Research Article
BibTex RIS Cite

Energy and Exergy Analysis of a Coal-Fired Supercritical Power Plant

Year 2022, Volume: 10 Issue: 2, 788 - 801, 30.04.2022
https://doi.org/10.29130/dubited.966961

Abstract

Although research on electricity generation with renewable energy sources is progressing rapidly, it is expected that electricity generation with fossil fuels will continue for a long time both in the world and in Turkey. Fossil fuels should consume more efficiently in thermal power plants because of their harmful effects on the environment and the high risk of depletion. Coal is one type of fossil fuels and is widely used as an energy source to generate electricity in thermal power plants. The power plant efficiency can be increased when the boiler used in coal-fired thermal power plant is selected as a supercritical boiler. In this study, the thermodynamic performance of a coal-fired supercritical thermal power plant located in Zonguldak province and owned by Eren Energy was investigated by energy and exergy analysis methods. The energy losses and irreversibilities of each component in the power plant was calculated. The energy analysis demonstrated that 48.5% of the chemical energy of the coal was transferred to the cooling water in the condenser, the exergy analysis demonstrated that 49.2% of the chemical exergy of the coal was destroyed in the boiler. The energy efficiency of the power plant was calculated as 33.65% and the exergy efficiency as 31.42%.

References

  • [1]D. Uysal ve H. Yapraklı, “Kişi başına düşen gelir, enerji tüketimi ve karbondioksit (CO2) emisyonu arasındaki ilişkinin yapısal kırılmalar altında analizi: Türkiye örneği,” Sosyal Ekonomik Araştırmalar Dergisi., c. 16, s. 31, ss. 186–202, 2016.
  • [2]IEA. (2021, June 27). International Energy Agency [Online]. Available: https://www.iea.org.
  • [3]J. Paska and T. Surma, “Electricity generation from renewable energy sources in Poland,” Renewable Energy, vol. 71, pp. 286–294, 2014.
  • [4]BP Statistics. (2021, June 27). BP Statistical Riview of World Energy 68th edition. [Online]. Available:https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
  • [5]A. J. Omosanya, E. T. Akinlabi, and J. O. Okeniyi, “Overview for Improving Steam Turbine Power Generation Efficiency,” Journal of Physics: Conference. Series, vol. 1378, no. 3, pp:1-8, 2019.
  • [6]J. S. Gaffney and N. A. Marley, “The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyond,” Atmospheric Environment, vol. 43, no. 1, pp. 23–36, 2009.
  • [7]TEİAŞ. (2021, Mayıs 20). Yük tevzi̇ dai̇resi̇ başkanlığı - Kurulu güç raporu-Mayıs 2021 [Çevimiçi]. Erişim: https://www.teias.gov.tr/tr-TR/kurulu-guc-raporlari.
  • [8]C. Xu, G. Xu, S. Zhao, W. Dong, L. Zhou, and Y. Yang, “A theoretical investigation of energy efficiency improvement by coal pre-drying in coal fired power plants,” Energy Conversion and Management, vol. 122, pp. 580–588, 2016.
  • [9]Z. Ma, Z. Li, J. Jiang, J. Deng, Y. Zhao, S. Wang, and L. Duan, “PM2.5 emission reduction by technical improvement in a typical coal-fired power plant in China,” Aerosol and Air Quality Research, vol. 17, no. 2, pp. 636–643, 2017.
  • [10]M. Başaran, “Kömürlü termi̇k santrallarda veri̇mli̇li̇k çalışmaları ve kazanımlar,” Mühendis ve Makine, c. 52, s. 617, ss. 116-124, 2011.
  • [11]M. Kopac and A. Hilalci, “Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey,” Applied Thermal Engineering, vol. 27, no. 8–9, pp. 1377–1385, 2007.
  • [12]H.İ. Topal, M. Kopaç, and M. Eyriboyun, “The feasibility energy analysis of Çatalağzı Thermal Electricity power plant for district heating application,” Journal of Thermal Science and Technology, vol. 37, no. 1, pp. 139–146, 2017.
  • [13]A. Bejan, G. Tsatsaronis, and M. Moran, Thermal design and optimization, 1st ed., New York, United States, 1996, John Wiley & Sons, ch. 3, pp. 113-162.
  • [14]P. Regulagadda, I. Dincer, and G. F. Naterer, “Exergy analysis of a thermal power plant with measured boiler and turbine losses,” Applied Thermal Engineering, vol. 30, no. 8–9, pp. 970–976, 2010.
  • [15]H. H. Erdem, A. V. Akkaya, B. Cetin, A. Dagdas, S. H. Sevilgen, B. Sahin, I. Teke, C. Gungor, and S. Atas, “Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey,” International Journal of Thermal Science, vol. 48, no. 11, pp. 2179–2186, 2009.
  • [16]T. Ganapathy, N. Alagumurthi, R. P. Gakkhar, and K. Murugesan, “Exergy analysis of operating lignite fired thermal power plant,” Journal of Engineering Science and Technology Review, vol. 2, no. 1, pp. 123–130, 2009.
  • [17]A. Ehsana and M. Z. Yilmazoglu, “Design and exergy analysis of a thermal power plant using different types of Turkish lignite,” International Journal of Thermodynamics, vol. 14, no. 3, pp. 125–133, 2011.
  • [18]S. Mehdi and V. Amir, “The Effect of Ambient Temperature to Power Plant Efficiency,” 2nd International Conference on Mechanical, Production and Automobile Engineering, Singapore, 2012, pp. 248–252.
  • [19]D. Sharma and T. A. Khan, “Exergy Analysis of Boiler in Thermal Power Plant,” Global Sci-Tech, vol. 8, no. 3, pp. 1428-1440, 2016.
  • [20]F. Ünal ve D. B. Özkan, “Tunçbilek Termik Santralinin Enerji ve Ekserji Analizi,” Tesisat Mühendisliği, s. 143, ss. 5–13, 2014.
  • [21] I. H. Aljundi, “Energy and exergy analysis of a steam power plant in Jordan,” Applied Thermal Engineering, vol. 29, no. 2–3, pp. 324–328, 2009.
  • [22] N. K. Rude, H. S. Aamir, and M. D. A. Ahmad, “Case Study of Supercritical Boiler Technology,” International Research Journal of Engineering Technology, vol. 5, no. 6, pp. 2614–2617, 2018.
  • [23]A. Ustaoğlu, “Jeotermal enerji kaynaklı ara ısıtmalı organik Rankine çevriminin konvansiyonel ve ileri ekserji analizi,” Düzce Üniversitesi Bilim ve Mühendislik Dergisi, c. 8, s. 1, ss. 783–800, 2020.
  • [24]T. J. Kotas, The exergy method of thermal plant analysis, 1st ed., London, Great Britain, Butterworths: Anchor Brendow Ltd., 1985 , London, ch. Appendix C, pp. 267-269.
  • [25]C. Yılmaz, “Exergoeconomic analysis of an industrial cogeneration cooling system powered by natural gas fueled diesel engine,” Düzce University Journal of Science & Technology, vol. 8, no. 1, pp. 437–452, 2020.

