of Physiology, 567(3), 723–735. DOI: 10.1113/jphysiol.2005.091694
  • Armstrong, R. B., Ogilvie, R. W. & Schwane, J. A. (1983). Eccentric exercise-induced injury to rat skeletal muscle. Journal of Applied Physiology, 54(1), 80–93. DOI: 10.1152/jappl.1983.54.1.80
  • Blazevich, A. J., Cannavan, D., Coleman, D. R. & Horne, S. (2007). Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. Journal of Applied Physiology, 103(5), 1565–1575. DOI: 10.1152/japplphysiol.00578.2007
  • Blazevich, A. J., Gill, N. D., Bronks, R. & Newton, R. U. (2013). Training-specific muscle architecture adaptation after 5-wk training in athletes. Medicine & Science in Sports & Exercise, 35(12), 2013-2022. DOI: 10.1249/01.mss.0000099092.83611.20
  • Brockett, C. L., Morgan, D. L. & Proske, U. W. E. (2001). Human hamstring muscles adapt to eccentric exercise by changing optimum length. Medicine & Science in Sports & Exercise, 33(5), 783-790
  • Brughelli, M., & Cronin, J. (2007). Altering the length-tension relationship with eccentric exercise. Sports Medicine, 37(9), 807–826. DOI: 10.2165/00007256-200737090-00004
  • Burd, N. A., West, D. W. D., Staples, A. W., Atherton, P. J., Baker, J. M., Moore, D. R., … Phillips, S. M. (2010). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE, 5(8), e12033. DOI: 10.1371/journal.pone.0012033
  • Burkholder, T. J. (2001). Age does not influence muscle fiber length adaptation to increased excursion. Journal of applied physiology, 91(6), 2466-2470. DOI: 10.1152/jappl.2001.91.6.2466
  • Butterfield, T. A. & Herzog, W. (2006). The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise. Pflügers Archiv- European Journal of Physiology, 451(5),688-700. DOI: 10.1007/s00424-005-1503-6
  • Butterfield, T. A., Leonard, T. R. & Herzog, W. (2005). Differential serial sarcomere number adaptations in knee extensor muscles of rats is contraction type dependent. Journal of Applied Physiology, 99(4), 1352–1358. DOI: 10.1152/japplphysiol.00481.2005
  • Chen, J., Mashouri, P., Fontyn, S., Valvano, M., Elliott-Mohamed, S., Noonan, A. M., … Power, G. A. (2020). The influence of training-induced sarcomerogenesis on the history dependence of force. The Journal of Experimental Biology, jeb.218776. DOI: 10.1242/jeb.218776
  • Cox, V. M., Williams, P. E., Wright, H., James, R. S., Gillott, K. L., Young, I. S. & Goldspink, D. F. (2000). Growth ınduced by ıncremental static stretch in adult rabbit latissimus dorsi muscle. Experimental Physiology, 85(2), 193–202. DOI: 10.1111/j.1469-445x.2000.01950.x
  • Cutts, A. (1988). The range of sarcomere lengths in the muscles of the human lower limb. Journal of anatomy, 160, 79-80.
