Research Article
BibTex RIS Cite

Termal Olarak İndirgenen Grafen Oksidin Özelliklerinin İstatistiksel Analizi

Year 2021, Volume: 8 Issue: 3, 1123 - 1134, 30.09.2021
https://doi.org/10.31202/ecjse.887362

Abstract

Bu çalışmada, Hummers yöntemi ile sentezlenen grafen oksidin vakum ve atmosfer basıncı altında termal indirgemesi Taguchi deney tasarımı ile gerçekleştirilmiştir. Vakum ve atmosfer basınç altında termal indirgenen grafen oksit kimyasal indirgenen grafen okside göre sırası ile %36,84 ve %42,31 değerlerinde daha yüksek ID/IG değerine (D piki yoğunluğu/G piki yoğunluğu) sahiptir. Vakum ve atmosfer basınç altında termal ve kimyasal indirgenen grafen oksit ise sadece kimyasal indirgenen grafen okside göre sırası ile %36,17 ve %43,93 değerlerinde daha yüksek ID/IG değerine sahiptir. Vakum ve atmosfer basınç altında termal indirgenen grafen oksit kimyasal indirgenen grafen okside göre sırası ile %72,19 ve %74,58 değerlerinde daha yüksek karbon oksijen oranına değerine (bir başka deyişle daha yüksek indirgeme derecesine) sahiptir. Vakum (VRGO) ve atmosfer basınç (ARGO) altında termal ve kimyasal indirgenen grafen oksit ise indirgenen grafen okside göre sırası ile %74,56 ve %78,92 değerlerinde daha yüksek karbon oksijen oranına sahiptir. Sonuçlar şunu göstermiştir ki en yüksek indirgeme derecesine sahip grafen oksit elde etmek için; kimyasal olarak indirgenen grafen oksidin atmosfer basıncı altında termal ve H2 gazı indirgemesi süreci izlenmelidir.

Supporting Institution

Çankırı Karatekin Üniversitesi Bilimsel Araştırmalar ve Proje Yönetimi Birimi

Project Number

MF060515B19

Thanks

Bu çalışma Çankırı Karatekin Üniversitesi Bilimsel Araştırmalar ve Proje Yönetimi Birimi tarafından desteklenmiştir (MF060515B19). Yazarlar Çankırı Karatekin Üniversitesi Bilimsel Araştırmalar ve Proje Yönetimi Birimine teşekkür eder.

References

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field in atomically thin carbon films, Science, 2004, 306 (5696), 666-669.
  • Şimşek, B., Dilmaç, Ö.F., Ortogonal dizinler kullanarak kimyasal buhar çöktürme yöntemi ile büyütülen grafenin ana etkiler analizi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2018, 33(2), 649-664.
  • Chen, J., Li, Y., Huang, L., Li, C., Shi, G., High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon, 2015, 81, 826-834.
  • Chen, J., Yao, B., Li, C., Shi, G., An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 2013, 64, 225-229.
  • Khanra, P., Kuila, T., Kim, N.H., Bae, S.H., Yu, D.S., Lee, J.H., Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast, Chemical Engineering Journal, 2012, 183, 526-533.
  • Botas, C., Álvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaría, R., Romasanta, L.J., Verdejo, R., López-Manchado, M.A., Menéndez, R., Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, 2013, 183, 156-164.
  • Korucu, H., Şimşek, B., Yartaşı, A., A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method, Arabian Journal for Science and Engineering , 2018, 43, 6033-6055.
  • Fathy, M., Gomaa, A., Taher, F.A., El-Fass, M.M., Kashyout, A.E.-H.B., Optimizing the preparation parameters of GO and rGO for large-scale production, Journal of Materials Science, 2016, 51(12), 5664-5675.
  • Pei, S., Cheng, H.-M., The reduction of graphene oxide, Carbon, 2012, 50(9), 3210-3228.
  • De Silva, K.K.H., Huang, H.H., Joshi, R.K., Yoshimura, M., Chemical reduction of graphene oxide using green reductants, Carbon, 2017, 119, 190-199.
  • Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., Yan, J., Cen, K., Green preparation of reduced graphene oxide for sensing and energy storage applications, Scientific reports, 2014, 4, 4684.
  • Saleem, H., Haneef, M., Abbasi, H.Y., Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide, Materials Chemistry and Physics, 2018, 204, 1-7.
  • Grimm, S., Schweiger, M., Eigler, S., Zaumseil, J., High-Quality Reduced Graphene Oxide by CVD-Assisted Annealing, The Journal of Physical Chemistry C, 2016, 120(5), 3036-3041.
  • Chang, SJ., Hyun, M., Myung, S. et al., Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration, Scientific Reports, 2016, 6, 22653.
  • Cheng, M., Yang, R., Zhang, L., et al., Restoration of graphene from graphene oxide by defect repair, Carbon, 2012, 50(7), 2581-2587.
  • Guerrero-Contreras, J., Caballero-Briones, F., Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method, Materials Chemistry and Physics, 2015, 153, 209-220.
  • Betancur, A.F., Ornelas-Soto, N., Garay-Tapia, A.M., Pérez, F.R., Salazar, Á., García, A.G., A general strategy for direct synthesis of reduced graphene oxide by chemical exfoliation of graphite, Materials Chemistry and Physics, 2018, 218, 51-61.

