Research Article
BibTex RIS Cite

Investigation of Electrical Properties of GaSe:Ge/Te and GaSe:Ge/Ag Schottky Junctions

Year 2018, Volume: 5 Issue: 1, 43 - 55, 25.07.2018

Abstract

In this paper, we have investigated electrical
properties of germanium doped Gallium Selenide (GaSe) single crystals.
Germanium doped GaSe single crystals were grown by conventional Bridgman
method. Shchottky junctions were obtained by melting Te or Ag elements on the GaSe:Ge
surface. In contacts have been made for the electrical measurements.
Characteristic properties of Schottky junctions were investigated as functions
of temperature and electric field. It was observed that the ratio of forward
bias and reverse bias currents in the Schottky junctions varied with both
applied electric field and light excitations. Schottky junctions showed asymmetric
current-voltage (I-V) characteristics. The light sensitivity of In/GaSe:Ge/Ag/In
Schottky junction was found to be higher than that of In/GaSe:Ge/Te/In Schottky
junction. The barrier heights of In/GaSe:Ge/Te/In and In/GaSe:Ge/Ag/In Schottky
junctions were calculated as 52.92 meV and 41.82 meV, respevtively. Barrier
heights of both Schottky junctions decreased with applied electric field. It
was found that barrier heights of the Schottky junctions decreased with the
square root of the applied electric field as




















 while the
current increased exponentially with the square root of the applied electric
field as

. These results are consistent with the Frenkel
thermoelectric field theory.