  • Dix, D. J. & Eisenberg, B. R. (1990). Myosin mRNA accumulation and myofibrillogenesis at the myotendinous junction of stretched muscle fibers. The Journal of Cell Biology, 111(5),1885-1894. DOI: 10.1083/jcb.111.5.1885. De Deyne, P. G. (2000). Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. American Journal of Physiology-Cell Physiology, 279(6), C1801–C1811. DOI: 10.1152/ajpcell.2000.279.6.c1801
  • De Jaeger, D., Joumaa, V. & Herzog, W. (2015). Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number. Journal of Applied Physiology, 118(12), 1467–1473. DOI: 10.1152/japplphysiol.00515.2014
  • Franchi, M. V., Wilkinson, D. J., Quinlan, J. I., Mitchell, W. K., Lund, J. N., Williams, J. P., … Narici, M. V. (2015). Early structural remodeling and deuterium oxide-derived protein metabolic responses to eccentric and concentric loading in human skeletal muscle. Physiological Reports, 3(11), e12593. DOI: 10.14814/phy2.12593
  • Friden, J., Sjöström, M. & Ekblom, B. (1983). Myofibrillar damage following intense eccentric exercise in man. International journal of sports medicine, 4(03), 170-176. DOI: 10.1055/s-2008-1026030
  • Goldspink, G. (1985). Malleability of the motor system: a comparative approach. Journal of experimental biology, 115(1), 375-391. DOI: 10.1242/jeb.115.1.375
  • Goldspink, G. (1999). Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. Journal of Anatomy, 194(3), 323–334. DOI: 10.1046/j.1469-7580.1999.19430323.x
  • Goldspink, G., Tabary, C., Tabary, J. C., Tardieu, C. & Tardieu, G. (1974). Effect of denervation on the adaptation of sarcomere number and muscle extensibility to the functional length of the muscle. The Journal of Physiology, 236(3), 733–742. DOI: 10.1113/jphysiol.1974.sp010463
  • Griffin, G. E., Williams, P. E. & Goldspink, G. (1971). Region of longitudinal growth in striated muscle fibres. Nature New Biology, 232(27), 28-29. DOI: 10.1038/newbio232028a0
  • Haun, C. T., Vann, C. G., Osburn, S. C., Mumford, P. W., Roberson, P. A., Romero, M. A., … Roberts, M. D. (2019). Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLOS ONE, 14(6), e0215267. DOI: 10.1371/journal.pone.0215267
  • Hayao, K., Tamaki, H., Nakagawa, K., Tamakoshi, K., Takahashi, H., Yotani, K., ... & Onishi, H. (2018). Effects of Streptomycin Administration on Increases in Skeletal Muscle Fiber Permeability and Size Following Eccentric Muscle Contractions. The Anatomical Record, 301(6), 1096-1102. DOI: 10.1002/ar.23770
  • Hessel, A. L., Lindstedt, S. L. & Nishikawa, K. C. (2017). Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein. Frontiers in Physiology, 8, 1-14. DOI: 10.3389/fphys.2017.00070
  • Hofmann, W. W. (1980). Mechanisms of muscular hypertrophy. Journal of the Neurological Sciences, 45(2-3), 205–216. DOI: 10.1016/0022-510x(80)90166-5
  • Jones, D. A., Rutherford, O. M. & Parker, D. F. (1989). Physiological changes in skeletal muscle as a result of strength training. Quarterly Journal of Experimental Physiology: Translation and Integration, 74(3), 233-256. DOI: 10.1113/expphysiol.1989.sp003268
  • Kelly, D. E. (1969). Myofibrillogenesis and Z-band differentiation. The Anatomical Record, 163(3), 403–425. DOI: 10.1002/ar.1091630305
  • Krüger, M. & Kötter, S. (2016). Titin, a central mediator for hypertrophic signaling, exercise-induced mechanosignaling and skeletal muscle remodeling. Frontiers in physiology, 7(76),1-8. DOI: 10.3389/fphys.2016.00076
  • Lieber, R. L. & Fridén, J. (2002). Morphologic and mechanical basis of delayed-onset muscle soreness. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 10(1), 67-73.
  • Lieber, R. L., Woodburn, T. M., & Friden, J. (1991). Muscle damage induced by eccentric contractions of 25% strain. Journal of Applied Physiology, 70(6), 2498–2507. DOI: 10.1152/jappl.1991.70.6.2498
  • Lund, H., Vestergaard-Poulsen, P., Kanstrup, I.L., Sejrsen, P. (1998). Isokinetic eccentric exercise as a model to induce and reproduce pathophysiological alterations related to delayed onset muscle soreness. Scand J Med Sci Sports, 8,208–215. DOI: 10.1111/j.1600-0838.1998.tb00194.x
  • Lynn, R. & Morgan, D. L. (1994). Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. Journal of applied physiology, 77(3), 1439-1444. DOI: 10.1152/jappl.1994.77.3.1439
  • Lynn, R., Talbot, J. A., & Morgan, D. L. (1998). Differences in rat skeletal muscles after incline and decline running. Journal of Applied Physiology, 85(1), 98-104. DOI: 10.1152/jappl.1998.85.1.98
  • McDonagh, M. J. N. & Davies, C. T. M. (1984). Adaptive response of mammalian skeletal muscle to exercise with high loads. European Journal of Applied Physiology and Occupational Physiology, 52(2), 139–155. DOI: 10.1007/bf00433384
  • McHugh, M. P., Connolly, D. A. J., Eston, R. G. & Gleim, G. W. (1999). Exercise-Induced Muscle Damage and Potential Mechanisms for the Repeated Bout Effect. Sports Medicine, 27(3), 157–170. DOI: 10.2165/00007256-199927030-00002
  • Morais, G. P., da Rocha, A. L., Neave, L. M., Lucas, G. D. A., Leonard, T. R., Carvalho, A., ... & Herzog, W. (2020). Chronic uphill and downhill exercise protocols do not lead to sarcomerogenesis in mouse skeletal muscle. Journal of Biomechanics, 98, 109469. DOI: 10.1016/j.jbiomech.2019.109469
  • Morgan, D. L. & Proske, U. (2004). Popping sarcomere hypothesis explains stretch induced muscle damage. In Proceedings of the Australian Physiological and Pharmacological Society, 34, 19-23.
