Review
BibTex RIS Cite

Refuse Derived Fuel: Legal Framework, Current Situation in Europe and Turkiye

Year 2018, Volume: 1 Issue: 2, 63 - 71, 30.12.2018

Abstract



In parallel with the rapidly increasing industrialization,
increasing amount and volume of solid wastes cause environmental problems. The
disposal facilities are inadequate, when the landfilling is applied as a
disposal method. In order to reduce the amount of waste that will go to
landfill, the member states of the European Union have set targets to increase
reduction, recovery and reuse. Recently, due to the insufficiency of energy
resources and increasing costs of fossil fuels, waste disposal methods
providing energy recovery have gained importance. Disposal of wastes having
thermal value as fuel in cement plants is widely applied in developed
countries. In this way, the amount of waste to be sent to the landfill is
reduced, and an alternative fuel is obtained which can be used as energy source
from the wastes with energy potential. In this study, the concept of
waste-derived fuel (ATY) has been explained and the legal regulations related
to ATY in Europe and in our country have been investigated, the waste potential
of our country has been examined and the effects of ATY on the environment and
the most important application area of the cement sector have been tried to be
revealed.




References

  • [1] Sarc, R., Lorber, K.E. (2013) Production, quality and quality assurance of Refuse Derived Fuels (RDFs). Waste Management, 33, 1825-1834.
  • [2] Hwang, I.H., Kobayashi, J., Kawamoto, K. (2014) Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF, Waste Management, 34 (2), 402-410.
  • [3] Hasan, M. H., Development of the Refuse-Derived Fuel (RDF) Production Methodology &Analaysis of Different Characteristics (2015), Department of Chemical Engineering, Thesis, Bangladesh University of Engineering & TechnoloDhaka-1000, Bangladesh.
  • [4] Zakari, I. Y, Ismaila, A, Sadiq, U., Nasiru, R. (2013). Investigation on the Effects of Addition of Binder and Particle Size on the High Calorific Value of Solid Biofuel Briquettes, Journal of Natural Sciences Research, Vol.3, No.12, 30-34.
  • [5] Standard Handbook of Environmental Engineering, 2nd Edition, Robert A, Chapter 8, Solid Waste, Eugene A. Glysson, Corbitt, Bukupedia, The McGraw-Hill Companies, 2004.
  • [6] Tambone, F., Scotti, S., Scagli, B., Adani, F. (2011) Effects of biodrying process on municipal solid waste properties, Bioresources Technology, 102 (16) 7443-7450.
  • [7] Caputo, A. C., Pelagagge, P. M. (2002). RDF production plants: I Design and costs, Applied Thermal Engineering 22 ( 4), 423-437.
  • [8] Genon, G., Brizio, E. (2008). Perspectives and limits for cement kilns as a destination for RDF, Waste Management 28(11), 2375-2385.
  • [9] American Society for Testing and Materials (ASTM). (2006). Standard definitions of terms and abbreviations relating to physical and chemical characteristics of refuse derived fuel, Volume 11.04 Waste Management. Annual Book of ASTM Standards 2006. West Conshohocken: ASTM International.
  • [10] Gendebien, A., Leavens, A., Blackmore, K., Godley, A., Lewin, K., Whiting, K.J. (2003). Refuse Derived Fuel, Current Practice and Perspectives Final Report, European Commission.
  • [11] Kara, M., Günay, E., Tabak, Y., Durgut, U., Yıldız, Ş. & Enç, V. (2011). Development of Refuse Derived Fuel for Cement Factories in Turkey, Combustion Science and Technology, 183, 203-219.
  • [12] Ahn, S.Y., Eom, S.Y., Rhie, Y.H., Sung, Y.M., Moon, C.E., Choi, G.M., Kim, D.J. (2013). Application of refuse fuels in a direct carbon fuel cell system. Energy 51, 447–456.
  • [13] Wang, G., Silva, R.B., Azevedo, J.L.T., Martins-Dias, S., Costa, M. (2014). Evaluation of the combustion behaviour and ash characteristics of biomass waste derived fuels, pine and coal in a drop tube furnace. Energy Fuels 117, 809–824.
  • [14] Akdağ, A. S., Investigation Of Fuel Values And Combustion Characteristics Of Rdf Samples, (2014), Master Thesis, Middle East Technical University, Ankara.
  • [15] Hilber, T., Thorwarth, H., Stack-Lara, V., Schneider, M., Maier, J., Scheffknecht, G. (2007). Fate of mercury and chlorine during SRF co-combustion. Fuel 86, 1935– 1946.