References

  • Allakhverdiev K, Baykara T, Ellialtioğlu Ş, Hashimzade F, Huseinova D, Kawamura K, Kaya A A, Kulibekov A M, Onari S, 2006. Lattice vibrations of pure and doped GaSe. Mat. Res. Bull., 41: 751-763.
  • Allers K H, 2004. Prediction of dielectric reliability from I–V characteristics:Poole–Frenkel conduction mechanism leading to pE model for silicon nitride MIM capacitor. Microelectronics Reliability, 44: 411–423.
  • Anis M K, Piercy A R, 1984. Electrical conduction in p-GaSe. J. Phys. D: Appl. Phys., 17: 1229-1232.
  • Augelli V, Manfredotti C, Murri R, Vasanelli L, 1978. Hall-mobility anisotropy in GaSe. Phys. Rev. B, 17: 3221-3226.
  • Bube R H, Lind E L, 1960. Photoconductivity in gallium sulfo-selenide solid solutions. Physical Review, 119: 1535-1537.
  • Capozzi V, 1981. Direct and Indirect Excitonic Emission in GaSe. Phys. Rev. B, 23: 836-840.
  • Capozzi V, 1982. Kinetics of radiative recombinations in GaSe and influence of Cu doping on the luminescence spectra. Phys. Rev. B, 28: 4620-4627.
  • Capozzi V, Minafra A, 1981. Photoluminescence properties of Cu-doped GaSe. J. Phys. C: Solid State Physics, 14: 4335-4346.
  • Fernelius N C, 1994. Properties of gallium selenide single crystal. Progress in Crystal Growth and Characterization of Materials, 28: 243-249.
  • Gasanly N M, Aydınlı A, Salihoğlu Ö, 2001. Thermally stimulated current observation of trapping centers in undoped GaSe layered single crystals. Cryst. Res. Technol., 36: 295-301.
  • Gouskov A, Camassel J, Gouskov L, 1982. Growth and characterization of III-VI layered crystals like GaSe, GaTe, InSe, GaSe1-xTex and GaxIn1-xSe. Prog. Crystal Growth and Charact., 5: 323-413.
  • Gürbulak B, 1997. İkili (InSe:Er, GaSe, GaSe:Gd) ve Üçlü (TlGaSe2, TlGaSe2:Gd) Tek Kristallerinin Büyütülmesi Soğurma ve Elektriksel Özelliklerinin İncelenmesi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Harrell W R, Gopalakrishnan C, 2002. Implications of advanced modeling on the observation of Poole–Frenkel effect saturation. Thin Solid Films, 405: 205–217.
  • Kambur H, 2005. Doğal Yalıtkan Tabakalı Al/p-Si Schottky Diyotlarda Elektriksel Karekteristiklerin Frekansa Bağlı Değişimi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Karabulut O, Parlak M, Turan R, Serincan U, Akınoğlu B G, 2006. Influence of ion implantation on structural and photoconductive properties of Bridgman grown GaSe single crystals. Cryst. Res. Technol., 41: 243-249.
  • Karabulut O, Parlak M, Turan R, Serincan U, Tasarkuyu E, Akinoglu B G, 2003. Electrical properties of nitrogen implanted GaSe single crystal. Cryst. Res. Technol., 38: 811-816.
  • Karatay A, Yuksek M, Ertap H, Mak A K, Karabulut M, Elmali A, 2016. Influence of boron concentration on nonlinear absorption and ultrafast dynamics in GaSe crystals. Optical Materials, 64: 74-80.
  • Kim C, Jang K, Kim Y L, 2004. Optical properties of Tm-doped GaSe single crystals. Solid State Communications, 130: 701-704.
  • Lui O K B, Migliorato P, 1997. A new generation-recombination model for device simulation including the poole-frenkel effect and phonon assisted tunnelling. Solid State Electronics, 41: 575-583.
  • Mamedov G M, Karabulut M, Kodolbaş A O, Öktü Ö, 2005. Exciton photoconductivity in Ge doped GaSe crystals. Phys. Stat. Sol. (b), 242: 2885-2891.
  • Manfredotti C, Mancini A M, Murri R, Rizzo A, Vasenelli L, 1977. Electrical properties of p-type GaSe. II Nuovo Cimento, 39: 257-268.
  • Micocci G, Serra A, Tepore A, 1997. Impurity Levels in Sn-Doped GaSe Semiconductor. Phys. Stat. Sol. (a), 162: 649-659.
  • Sanchez-Royo J F, Errandonea D, Segura A, 1998. Tin related double acceptors in gallium selenide sinle crystals. J. Appl. Phys., 83: 4750-4755.
  • Seyhan A, Karabulut O, Akınoğlu B G, Aslan B, Turan R, 2005. Optical Anisotropy in GaSe. Cryst. Res. Technol., 40: 893-895.
  • Shigetomi S, Ikari T, Nakashima H, 2004. Characterization of phosphorus in layered semiconductor GaSe. Journal of Luminescence, 79: 79-84.
  • Shigetomi S, Ikari S, Nakashima H, 2000. Electrical properties of p- and n-GaSe doped with As and Ge. Jpn. J. Appl. Phys., 39: 5083-5084.
  • Shigetomi S, Ikari T, Nakashima H, 1993. Optical and Electrical Properties of p-GaSe doped with Sb. Jpn. J. Appl. Phys., 32: 2731-2734.
  • Shigetomi S, Ikari T, Nakashima H, 1997. Electrical and optical characteristics of the layer semiconductor p-GaSe doped with Ag. Phys. Stat. Sol. (a), 160: 159-164.
  • Taylor R A, Ryan J F, 1987. Time resolved exciton photoluminescence in GaSe and GaTe. J. Phys. C: Solid State Physics, 20: 6175-6187.
  • Yakuphanoglu F, Tugluoglu N, Karadeniz S, 2007. Space charge-limited conduction in Ag/p-Si Schottky diode. Physica B, 392: 188–191.
  • Yuksek M, Karatay A, Ertap H, Elmali A, Karabulut M, 2017. Frequency conversion, nonlinear absorption and carrier of GaSe:B/Er crystals. Optical Materials, 66: 137-141.
  • Zeyrek S, 2005. Al/SiNx/p-Si (100) (MYY) Schottky Diyotların Elektriksel Karekteristiklerinin Düşük Sıcaklıklarda İncelenmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.