  • Rehorn, M. R., Schroer, A. K. & Blemker, S. S. (2014). The passive properties of muscle fibers are velocity dependent. Journal of Biomechanics, 47(3), 687–693. DOI: 10.1016/j.jbiomech.2013.11.044
  • Roberts, M. D., Haun, C. T., Vann, C. G., Osburn, S. C. & Young, K. C. (2020). Sarcoplasmic hypertrophy in skeletal muscle: A scientific “unicorn” or resistance training adaptation?. Frontiers in Physiology, 11, 816, 1-16. DOI: 10.3389/fphys.2020.00816
  • Schoenfeld, B. (2020). Science and development of muscle hypertrophy. USA: Human Kinetics.
  • Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research, 24(10), 2857-2872. DOI: 10.1519/jsc.0b013e3181e840f3
  • Schoenfeld, B. J. (2012). Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy?. The Journal of Strength & Conditioning Research, 26(5), 1441-1453. DOI: doi:10.1519/jsc.0b013e31824f207e
  • Schoenfeld, B. J., Ogborn, D. I., Vigotsky, A. D., Franchi, M. V. & Krieger, J. W. (2017). Hypertrophic effects of concentric vs. eccentric muscle actions: a systematic review and meta-analysis. The Journal of Strength & Conditioning Research, 31(9), 2599-2608. DOI: 10.1519/jsc.0000000000001983
  • Seynnes, O. R., de Boer, M. & Narici, M. V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of Applied Physiology, 102(1), 368–373. DOI: 10.1152/japplphysiol.00789.2006
  • Sharifnezhad, A. (2014). Longitudinal adaptation of vastus lateralis muscle in response to eccentric exercise. Dissertation. Zur Erlangung des akademischen Grads.
  • Simpson, C. L., Kim, B. D. H., Bourcet, M. R., Jones, G. R. & Jakobi, J. M. (2017). Stretch training induces unequal adaptation in muscle fascicles and thickness in medial and lateral gastrocnemii. Scandinavian Journal of Medicine & Science in Sports, 27(12), 1597–1604. DOI: 10.1111/sms.12822
  • Smith, L. L. (1991). Acute inflammation: The underlying mechanism in delayed onset muscle soreness?. Medicine and science in sports and exercise, 23(5), 542-551.
  • Sola, O. M., Christensen, D. L. & Martin, A. W. (1973). Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Experimental Neurology, 41(1), 76–100. DOI: 10.1016/0014-4886(73)90182-9
  • Son, J., Indresano, A., Sheppard, K., Ward, S. R. & Lieber, R. L. (2018). Intraoperative and biomechanical studies of human vastus lateralis and vastus medialis sarcomere length operating range. Journal of Biomechanics, 67 91–97. DOI: 10.1016/j.jbiomech.2017.11.038
  • Tabary, J. C., Tabary, C., Tardieu, C., Tardieu, G. & Goldspink, G. (1972). Physiological and structural changes in the cat’s soleus muscle due to immobilization at different lengths by plaster casts. The Journal of Physiology, 224(1), 231–244. DOI: 10.1113/jphysiol.1972.sp009891
  • Tabary, J. C., Tardieu, C., Tardieu, G., Tabary, C. & Gagnard, L. (1976). Functional adaptation of sarcomere number of normal cat muscle. Journal de physiologie, 72(3), 277-291.
  • Tardieu, C., & Tabary, J.C. & de laTour, E.H. (1977). Comparison of the sarcomere number adaptation in young and adult animals. Influence of tendon adaptation. Journal de physiologie, 73(8),1045-55.
  • Tardieu, C., Tabary, J. C., Tabary, C. & Tardieu, G. (1982). Adaptation of connective tissue length to immobilization in the lengthened and shortened positions in cat soleus muscle. Journal de physiologie, 78(2), 214-220.