  • [16] Chang, Y.H., Chen, W.C., Chang, N.B. (1998). Comparative evaluation of RDF and MSW incineration, Journal of Hazardous Materials, 58 (1–3) 33-45.
  • [17] Bosmans, A., Vanderreydt, I., Geysen, D., & Helsen, L. (2013). The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. Journal of Cleaner Production, 55, 10–23.
  • [18]. Proposal For A Directive Of The European Parliament And Of The Council Amending Directive 1999/31/EC on the landfill of waste, European Commission, Brussels, 2.12.2015
  • [19] Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions,The role of waste-to-energy in the circular economy, European Comission, Brussels, 26.1.2017, COM(2017) 34 final.
  • [20] Nithikul, J., Potential Of Refuse Derived Fuel Production From Bangkok Municipal Solid Waste, (2007), Master Thesis, Asian Institute of Technology School of Environment, Resources and Development, Thailand.
  • [21] Avrupa Birliği Mevzuatına göre Düzenli Atık Depolama Sahalarının Denetimi için Rehber Kitap, Çevre Kanununun Uygulanması ve Yaptırımı için Avrupa Birliği Ağı, Çevre ve Şehircilik Bakanlığı, ÇED İzin ve Denetim Genel Müdürlüğü, Ankara, 2016.
  • [22]TÜİK 2018, Bertaraf yöntemlerine göre belediye atıkmiktarları,https://biruni.tuik.gov.tr/medas/?kn=119&locale=tr, Erişim tarihi: 28.10.2018
  • [23] İSTAÇ Stratejik Planı (2013-2017), İstanbul Çevre Yönetimi San. Ve Tic. A.Ş., http://istac.ssplab.com/contents/15/%C4%B0stac_Str_Plan%202(2).pdf Erişim Tarihi:28.10.2018.
  • [24] Bulut, İ., (2017), Belediye Atiklarinin Çimento Sektöründe evsel Aty Olarak Kullanilmasi, Atik Yönetimi Sempozyumu, 26 Şubat-02 Mart 2017, Antalya.
  • [25] Kara, M., Günay, E., Tabak, Y., Durgut, U., Yıldız, Ş. & Enç, V. (2011). Development of Refuse Derived Fuel for Cement Factories in Turkey, Combustion Science and Technology, 183, 203–219.
  • [26] Kara, M., Günay, E., Tabak, Y., Yıldız, Ş. (2009). Perspectives for pilot scale study of RDF in Istanbul, Turkey, Waste Management 29, 2976–2982.
  • [27] Sever Akdag, A., Atımtay, F., Sanin D. (2016). Comparison of fuel value and combustion characteristics of two different RDF samples, Waste Management, 47, 217-224.
  • [28] Cepeliogullar, Ö., Mutlu, I., Yaman, S., Haykiri-Acma, H. (2016). A Study to predict pyrolytic behaviors of refuse-derived fuel (RDF): Artificial neural network application, Journal of Analytical and Applied Pyrolisis, 122, 84-94.
  • [29] 2000-2016 Türkiye Enerji Verimliliği Gelişim Raporu, http://www.yegm.gov.tr/document/enver_gelisim_rapor_2018.pdf. Erişim tarihi: 29.10.2018.
  • [30] The European Cement Assosiacion Activity Report, https://cembureau.eu/media/1635/activity-report-2016.pdf, Erişim tarihi: 29.10.2018.
  • [31] Özel, A., Çimento Üretiminde Aty Kullanimi Ve Çevresel Etkileri, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, 2011.
  • [32]http://www.resmigazete.gov.tr/eskiler/2014/12/20141230M1-12-1.pdf Erişim Tarihi: 25.10.2018
  • [33] Cembreau, “Best Available Techniques For The Cement Industry”, A contribution from the European Cement Industry to the exchange of information and preparation of the IPPC BAT Reference Document for the cement industry, Rue d’Arlon 55 - B-1040 Brussels, 1999:
  • [34] Kuleli, Ö., Çimento Mühendisliği El Kitabı, TÇMB/AR-GE Enstitüsü, Ankara, 2010:
  • [35] Ferrer, E., Aho, M., Silvennoinen, J., Nurminen, R.V. (2005). Fluidized bed combustion of refuse-derived fuel in presence of protective coal ash. Fuel Processing Technology 87, 33–44.
  • [36] Sanchez-Hervas, J.M., Armesto, L., Ruiz-Martinez, E., Otero-Ruiz, J., Pandelova, M., Schramm, K.W. (2005). PCDD/PCDF emissions from co-combustion of coal and PVC in a bubbling fluidized bed boiler. Fuel 84, 2149–2157.
  • [37] Pretz, T., Khoury, A., Uepping, R., & Glorius, T., Tubergen, J.V. (2003). BREF waste treatment-solid recovered fuels. IAR RWTH and European Recovered Fuel Organisation (Erfo). Aachen; 2003.
  • [38] Wagland, S. T., Kilgallon, P., Coveney, R., Garg, A., Smith, R., Longhurst, P. J., Simms, N. (2011). Comparison of coal/solid recovered fuel (SRF) withcoal/refuse derived fuel (RDF) in a fluidized bed reactor. Waste Management, 31(6), 1176–1183.
  • [39] Park, S.W., & Jang, C.H. (2011). Characteristics of carbonized sludge for cocombustion in pulverized coal powerplants. Waste Management, 31(3), 523–529.