GASE:GE/TE VE GASE:GE/AG SCHOTTKY EKLEMLERİNİN ELEKTRİKSEL ÖZELLİKLERİNİN ARAŞTIRILMASI

Year 2018, Volume: 5 Issue: 1, 43 - 55, 25.07.2018

Abstract



Bu
çalışmada, germanyum katkılı Galyum Selenit (GaSe) tek kristallerinin
elektriksel özellikleri araştırıldı. Germanyum katkılı GaSe tek kristalleri
geleneksel Bridgman metodu ile büyütüldü. Schottky eklemleri GaSe:Ge yüzeyleri
üzerine Te ve Ag elementleri eritilerek elde edildi. Elektrik ölçümleri için
indiyum kontaklar yapıldı. Schottky eklemlerinin karakteristik özellikleri
elektrik alan ve sıcaklığın fonksiyonuna bağlı olarak araştırıldı. Elde edilen
Schottky eklemlerinde düz yöndeki akımın ters yöndeki akıma oranının uygulanan
elektrik alan ve ışıkla uyarılmaya bağlı olarak değiştiği gözlemlendi. Schottky
eklemleri asimetrik akım-gerilim (I-V) karakteristiği gösterdi. In/GaSe:Ge/Ag/In
Schottky ekleminin ışık duyarlılığının In/GaSe:Ge/Te/In Schottky ekleminden
daha yüksek olduğu bulundu. In/GaSe:Ge/Te/In ve In/GaSe:Ge/Ag/In Schottky
eklemlerinin bariyer yükseklikleri sırasıyla 52.92 meV and 41.82 meV olarak hesaplandı.
Her iki Schottky ekleminin de bariyer yüksekliği uygulanan elektrik alanla
azaldı. Schottky eklemlerinin bariyer yükseklikleri uygulanan elektrik alanın
karekökü ile orantılı olarak




















 gibi küçüldüğü ve akımın uygulanan elektrik
alanın karekökü ile

gibi üstel olarak değiştiği bulundu. Bu sonuçların Frenkel
termoelektrik alan teorisi ile uyumlu olduğu görüldü.