  • Valamatos, M. J., Tavares, F., Santos, R. M., Veloso, A. P. & Mil-Homens, P. (2018). Influence of full range of motion vs. equalized partial range of motion training on muscle architecture and mechanical properties. European Journal of Applied Physiology, 118(9), 1969–1983. DOI: 10.1007/s00421-018-3932-x
  • Van der Pijl, R., Strom, J., Conijn, S., Lindqvist, J., Labeit, S., Granzier, H. & Ottenheijm, C. (2018). Titin-based mechanosensing modulates muscle hypertrophy. Journal of Cachexia, Sarcopenia and Muscle, 9(5), 947-961. doi: 10.1002/jcsm.12319.
  • Williams, P. E. & Goldspink, G. (1971). Longitudinal growth of striated muscle fibres. Journal of Cell Science, 9(3), 751-767. DOI: 10.1242/jcs.9.3.751
  • Williams, P. E. & Goldspink, G. (1984). Connective tissue changes in immobilised muscle. Journal of Anatomy, 138(Pt 2), 343-350.
  • Wood, S. A., Morgan, D. L. & Proske, U. (1993). Effects of repeated eccentric contractions on structure and mechanical properties of toad sartorius muscle. American Journal of Physiology-Cell Physiology, 265(3), C792-C800. DOI: 10.1152/ajpcell.1993.265.3.C792
  • Yu, J. G., Carlsson, L. & Thornell, L. E. (2004). Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochemistry and Cell Biology, 121(3), 219-227. DOI: 10.1007/s00418-004-0625-9
  • Zatsiorsky, V. M., Kraemer, W. J. & Fry, A. C. (2020). Science and practice of strength training (3. Baskı). USA: Human Kinetics.

Kas Hipertrofisine Güncel Bakış: Sarkomerojenez

Year 2021, Volume: 3 Issue: 2, 156 - 168, 31.12.2021
https://doi.org/10.47778/ejsse.957282

Abstract

Egzersize bağlı iskelet kası hipertrofisinin doğası, günümüzde hâlâ tartışmalı bir olgu olarak karşımıza çıkmaktadır. Kas hipertrofisi ölçüm yöntemleri ve kullanılan antrenman metotları gibi sürecin merkezinde yer alan çeşitli faktör ve limitasyonlar, geçmişte hipertrofik adaptasyon ve mekanizmaların doğru bir şekilde tanımlanmasına engel olmuştur. Spor biliminde yaşanan yenilik ve gelişmelerle birlikte çeşitli antrenman yöntemlerinin farklı ölçüm teknikleriyle karşılaştırıldığı uzun vadeli çalışmalar, önceki kaynaklarda yer alan hipertrofi tanımlamalarının doğruluğu konusunda şüphe uyandırmaktadır. Bu tanımlamalarla ilgili dikkat çeken en büyük eksiklik ise serial hipertrofi olgusuyla ilgilidir. Bu açıdan bu derleme, iskelet kası hipertrofisini etkileyen birçok faktörü inceleyerek bu faktörlerin serial hipertrofi üzerindeki etkilerini derlemeyi amaçlamaktadır. Bu derleme ile, hipertrofi tanımı ve hipertrofik adaptasyonlara literatür eşliğinde yeni ve güncel bir yaklaşım getirilmeye çalışılmıştır. Bu doğrultuda, 1969 ve 2020 yıları arasında yapılmış 62 çalışma ve kaynak taranmıştır. Sonuç olarak, tam hareket açıklığı, eksantrik antrenmanlar ve hızlı eksantrik antrenmanların, lif ve fasikül uzunluğundaki artışlar kapsamında daha fazla serial hipertrofiye neden olduğu, kısmi hareket açıklığı, konsantrik antrenmanlar ve yavaş eksantrik antrenmanların ise lif çapında daha fazla artışlar ortaya koyduğu vurgulanmıştır. Araştırmalar, direnç eğitimi dönemlerinde kas lifi hipertrofisi ile farklı morfolojik adaptasyonların ortaya çıkabileceğini göstermektedir.