Atıktan Türetilmiş Yakıt: Yasal Çerçeve, Avrupa’daki ve Türkiye’deki Durum

Year 2018, Volume: 1 Issue: 2, 63 - 71, 30.12.2018

Abstract

Hızla artan endüstrileşmeye paralel olarak, miktar ve hacimce artan katı atıklar, çevresel açıdan problemler meydana getirmekte, atıkların depolanarak bertaraf edilmesi durumunda ise bertaraf tesisleri yetersiz kalmaktadır. Avrupa Birliği üyesi ülkeler, düzenli depolamaya gidecek atık miktarını azaltmak için, kaynağında azaltma, geri kazanım ve yeniden kullanımı artırmak konusunda hedefler belirlemişlerdir. Son zamanlarda enerji kaynaklarının yetersizliği ve fosil yakıtların artan maliyetleri dolayısıyla atıkların bertaraf edildiği, aynı zamanda enerji geri kazanımı sağlanabilen metodlar önem kazanmıştır. Isıl değer taşıyan atıkların çimento fabrikalarında yakıt olarak kullanılarak bertaraf edilmesi gelişmiş ülkelerde yaygın bir şekilde uygulanmaktadır. Bu şekilde hem düzenli depolamaya gönderilecek atık miktarı azaltılmakta, hem enerji potansiyeli olan atıklardan enerji kaynağı olarak kullanılabilen alternatif bir yakıt elde edilmektedir. Bu çalışmada atıktan türetilmiş yakıt (ATY) kavramı açıklanmış, Avrupa’da ve ülkemizde ATY ile ilgili yasal düzenlemeler araştırılarak, ülkemizdeki atık potansiyeli incelenmiş, ATY kullanımının çevreye ve en önemli uygulama alanı olan çimento sektörüne etkileri ortaya konmaya çalışılmıştır.