References

  • Allakhverdiev K, Baykara T, Ellialtioğlu Ş, Hashimzade F, Huseinova D, Kawamura K, Kaya A A, Kulibekov A M, Onari S, 2006. Lattice vibrations of pure and doped GaSe. Mat. Res. Bull., 41: 751-763.
  • Allers K H, 2004. Prediction of dielectric reliability from I–V characteristics:Poole–Frenkel conduction mechanism leading to pE model for silicon nitride MIM capacitor. Microelectronics Reliability, 44: 411–423.
  • Anis M K, Piercy A R, 1984. Electrical conduction in p-GaSe. J. Phys. D: Appl. Phys., 17: 1229-1232.
  • Augelli V, Manfredotti C, Murri R, Vasanelli L, 1978. Hall-mobility anisotropy in GaSe. Phys. Rev. B, 17: 3221-3226.
  • Bube R H, Lind E L, 1960. Photoconductivity in gallium sulfo-selenide solid solutions. Physical Review, 119: 1535-1537.
  • Capozzi V, 1981. Direct and Indirect Excitonic Emission in GaSe. Phys. Rev. B, 23: 836-840.
  • Capozzi V, 1982. Kinetics of radiative recombinations in GaSe and influence of Cu doping on the luminescence spectra. Phys. Rev. B, 28: 4620-4627.
  • Capozzi V, Minafra A, 1981. Photoluminescence properties of Cu-doped GaSe. J. Phys. C: Solid State Physics, 14: 4335-4346.
  • Fernelius N C, 1994. Properties of gallium selenide single crystal. Progress in Crystal Growth and Characterization of Materials, 28: 243-249.
  • Gasanly N M, Aydınlı A, Salihoğlu Ö, 2001. Thermally stimulated current observation of trapping centers in undoped GaSe layered single crystals. Cryst. Res. Technol., 36: 295-301.
  • Gouskov A, Camassel J, Gouskov L, 1982. Growth and characterization of III-VI layered crystals like GaSe, GaTe, InSe, GaSe1-xTex and GaxIn1-xSe. Prog. Crystal Growth and Charact., 5: 323-413.
  • Gürbulak B, 1997. İkili (InSe:Er, GaSe, GaSe:Gd) ve Üçlü (TlGaSe2, TlGaSe2:Gd) Tek Kristallerinin Büyütülmesi Soğurma ve Elektriksel Özelliklerinin İncelenmesi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Harrell W R, Gopalakrishnan C, 2002. Implications of advanced modeling on the observation of Poole–Frenkel effect saturation. Thin Solid Films, 405: 205–217.
  • Kambur H, 2005. Doğal Yalıtkan Tabakalı Al/p-Si Schottky Diyotlarda Elektriksel Karekteristiklerin Frekansa Bağlı Değişimi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Karabulut O, Parlak M, Turan R, Serincan U, Akınoğlu B G, 2006. Influence of ion implantation on structural and photoconductive properties of Bridgman grown GaSe single crystals. Cryst. Res. Technol., 41: 243-249.
  • Karabulut O, Parlak M, Turan R, Serincan U, Tasarkuyu E, Akinoglu B G, 2003. Electrical properties of nitrogen implanted GaSe single crystal. Cryst. Res. Technol., 38: 811-816.
  • Karatay A, Yuksek M, Ertap H, Mak A K, Karabulut M, Elmali A, 2016. Influence of boron concentration on nonlinear absorption and ultrafast dynamics in GaSe crystals. Optical Materials, 64: 74-80.
  • Kim C, Jang K, Kim Y L, 2004. Optical properties of Tm-doped GaSe single crystals. Solid State Communications, 130: 701-704.
  • Lui O K B, Migliorato P, 1997. A new generation-recombination model for device simulation including the poole-frenkel effect and phonon assisted tunnelling. Solid State Electronics, 41: 575-583.
  • Mamedov G M, Karabulut M, Kodolbaş A O, Öktü Ö, 2005. Exciton photoconductivity in Ge doped GaSe crystals. Phys. Stat. Sol. (b), 242: 2885-2891.
  • Manfredotti C, Mancini A M, Murri R, Rizzo A, Vasenelli L, 1977. Electrical properties of p-type GaSe. II Nuovo Cimento, 39: 257-268.
  • Micocci G, Serra A, Tepore A, 1997. Impurity Levels in Sn-Doped GaSe Semiconductor. Phys. Stat. Sol. (a), 162: 649-659.
  • Sanchez-Royo J F, Errandonea D, Segura A, 1998. Tin related double acceptors in gallium selenide sinle crystals. J. Appl. Phys., 83: 4750-4755.
  • Seyhan A, Karabulut O, Akınoğlu B G, Aslan B, Turan R, 2005. Optical Anisotropy in GaSe. Cryst. Res. Technol., 40: 893-895.
  • Shigetomi S, Ikari T, Nakashima H, 2004. Characterization of phosphorus in layered semiconductor GaSe. Journal of Luminescence, 79: 79-84.
  • Shigetomi S, Ikari S, Nakashima H, 2000. Electrical properties of p- and n-GaSe doped with As and Ge. Jpn. J. Appl. Phys., 39: 5083-5084.
  • Shigetomi S, Ikari T, Nakashima H, 1993. Optical and Electrical Properties of p-GaSe doped with Sb. Jpn. J. Appl. Phys., 32: 2731-2734.
  • Shigetomi S, Ikari T, Nakashima H, 1997. Electrical and optical characteristics of the layer semiconductor p-GaSe doped with Ag. Phys. Stat. Sol. (a), 160: 159-164.
  • Taylor R A, Ryan J F, 1987. Time resolved exciton photoluminescence in GaSe and GaTe. J. Phys. C: Solid State Physics, 20: 6175-6187.
  • Yakuphanoglu F, Tugluoglu N, Karadeniz S, 2007. Space charge-limited conduction in Ag/p-Si Schottky diode. Physica B, 392: 188–191.
  • Yuksek M, Karatay A, Ertap H, Elmali A, Karabulut M, 2017. Frequency conversion, nonlinear absorption and carrier of GaSe:B/Er crystals. Optical Materials, 66: 137-141.
  • Zeyrek S, 2005. Al/SiNx/p-Si (100) (MYY) Schottky Diyotların Elektriksel Karekteristiklerinin Düşük Sıcaklıklarda İncelenmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Caucasian Journal of Science
Authors

Hüseyin Ertap 0000-0003-3896-6188

Mevlüt Karabulut 0000-0002-0227-318X

Publication Date July 25, 2018
Submission Date July 17, 2018
Acceptance Date August 20, 2018
Published in Issue Year 2018 Volume: 5 Issue: 1

Cite

APA Ertap, H., & Karabulut, M. (2018). GASE:GE/TE VE GASE:GE/AG SCHOTTKY EKLEMLERİNİN ELEKTRİKSEL ÖZELLİKLERİNİN ARAŞTIRILMASI. Caucasian Journal of Science, 5(1), 43-55.

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png