References

  • Alegre, L. M., Jiménez, F., Gonzalo-Orden, J. M., Martín-Acero, R. & Aguado, X. (2006). Effects of dynamic resistance training on fascicle lengthand isometric strength. Journal of Sports Sciences, 24(5), 501–508. DOI: 10.1080/02640410500189322
  • Allen, D. G., Whitehead, N. P. & Yeung, E. W. (2005). Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. The Journal of Physiology, 567(3), 723–735. DOI: 10.1113/jphysiol.2005.091694
  • Armstrong, R. B., Ogilvie, R. W. & Schwane, J. A. (1983). Eccentric exercise-induced injury to rat skeletal muscle. Journal of Applied Physiology, 54(1), 80–93. DOI: 10.1152/jappl.1983.54.1.80
  • Blazevich, A. J., Cannavan, D., Coleman, D. R. & Horne, S. (2007). Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. Journal of Applied Physiology, 103(5), 1565–1575. DOI: 10.1152/japplphysiol.00578.2007
  • Blazevich, A. J., Gill, N. D., Bronks, R. & Newton, R. U. (2013). Training-specific muscle architecture adaptation after 5-wk training in athletes. Medicine & Science in Sports & Exercise, 35(12), 2013-2022. DOI: 10.1249/01.mss.0000099092.83611.20
  • Brockett, C. L., Morgan, D. L. & Proske, U. W. E. (2001). Human hamstring muscles adapt to eccentric exercise by changing optimum length. Medicine & Science in Sports & Exercise, 33(5), 783-790
  • Brughelli, M., & Cronin, J. (2007). Altering the length-tension relationship with eccentric exercise. Sports Medicine, 37(9), 807–826. DOI: 10.2165/00007256-200737090-00004
  • Burd, N. A., West, D. W. D., Staples, A. W., Atherton, P. J., Baker, J. M., Moore, D. R., … Phillips, S. M. (2010). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE, 5(8), e12033. DOI: 10.1371/journal.pone.0012033
  • Burkholder, T. J. (2001). Age does not influence muscle fiber length adaptation to increased excursion. Journal of applied physiology, 91(6), 2466-2470. DOI: 10.1152/jappl.2001.91.6.2466
  • Butterfield, T. A. & Herzog, W. (2006). The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise. Pflügers Archiv- European Journal of Physiology, 451(5),688-700. DOI: 10.1007/s00424-005-1503-6
  • Butterfield, T. A., Leonard, T. R. & Herzog, W. (2005). Differential serial sarcomere number adaptations in knee extensor muscles of rats is contraction type dependent. Journal of Applied Physiology, 99(4), 1352–1358. DOI: 10.1152/japplphysiol.00481.2005
  • Chen, J., Mashouri, P., Fontyn, S., Valvano, M., Elliott-Mohamed, S., Noonan, A. M., … Power, G. A. (2020). The influence of training-induced sarcomerogenesis on the history dependence of force. The Journal of Experimental Biology, jeb.218776. DOI: 10.1242/jeb.218776
  • Cox, V. M., Williams, P. E., Wright, H., James, R. S., Gillott, K. L., Young, I. S. & Goldspink, D. F. (2000). Growth ınduced by ıncremental static stretch in adult rabbit latissimus dorsi muscle. Experimental Physiology, 85(2), 193–202. DOI: 10.1111/j.1469-445x.2000.01950.x
  • Cutts, A. (1988). The range of sarcomere lengths in the muscles of the human lower limb. Journal of anatomy, 160, 79-80.