Kömür Yakıtlı Süper Kritik Termik Santralin Enerji ve Ekserji Analizi

Year 2022, Volume: 10 Issue: 2, 788 - 801, 30.04.2022
https://doi.org/10.29130/dubited.966961

Abstract

Yenilenebilir enerji kaynaklarıyla elektrik üretimi üzerine araştırmalar hızlı bir şekilde ilerlese de fosil yakıtlarla elektrik üretiminin hem dünyada hem Türkiye’de uzun bir süre daha sürmesi beklenmektedir. Hem çevrede oluşturduğu zararlı etkiler hem de tükenme riskinin yüksek olması, fosil yakıtların termik santrallerde verimli bir şekilde tüketilmesini zorunluluk haline getirmiştir. Fosil yakıtın bir türü olan kömür, elektrik üretmek amacıyla termik santrallerde yaygın olarak kullanılmaktadır. Kömür yakıtlı termik santrallerde kullanılan kazan, süper kritik bir kazan seçildiğinde santral verimi artırılabilir. Bu çalışmada Zonguldak ilinde bulunan Eren Enerji’ye ait kömür yakıtlı süper kritik termik santralin termodinamik performansı, enerji ve ekserji analiz metotlarıyla incelenmiştir. Santralde bulunan her bir elemana ait enerji kayıpları ve tersinmezlikler hesaplanmıştır. Enerji analizi, kömürün kimyasal enerjisinin %48.5’inin kondenserde soğutma suyuna aktarıldığını; ekserji analizi ise kömürün kimyasal ekserjisinin %49.2’sinin kazanda yok edildiğini göstermiştir. Santralin enerji verimi %33.65, ekserji verimi ise %31.42 olarak hesaplanmıştır. 