Statistical Analysis of Thermal Reduced Graphene Oxide Properties

Year 2021, Volume: 8 Issue: 3, 1123 - 1134, 30.09.2021
https://doi.org/10.31202/ecjse.887362

Abstract

In this study, the graphene oxide synthesized by the Hummers method was carried out using the thermal reduction under the vacuum and atmospheric pressure was carried out by the design of the Taguchi experiment. The thermal reduction under vacuum and atmospheric pressure has a higher ID/IG value (D peak intensity to G peak intensity ratio) at 36.84% and 42.31%, respectively, with respect to the chemical reduced oxide of the graphene oxide. If the chemical graphene oxide is thermally reduced under vacuum and atmospheric pressure, it has a higher ID/IG value, with 36.17% and 43.93%, respectively, with respect to the reduced graphene oxide. The thermal reduction under vacuum and atmospheric pressure has a higher carbon to oxygen ratio value (in other words higher reduction rate) at 72.19% and 74.58%, respectively, with respect to the chemical reduced oxide of the graphene oxide. If the chemical graphene oxide is thermally reduced under vacuum and atmospheric pressure, it has a higher carbon to oxygen ratio, with 74.56% and 78.92%, respectively, with respect to the reduced graphene oxide. The results showed that to obtain the highest reduction rate of graphene oxide; the thermal and H2 gas reduction process should be monitored under the atmospheric pressure of the chemically reduced graphene oxide.

Project Number

MF060515B19

References

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field in atomically thin carbon films, Science, 2004, 306 (5696), 666-669.
  • Şimşek, B., Dilmaç, Ö.F., Ortogonal dizinler kullanarak kimyasal buhar çöktürme yöntemi ile büyütülen grafenin ana etkiler analizi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2018, 33(2), 649-664.
  • Chen, J., Li, Y., Huang, L., Li, C., Shi, G., High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon, 2015, 81, 826-834.
  • Chen, J., Yao, B., Li, C., Shi, G., An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 2013, 64, 225-229.
  • Khanra, P., Kuila, T., Kim, N.H., Bae, S.H., Yu, D.S., Lee, J.H., Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast, Chemical Engineering Journal, 2012, 183, 526-533.
  • Botas, C., Álvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaría, R., Romasanta, L.J., Verdejo, R., López-Manchado, M.A., Menéndez, R., Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, 2013, 183, 156-164.
  • Korucu, H., Şimşek, B., Yartaşı, A., A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method, Arabian Journal for Science and Engineering , 2018, 43, 6033-6055.
  • Fathy, M., Gomaa, A., Taher, F.A., El-Fass, M.M., Kashyout, A.E.-H.B., Optimizing the preparation parameters of GO and rGO for large-scale production, Journal of Materials Science, 2016, 51(12), 5664-5675.
  • Pei, S., Cheng, H.-M., The reduction of graphene oxide, Carbon, 2012, 50(9), 3210-3228.
  • De Silva, K.K.H., Huang, H.H., Joshi, R.K., Yoshimura, M., Chemical reduction of graphene oxide using green reductants, Carbon, 2017, 119, 190-199.
  • Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., Yan, J., Cen, K., Green preparation of reduced graphene oxide for sensing and energy storage applications, Scientific reports, 2014, 4, 4684.
  • Saleem, H., Haneef, M., Abbasi, H.Y., Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide, Materials Chemistry and Physics, 2018, 204, 1-7.
  • Grimm, S., Schweiger, M., Eigler, S., Zaumseil, J., High-Quality Reduced Graphene Oxide by CVD-Assisted Annealing, The Journal of Physical Chemistry C, 2016, 120(5), 3036-3041.
  • Chang, SJ., Hyun, M., Myung, S. et al., Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration, Scientific Reports, 2016, 6, 22653.
  • Cheng, M., Yang, R., Zhang, L., et al., Restoration of graphene from graphene oxide by defect repair, Carbon, 2012, 50(7), 2581-2587.
  • Guerrero-Contreras, J., Caballero-Briones, F., Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method, Materials Chemistry and Physics, 2015, 153, 209-220.
  • Betancur, A.F., Ornelas-Soto, N., Garay-Tapia, A.M., Pérez, F.R., Salazar, Á., García, A.G., A general strategy for direct synthesis of reduced graphene oxide by chemical exfoliation of graphite, Materials Chemistry and Physics, 2018, 218, 51-61.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ömer Faruk Dilmaç 0000-0002-9660-0638

Barış Şimşek 0000-0002-0655-4368

Project Number MF060515B19
Publication Date September 30, 2021
Submission Date June 23, 2021
Acceptance Date August 19, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

IEEE Ö. F. Dilmaç and B. Şimşek, “Termal Olarak İndirgenen Grafen Oksidin Özelliklerinin İstatistiksel Analizi”, ECJSE, vol. 8, no. 3, pp. 1123–1134, 2021, doi: 10.31202/ecjse.887362.