  • Dix, D. J. & Eisenberg, B. R. (1990). Myosin mRNA accumulation and myofibrillogenesis at the myotendinous junction of stretched muscle fibers. The Journal of Cell Biology, 111(5),1885-1894. DOI: 10.1083/jcb.111.5.1885. De Deyne, P. G. (2000). Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. American Journal of Physiology-Cell Physiology, 279(6), C1801–C1811. DOI: 10.1152/ajpcell.2000.279.6.c1801
  • De Jaeger, D., Joumaa, V. & Herzog, W. (2015). Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number. Journal of Applied Physiology, 118(12), 1467–1473. DOI: 10.1152/japplphysiol.00515.2014
  • Franchi, M. V., Wilkinson, D. J., Quinlan, J. I., Mitchell, W. K., Lund, J. N., Williams, J. P., … Narici, M. V. (2015). Early structural remodeling and deuterium oxide-derived protein metabolic responses to eccentric and concentric loading in human skeletal muscle. Physiological Reports, 3(11), e12593. DOI: 10.14814/phy2.12593
  • Friden, J., Sjöström, M. & Ekblom, B. (1983). Myofibrillar damage following intense eccentric exercise in man. International journal of sports medicine, 4(03), 170-176. DOI: 10.1055/s-2008-1026030
  • Goldspink, G. (1985). Malleability of the motor system: a comparative approach. Journal of experimental biology, 115(1), 375-391. DOI: 10.1242/jeb.115.1.375
  • Goldspink, G. (1999). Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. Journal of Anatomy, 194(3), 323–334. DOI: 10.1046/j.1469-7580.1999.19430323.x
  • Goldspink, G., Tabary, C., Tabary, J. C., Tardieu, C. & Tardieu, G. (1974). Effect of denervation on the adaptation of sarcomere number and muscle extensibility to the functional length of the muscle. The Journal of Physiology, 236(3), 733–742. DOI: 10.1113/jphysiol.1974.sp010463
  • Griffin, G. E., Williams, P. E. & Goldspink, G. (1971). Region of longitudinal growth in striated muscle fibres. Nature New Biology, 232(27), 28-29. DOI: 10.1038/newbio232028a0
  • Haun, C. T., Vann, C. G., Osburn, S. C., Mumford, P. W., Roberson, P. A., Romero, M. A., … Roberts, M. D. (2019). Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLOS ONE, 14(6), e0215267. DOI: 10.1371/journal.pone.0215267
  • Hayao, K., Tamaki, H., Nakagawa, K., Tamakoshi, K., Takahashi, H., Yotani, K., ... & Onishi, H. (2018). Effects of Streptomycin Administration on Increases in Skeletal Muscle Fiber Permeability and Size Following Eccentric Muscle Contractions. The Anatomical Record, 301(6), 1096-1102. DOI: 10.1002/ar.23770
  • Hessel, A. L., Lindstedt, S. L. & Nishikawa, K. C. (2017). Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein. Frontiers in Physiology, 8, 1-14. DOI: 10.3389/fphys.2017.00070
  • Hofmann, W. W. (1980). Mechanisms of muscular hypertrophy. Journal of the Neurological Sciences, 45(2-3), 205–216. DOI: 10.1016/0022-510x(80)90166-5
  • Jones, D. A., Rutherford, O. M. & Parker, D. F. (1989). Physiological changes in skeletal muscle as a result of strength training. Quarterly Journal of Experimental Physiology: Translation and Integration, 74(3), 233-256. DOI: 10.1113/expphysiol.1989.sp003268
  • Kelly, D. E. (1969). Myofibrillogenesis and Z-band differentiation. The Anatomical Record, 163(3), 403–425. DOI: 10.1002/ar.1091630305
  • Krüger, M. & Kötter, S. (2016). Titin, a central mediator for hypertrophic signaling, exercise-induced mechanosignaling and skeletal muscle remodeling. Frontiers in physiology, 7(76),1-8. DOI: 10.3389/fphys.2016.00076
  • Lieber, R. L. & Fridén, J. (2002). Morphologic and mechanical basis of delayed-onset muscle soreness. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 10(1), 67-73.
  • Lieber, R. L., Woodburn, T. M., & Friden, J. (1991). Muscle damage induced by eccentric contractions of 25% strain. Journal of Applied Physiology, 70(6), 2498–2507. DOI: 10.1152/jappl.1991.70.6.2498
  • Lund, H., Vestergaard-Poulsen, P., Kanstrup, I.L., Sejrsen, P. (1998). Isokinetic eccentric exercise as a model to induce and reproduce pathophysiological alterations related to delayed onset muscle soreness. Scand J Med Sci Sports, 8,208–215. DOI: 10.1111/j.1600-0838.1998.tb00194.x
  • Lynn, R. & Morgan, D. L. (1994). Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. Journal of applied physiology, 77(3), 1439-1444. DOI: 10.1152/jappl.1994.77.3.1439
  • Lynn, R., Talbot, J. A., & Morgan, D. L. (1998). Differences in rat skeletal muscles after incline and decline running. Journal of Applied Physiology, 85(1), 98-104. DOI: 10.1152/jappl.1998.85.1.98
  • McDonagh, M. J. N. & Davies, C. T. M. (1984). Adaptive response of mammalian skeletal muscle to exercise with high loads. European Journal of Applied Physiology and Occupational Physiology, 52(2), 139–155. DOI: 10.1007/bf00433384
  • McHugh, M. P., Connolly, D. A. J., Eston, R. G. & Gleim, G. W. (1999). Exercise-Induced Muscle Damage and Potential Mechanisms for the Repeated Bout Effect. Sports Medicine, 27(3), 157–170. DOI: 10.2165/00007256-199927030-00002
  • Morais, G. P., da Rocha, A. L., Neave, L. M., Lucas, G. D. A., Leonard, T. R., Carvalho, A., ... & Herzog, W. (2020). Chronic uphill and downhill exercise protocols do not lead to sarcomerogenesis in mouse skeletal muscle. Journal of Biomechanics, 98, 109469. DOI: 10.1016/j.jbiomech.2019.109469
  • Morgan, D. L. & Proske, U. (2004). Popping sarcomere hypothesis explains stretch induced muscle damage. In Proceedings of the Australian Physiological and Pharmacological Society, 34, 19-23.