References

  • [1]D. Uysal ve H. Yapraklı, “Kişi başına düşen gelir, enerji tüketimi ve karbondioksit (CO2) emisyonu arasındaki ilişkinin yapısal kırılmalar altında analizi: Türkiye örneği,” Sosyal Ekonomik Araştırmalar Dergisi., c. 16, s. 31, ss. 186–202, 2016.
  • [2]IEA. (2021, June 27). International Energy Agency [Online]. Available: https://www.iea.org.
  • [3]J. Paska and T. Surma, “Electricity generation from renewable energy sources in Poland,” Renewable Energy, vol. 71, pp. 286–294, 2014.
  • [4]BP Statistics. (2021, June 27). BP Statistical Riview of World Energy 68th edition. [Online]. Available:https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
  • [5]A. J. Omosanya, E. T. Akinlabi, and J. O. Okeniyi, “Overview for Improving Steam Turbine Power Generation Efficiency,” Journal of Physics: Conference. Series, vol. 1378, no. 3, pp:1-8, 2019.
  • [6]J. S. Gaffney and N. A. Marley, “The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyond,” Atmospheric Environment, vol. 43, no. 1, pp. 23–36, 2009.
  • [7]TEİAŞ. (2021, Mayıs 20). Yük tevzi̇ dai̇resi̇ başkanlığı - Kurulu güç raporu-Mayıs 2021 [Çevimiçi]. Erişim: https://www.teias.gov.tr/tr-TR/kurulu-guc-raporlari.
  • [8]C. Xu, G. Xu, S. Zhao, W. Dong, L. Zhou, and Y. Yang, “A theoretical investigation of energy efficiency improvement by coal pre-drying in coal fired power plants,” Energy Conversion and Management, vol. 122, pp. 580–588, 2016.
  • [9]Z. Ma, Z. Li, J. Jiang, J. Deng, Y. Zhao, S. Wang, and L. Duan, “PM2.5 emission reduction by technical improvement in a typical coal-fired power plant in China,” Aerosol and Air Quality Research, vol. 17, no. 2, pp. 636–643, 2017.
  • [10]M. Başaran, “Kömürlü termi̇k santrallarda veri̇mli̇li̇k çalışmaları ve kazanımlar,” Mühendis ve Makine, c. 52, s. 617, ss. 116-124, 2011.
  • [11]M. Kopac and A. Hilalci, “Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey,” Applied Thermal Engineering, vol. 27, no. 8–9, pp. 1377–1385, 2007.
  • [12]H.İ. Topal, M. Kopaç, and M. Eyriboyun, “The feasibility energy analysis of Çatalağzı Thermal Electricity power plant for district heating application,” Journal of Thermal Science and Technology, vol. 37, no. 1, pp. 139–146, 2017.
  • [13]A. Bejan, G. Tsatsaronis, and M. Moran, Thermal design and optimization, 1st ed., New York, United States, 1996, John Wiley & Sons, ch. 3, pp. 113-162.
  • [14]P. Regulagadda, I. Dincer, and G. F. Naterer, “Exergy analysis of a thermal power plant with measured boiler and turbine losses,” Applied Thermal Engineering, vol. 30, no. 8–9, pp. 970–976, 2010.
  • [15]H. H. Erdem, A. V. Akkaya, B. Cetin, A. Dagdas, S. H. Sevilgen, B. Sahin, I. Teke, C. Gungor, and S. Atas, “Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey,” International Journal of Thermal Science, vol. 48, no. 11, pp. 2179–2186, 2009.
  • [16]T. Ganapathy, N. Alagumurthi, R. P. Gakkhar, and K. Murugesan, “Exergy analysis of operating lignite fired thermal power plant,” Journal of Engineering Science and Technology Review, vol. 2, no. 1, pp. 123–130, 2009.
  • [17]A. Ehsana and M. Z. Yilmazoglu, “Design and exergy analysis of a thermal power plant using different types of Turkish lignite,” International Journal of Thermodynamics, vol. 14, no. 3, pp. 125–133, 2011.
  • [18]S. Mehdi and V. Amir, “The Effect of Ambient Temperature to Power Plant Efficiency,” 2nd International Conference on Mechanical, Production and Automobile Engineering, Singapore, 2012, pp. 248–252.
  • [19]D. Sharma and T. A. Khan, “Exergy Analysis of Boiler in Thermal Power Plant,” Global Sci-Tech, vol. 8, no. 3, pp. 1428-1440, 2016.
  • [20]F. Ünal ve D. B. Özkan, “Tunçbilek Termik Santralinin Enerji ve Ekserji Analizi,” Tesisat Mühendisliği, s. 143, ss. 5–13, 2014.
  • [21] I. H. Aljundi, “Energy and exergy analysis of a steam power plant in Jordan,” Applied Thermal Engineering, vol. 29, no. 2–3, pp. 324–328, 2009.
  • [22] N. K. Rude, H. S. Aamir, and M. D. A. Ahmad, “Case Study of Supercritical Boiler Technology,” International Research Journal of Engineering Technology, vol. 5, no. 6, pp. 2614–2617, 2018.
  • [23]A. Ustaoğlu, “Jeotermal enerji kaynaklı ara ısıtmalı organik Rankine çevriminin konvansiyonel ve ileri ekserji analizi,” Düzce Üniversitesi Bilim ve Mühendislik Dergisi, c. 8, s. 1, ss. 783–800, 2020.
  • [24]T. J. Kotas, The exergy method of thermal plant analysis, 1st ed., London, Great Britain, Butterworths: Anchor Brendow Ltd., 1985 , London, ch. Appendix C, pp. 267-269.
  • [25]C. Yılmaz, “Exergoeconomic analysis of an industrial cogeneration cooling system powered by natural gas fueled diesel engine,” Düzce University Journal of Science & Technology, vol. 8, no. 1, pp. 437–452, 2020.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Halil İbrahim Topal 0000-0002-6950-7745