References

  • [1] Sarc, R., Lorber, K.E. (2013) Production, quality and quality assurance of Refuse Derived Fuels (RDFs). Waste Management, 33, 1825-1834.
  • [2] Hwang, I.H., Kobayashi, J., Kawamoto, K. (2014) Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF, Waste Management, 34 (2), 402-410.
  • [3] Hasan, M. H., Development of the Refuse-Derived Fuel (RDF) Production Methodology &Analaysis of Different Characteristics (2015), Department of Chemical Engineering, Thesis, Bangladesh University of Engineering & TechnoloDhaka-1000, Bangladesh.
  • [4] Zakari, I. Y, Ismaila, A, Sadiq, U., Nasiru, R. (2013). Investigation on the Effects of Addition of Binder and Particle Size on the High Calorific Value of Solid Biofuel Briquettes, Journal of Natural Sciences Research, Vol.3, No.12, 30-34.
  • [5] Standard Handbook of Environmental Engineering, 2nd Edition, Robert A, Chapter 8, Solid Waste, Eugene A. Glysson, Corbitt, Bukupedia, The McGraw-Hill Companies, 2004.
  • [6] Tambone, F., Scotti, S., Scagli, B., Adani, F. (2011) Effects of biodrying process on municipal solid waste properties, Bioresources Technology, 102 (16) 7443-7450.
  • [7] Caputo, A. C., Pelagagge, P. M. (2002). RDF production plants: I Design and costs, Applied Thermal Engineering 22 ( 4), 423-437.
  • [8] Genon, G., Brizio, E. (2008). Perspectives and limits for cement kilns as a destination for RDF, Waste Management 28(11), 2375-2385.
  • [9] American Society for Testing and Materials (ASTM). (2006). Standard definitions of terms and abbreviations relating to physical and chemical characteristics of refuse derived fuel, Volume 11.04 Waste Management. Annual Book of ASTM Standards 2006. West Conshohocken: ASTM International.
  • [10] Gendebien, A., Leavens, A., Blackmore, K., Godley, A., Lewin, K., Whiting, K.J. (2003). Refuse Derived Fuel, Current Practice and Perspectives Final Report, European Commission.
  • [11] Kara, M., Günay, E., Tabak, Y., Durgut, U., Yıldız, Ş. & Enç, V. (2011). Development of Refuse Derived Fuel for Cement Factories in Turkey, Combustion Science and Technology, 183, 203-219.
  • [12] Ahn, S.Y., Eom, S.Y., Rhie, Y.H., Sung, Y.M., Moon, C.E., Choi, G.M., Kim, D.J. (2013). Application of refuse fuels in a direct carbon fuel cell system. Energy 51, 447–456.
  • [13] Wang, G., Silva, R.B., Azevedo, J.L.T., Martins-Dias, S., Costa, M. (2014). Evaluation of the combustion behaviour and ash characteristics of biomass waste derived fuels, pine and coal in a drop tube furnace. Energy Fuels 117, 809–824.
  • [14] Akdağ, A. S., Investigation Of Fuel Values And Combustion Characteristics Of Rdf Samples, (2014), Master Thesis, Middle East Technical University, Ankara.
  • [15] Hilber, T., Thorwarth, H., Stack-Lara, V., Schneider, M., Maier, J., Scheffknecht, G. (2007). Fate of mercury and chlorine during SRF co-combustion. Fuel 86, 1935– 1946.
  • [16] Chang, Y.H., Chen, W.C., Chang, N.B. (1998). Comparative evaluation of RDF and MSW incineration, Journal of Hazardous Materials, 58 (1–3) 33-45.
  • [17] Bosmans, A., Vanderreydt, I., Geysen, D., & Helsen, L. (2013). The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. Journal of Cleaner Production, 55, 10–23.
  • [18]. Proposal For A Directive Of The European Parliament And Of The Council Amending Directive 1999/31/EC on the landfill of waste, European Commission, Brussels, 2.12.2015
  • [19] Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions,The role of waste-to-energy in the circular economy, European Comission, Brussels, 26.1.2017, COM(2017) 34 final.
  • [20] Nithikul, J., Potential Of Refuse Derived Fuel Production From Bangkok Municipal Solid Waste, (2007), Master Thesis, Asian Institute of Technology School of Environment, Resources and Development, Thailand.