  • Rehorn, M. R., Schroer, A. K. & Blemker, S. S. (2014). The passive properties of muscle fibers are velocity dependent. Journal of Biomechanics, 47(3), 687–693. DOI: 10.1016/j.jbiomech.2013.11.044
  • Roberts, M. D., Haun, C. T., Vann, C. G., Osburn, S. C. & Young, K. C. (2020). Sarcoplasmic hypertrophy in skeletal muscle: A scientific “unicorn” or resistance training adaptation?. Frontiers in Physiology, 11, 816, 1-16. DOI: 10.3389/fphys.2020.00816
  • Schoenfeld, B. (2020). Science and development of muscle hypertrophy. USA: Human Kinetics.
  • Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research, 24(10), 2857-2872. DOI: 10.1519/jsc.0b013e3181e840f3
  • Schoenfeld, B. J. (2012). Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy?. The Journal of Strength & Conditioning Research, 26(5), 1441-1453. DOI: doi:10.1519/jsc.0b013e31824f207e
  • Schoenfeld, B. J., Ogborn, D. I., Vigotsky, A. D., Franchi, M. V. & Krieger, J. W. (2017). Hypertrophic effects of concentric vs. eccentric muscle actions: a systematic review and meta-analysis. The Journal of Strength & Conditioning Research, 31(9), 2599-2608. DOI: 10.1519/jsc.0000000000001983
  • Seynnes, O. R., de Boer, M. & Narici, M. V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of Applied Physiology, 102(1), 368–373. DOI: 10.1152/japplphysiol.00789.2006
  • Sharifnezhad, A. (2014). Longitudinal adaptation of vastus lateralis muscle in response to eccentric exercise. Dissertation. Zur Erlangung des akademischen Grads.
  • Simpson, C. L., Kim, B. D. H., Bourcet, M. R., Jones, G. R. & Jakobi, J. M. (2017). Stretch training induces unequal adaptation in muscle fascicles and thickness in medial and lateral gastrocnemii. Scandinavian Journal of Medicine & Science in Sports, 27(12), 1597–1604. DOI: 10.1111/sms.12822
  • Smith, L. L. (1991). Acute inflammation: The underlying mechanism in delayed onset muscle soreness?. Medicine and science in sports and exercise, 23(5), 542-551.
  • Sola, O. M., Christensen, D. L. & Martin, A. W. (1973). Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Experimental Neurology, 41(1), 76–100. DOI: 10.1016/0014-4886(73)90182-9
  • Son, J., Indresano, A., Sheppard, K., Ward, S. R. & Lieber, R. L. (2018). Intraoperative and biomechanical studies of human vastus lateralis and vastus medialis sarcomere length operating range. Journal of Biomechanics, 67 91–97. DOI: 10.1016/j.jbiomech.2017.11.038
  • Tabary, J. C., Tabary, C., Tardieu, C., Tardieu, G. & Goldspink, G. (1972). Physiological and structural changes in the cat’s soleus muscle due to immobilization at different lengths by plaster casts. The Journal of Physiology, 224(1), 231–244. DOI: 10.1113/jphysiol.1972.sp009891
  • Tabary, J. C., Tardieu, C., Tardieu, G., Tabary, C. & Gagnard, L. (1976). Functional adaptation of sarcomere number of normal cat muscle. Journal de physiologie, 72(3), 277-291.
  • Tardieu, C., & Tabary, J.C. & de laTour, E.H. (1977). Comparison of the sarcomere number adaptation in young and adult animals. Influence of tendon adaptation. Journal de physiologie, 73(8),1045-55.
  • Tardieu, C., Tabary, J. C., Tabary, C. & Tardieu, G. (1982). Adaptation of connective tissue length to immobilization in the lengthened and shortened positions in cat soleus muscle. Journal de physiologie, 78(2), 214-220.