Başak Bayram This is me 0000-0002-7805-7758

Kemal Bayram This is me 0000-0003-3631-4653

Beytullah Erdogan 0000-0002-6120-9196

Mehmet Kopaç 0000-0002-4863-1827

Publication Date April 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Topal, H. İ., Bayram, B., Bayram, K., Erdogan, B., et al. (2022). Kömür Yakıtlı Süper Kritik Termik Santralin Enerji ve Ekserji Analizi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(2), 788-801. https://doi.org/10.29130/dubited.966961
AMA Topal Hİ, Bayram B, Bayram K, Erdogan B, Kopaç M. Kömür Yakıtlı Süper Kritik Termik Santralin Enerji ve Ekserji Analizi. DUBİTED. April 2022;10(2):788-801. doi:10.29130/dubited.966961
Chicago Topal, Halil İbrahim, Başak Bayram, Kemal Bayram, Beytullah Erdogan, and Mehmet Kopaç. “Kömür Yakıtlı Süper Kritik Termik Santralin Enerji Ve Ekserji Analizi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 2 (April 2022): 788-801. https://doi.org/10.29130/dubited.966961.
EndNote Topal Hİ, Bayram B, Bayram K, Erdogan B, Kopaç M (April 1, 2022) Kömür Yakıtlı Süper Kritik Termik Santralin Enerji ve Ekserji Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 2 788–801.
IEEE H. İ. Topal, B. Bayram, K. Bayram, B. Erdogan, and M. Kopaç, “Kömür Yakıtlı Süper Kritik Termik Santralin Enerji ve Ekserji Analizi”, DUBİTED, vol. 10, no. 2, pp. 788–801, 2022, doi: 10.29130/dubited.966961.
ISNAD Topal, Halil İbrahim et al. “Kömür Yakıtlı Süper Kritik Termik Santralin Enerji Ve Ekserji Analizi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/2 (April 2022), 788-801. https://doi.org/10.29130/dubited.966961.
JAMA Topal Hİ, Bayram B, Bayram K, Erdogan B, Kopaç M. Kömür Yakıtlı Süper Kritik Termik Santralin Enerji ve Ekserji Analizi. DUBİTED. 2022;10:788–801.
MLA Topal, Halil İbrahim et al. “Kömür Yakıtlı Süper Kritik Termik Santralin Enerji Ve Ekserji Analizi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 2, 2022, pp. 788-01, doi:10.29130/dubited.966961.
Vancouver Topal Hİ, Bayram B, Bayram K, Erdogan B, Kopaç M. Kömür Yakıtlı Süper Kritik Termik Santralin Enerji ve Ekserji Analizi. DUBİTED. 2022;10(2):788-801.