  • [21] Avrupa Birliği Mevzuatına göre Düzenli Atık Depolama Sahalarının Denetimi için Rehber Kitap, Çevre Kanununun Uygulanması ve Yaptırımı için Avrupa Birliği Ağı, Çevre ve Şehircilik Bakanlığı, ÇED İzin ve Denetim Genel Müdürlüğü, Ankara, 2016.
  • [22]TÜİK 2018, Bertaraf yöntemlerine göre belediye atıkmiktarları,https://biruni.tuik.gov.tr/medas/?kn=119&locale=tr, Erişim tarihi: 28.10.2018
  • [23] İSTAÇ Stratejik Planı (2013-2017), İstanbul Çevre Yönetimi San. Ve Tic. A.Ş., http://istac.ssplab.com/contents/15/%C4%B0stac_Str_Plan%202(2).pdf Erişim Tarihi:28.10.2018.
  • [24] Bulut, İ., (2017), Belediye Atiklarinin Çimento Sektöründe evsel Aty Olarak Kullanilmasi, Atik Yönetimi Sempozyumu, 26 Şubat-02 Mart 2017, Antalya.
  • [25] Kara, M., Günay, E., Tabak, Y., Durgut, U., Yıldız, Ş. & Enç, V. (2011). Development of Refuse Derived Fuel for Cement Factories in Turkey, Combustion Science and Technology, 183, 203–219.
  • [26] Kara, M., Günay, E., Tabak, Y., Yıldız, Ş. (2009). Perspectives for pilot scale study of RDF in Istanbul, Turkey, Waste Management 29, 2976–2982.
  • [27] Sever Akdag, A., Atımtay, F., Sanin D. (2016). Comparison of fuel value and combustion characteristics of two different RDF samples, Waste Management, 47, 217-224.
  • [28] Cepeliogullar, Ö., Mutlu, I., Yaman, S., Haykiri-Acma, H. (2016). A Study to predict pyrolytic behaviors of refuse-derived fuel (RDF): Artificial neural network application, Journal of Analytical and Applied Pyrolisis, 122, 84-94.
  • [29] 2000-2016 Türkiye Enerji Verimliliği Gelişim Raporu, http://www.yegm.gov.tr/document/enver_gelisim_rapor_2018.pdf. Erişim tarihi: 29.10.2018.
  • [30] The European Cement Assosiacion Activity Report, https://cembureau.eu/media/1635/activity-report-2016.pdf, Erişim tarihi: 29.10.2018.
  • [31] Özel, A., Çimento Üretiminde Aty Kullanimi Ve Çevresel Etkileri, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, 2011.
  • [32]http://www.resmigazete.gov.tr/eskiler/2014/12/20141230M1-12-1.pdf Erişim Tarihi: 25.10.2018
  • [33] Cembreau, “Best Available Techniques For The Cement Industry”, A contribution from the European Cement Industry to the exchange of information and preparation of the IPPC BAT Reference Document for the cement industry, Rue d’Arlon 55 - B-1040 Brussels, 1999:
  • [34] Kuleli, Ö., Çimento Mühendisliği El Kitabı, TÇMB/AR-GE Enstitüsü, Ankara, 2010:
  • [35] Ferrer, E., Aho, M., Silvennoinen, J., Nurminen, R.V. (2005). Fluidized bed combustion of refuse-derived fuel in presence of protective coal ash. Fuel Processing Technology 87, 33–44.
  • [36] Sanchez-Hervas, J.M., Armesto, L., Ruiz-Martinez, E., Otero-Ruiz, J., Pandelova, M., Schramm, K.W. (2005). PCDD/PCDF emissions from co-combustion of coal and PVC in a bubbling fluidized bed boiler. Fuel 84, 2149–2157.
  • [37] Pretz, T., Khoury, A., Uepping, R., & Glorius, T., Tubergen, J.V. (2003). BREF waste treatment-solid recovered fuels. IAR RWTH and European Recovered Fuel Organisation (Erfo). Aachen; 2003.
  • [38] Wagland, S. T., Kilgallon, P., Coveney, R., Garg, A., Smith, R., Longhurst, P. J., Simms, N. (2011). Comparison of coal/solid recovered fuel (SRF) withcoal/refuse derived fuel (RDF) in a fluidized bed reactor. Waste Management, 31(6), 1176–1183.
  • [39] Park, S.W., & Jang, C.H. (2011). Characteristics of carbonized sludge for cocombustion in pulverized coal powerplants. Waste Management, 31(3), 523–529.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Reviews
Authors

Suna Özden Çelik 0000-0001-9783-9512

Publication Date December 30, 2018
Submission Date November 1, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2