  • Valamatos, M. J., Tavares, F., Santos, R. M., Veloso, A. P. & Mil-Homens, P. (2018). Influence of full range of motion vs. equalized partial range of motion training on muscle architecture and mechanical properties. European Journal of Applied Physiology, 118(9), 1969–1983. DOI: 10.1007/s00421-018-3932-x
  • Van der Pijl, R., Strom, J., Conijn, S., Lindqvist, J., Labeit, S., Granzier, H. & Ottenheijm, C. (2018). Titin-based mechanosensing modulates muscle hypertrophy. Journal of Cachexia, Sarcopenia and Muscle, 9(5), 947-961. doi: 10.1002/jcsm.12319.
  • Williams, P. E. & Goldspink, G. (1971). Longitudinal growth of striated muscle fibres. Journal of Cell Science, 9(3), 751-767. DOI: 10.1242/jcs.9.3.751
  • Williams, P. E. & Goldspink, G. (1984). Connective tissue changes in immobilised muscle. Journal of Anatomy, 138(Pt 2), 343-350.
  • Wood, S. A., Morgan, D. L. & Proske, U. (1993). Effects of repeated eccentric contractions on structure and mechanical properties of toad sartorius muscle. American Journal of Physiology-Cell Physiology, 265(3), C792-C800. DOI: 10.1152/ajpcell.1993.265.3.C792
  • Yu, J. G., Carlsson, L. & Thornell, L. E. (2004). Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochemistry and Cell Biology, 121(3), 219-227. DOI: 10.1007/s00418-004-0625-9
  • Zatsiorsky, V. M., Kraemer, W. J. & Fry, A. C. (2020). Science and practice of strength training (3. Baskı). USA: Human Kinetics.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Sports Medicine
Journal Section Rewiev
Authors

Osman Ateş 0000-0002-2992-8465

Ebubekir Çiftçi 0000-0001-6365-2207

Ekin Karlık This is me 0000-0003-4510-827X

Early Pub Date December 25, 2021
Publication Date December 31, 2021
Acceptance Date December 30, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Ateş, O., Çiftçi, E., & Karlık, E. (2021). Kas Hipertrofisine Güncel Bakış: Sarkomerojenez. Avrasya Spor Bilimleri Ve Eğitim Dergisi, 3(2), 156-168. https://doi.org/10.47778/ejsse.957282
AMA Ateş O, Çiftçi E, Karlık E. Kas Hipertrofisine Güncel Bakış: Sarkomerojenez. EJSSE. December 2021;3(2):156-168. doi:10.47778/ejsse.957282
Chicago Ateş, Osman, Ebubekir Çiftçi, and Ekin Karlık. “Kas Hipertrofisine Güncel Bakış: Sarkomerojenez”. Avrasya Spor Bilimleri Ve Eğitim Dergisi 3, no. 2 (December 2021): 156-68. https://doi.org/10.47778/ejsse.957282.
EndNote Ateş O, Çiftçi E, Karlık E (December 1, 2021) Kas Hipertrofisine Güncel Bakış: Sarkomerojenez. Avrasya Spor Bilimleri ve Eğitim Dergisi 3 2 156–168.
IEEE O. Ateş, E. Çiftçi, and E. Karlık, “Kas Hipertrofisine Güncel Bakış: Sarkomerojenez”, EJSSE, vol. 3, no. 2, pp. 156–168, 2021, doi: 10.47778/ejsse.957282.
ISNAD Ateş, Osman et al. “Kas Hipertrofisine Güncel Bakış: Sarkomerojenez”. Avrasya Spor Bilimleri ve Eğitim Dergisi 3/2 (December 2021), 156-168. https://doi.org/10.47778/ejsse.957282.
JAMA Ateş O, Çiftçi E, Karlık E. Kas Hipertrofisine Güncel Bakış: Sarkomerojenez. EJSSE. 2021;3:156–168.
MLA Ateş, Osman et al. “Kas Hipertrofisine Güncel Bakış: Sarkomerojenez”. Avrasya Spor Bilimleri Ve Eğitim Dergisi, vol. 3, no. 2, 2021, pp. 156-68, doi:10.47778/ejsse.957282.
Vancouver Ateş O, Çiftçi E, Karlık E. Kas Hipertrofisine Güncel Bakış: Sarkomerojenez. EJSSE. 2021;3(2):156-68.

18286                      18287          18288